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The pseudoscalar and vector heavy-meson masses are calculated in the �-regime of Heavy Meson

Chiral Perturbation Theory to order �4. The results presented will allow the determination of low-energy

coefficients (LECs) directly from Lattice QCD calculations of the heavy-mesons masses for lattices that

satisfy the �-regime criteria. In particular, the LECs that parametrize the next-to-leading order volume

dependence of the heavy-meson masses are necessary for evaluating the light-pseudoscalar meson

ð�;K; �Þ and heavy meson (fD0; Dþ; Dþ
s g, fB�; �B0; �B0

sg) scattering phase shifts.
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I. INTRODUCTION

Understanding the properties of systems composed
of heavy mesons, containing a single heavy quark,
and the pseudo-Goldstone bosons (pGB) of Quantum
Chromodynamics (QCD) is currently a topic of high inter-
est. This interest has been partly triggered by the renais-
sance of charmonium and open-charm studies. A
resonance that has initiated much discussion is the narrow
D�

s0ð2317Þ, first observed by the BABAR collaboration [1].

This resonance couples to the S-wave DK continuum
scattering state [2,3]. At low energies the strength of the
DK interaction is predominantly parametrized by the scat-
tering length. This has resulted in several theoretical stud-
ies that have attempted to determine the S-wave scattering
lengths in the pGB-heavy meson scattering channels [4–8].
The determination of these scattering lengths would not
only help discern the heavy-meson spectrum, but is needed
in order to evaluate transport coefficients of systems con-
taining heavy-light mesonic species, e.g. the hadronic
phase of heavy ion collisions.

Currently, a combination of effective field theories
(EFTs) and Lattice Quantum Chromodynamics (LQCD)
provides the best option for performing reliable calcula-
tions of low-energy QCD observables (reviews on these
topics include [9–15]). Heavy Meson Chiral Perturbation
Theory (HM�PT) [16–18] is the low-energy EFT for
studying strong-interaction quantities of mesons contain-
ing a single heavy quark and a single light antiquark. The
nonperturbative QCD contributions to HM�PT are pa-
rametrized by low-energy coefficients (LECs). The predic-
tive power of HM�PT is currently limited by the poor
determination of these LECs, e.g. currently next-to-leading
order (NLO) LECs are determined within a factor of three
of precision, resulting in scattering lengths that are known
within a factor of three [6,7]. The results outlined in the
work will help reduce the uncertainties of LECs needed in
the evaluation of pGB-heavy meson scattering.

Historically, LQCD calculations have used moderate
volumes and unphysically large pion masses. With advan-
ces in computing technology, performing LQCD calcula-
tion at the physical point (m� � 140 MeV) of QCD is now
a reality. However, limited computer resources require
state of the art calculation with physical pion masses to
be performed with small physical volumes. This leads to
sizable volume effects contributing to the quantities of
interest, and while it is natural to want to remove them,
these effects can hold physically important information.
More specifically, volume effects are parametrized by the
LECs of the EFT, therefore by evaluating physical observ-
ables in small volumes one can determine the LECs.
In an infinite volume, the expansion parameters of

HM�PT are p=��, ml=��, and �QCD=mQ, where p is

the characteristic momentum of the interaction, ml is the
mass of the light Goldstone bosons, mQ is the heavy-quark

mass, �� is the chiral symmetry breaking scale, and �QCD

is the characteristic scale of QCD. In a finite volume this
expansion scheme is consistent in the p-regime [19,20].
However, for volumes smaller than the Compton wave-

length of the Goldstone bosons, the zero momentum mode
is enhanced with respect to the non-zero modes, and an
alternative expansion scheme must be utilized [21]. The
regime where the pion zero-modes must be integrated over
explicitly while still treating the non-zero modes perturba-
tively is known as the �-regime [21–33]. In the �-regime, a
new expansion parameter is introduced, �� 2�=L�� �
2�=��� and �2 �ml=��, where L and � are the spatial

and temporal extents, respectively. At leading order, one
may associate �Q, the hyperfine splitting between the

pseudoscalar meson P (fD0; Dþ; Dþ
s g, fB�; �B0; �B0

sg) and
its respective vector meson P� (fD�0; D�þ; D�þ

s g,
fB��; �B�0; �B�0

s g), with the physical values of �140 MeV
and �50 MeV for the charm and bottom mesons, respec-
tively. Therefore, it is reasonable to expect the hyperfine
splitting to contribute at order �2 for charmed mesons
(�2 � �c=��) and approximately at order �3 for bottom

mesons (�3 � �b=��). For the sake of generality, both

scenarios are considered.*briceno@uw.edu
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This study presents the volume dependence of the
heavy-meson masses at next-to-leading order (NLO),
Oð�4Þ, in the ‘‘mixed regime’’ of SU(2) and SU(3)
HM�PT. In the mixed regime, the physical pion mass is
small compared to the IR cutoff and therefore fall within
the �-regime, while the kaon and eta still satisfy the
p-regime criteria [34,35]. Therefore in the mixed regime,
the expansion in the � and fK;�g masses is treated sepa-
rately in order to satisfy �2 �m�=�� and ��mK=�� �
m�=��. The Oð�3Þ volume dependence of the heavy-

meson mass for an SUð2ÞL � SUð2ÞR chiral theory with
static heavy quarks has been previously calculated [35].
The results presented in this study are in agreement with
those found in [35]. At Oð�3Þ, the NLO couplings of
HM�PT do not contribute and therefore extracting them
requires going to the next order in the chiral and m�1

Q

expansions.

II. HEAVY MESON CHIRAL PERTURBATION
THEORY

The field multiplet of the pseudoscalar P and the vector
P� can be conveniently represented as a single field opera-
tor [16–18],

Ha � 1þ 6v
2

½6P�
a þ iPa�5�; �Ha � �0Hy

a�0; (1)

where v� is the velocity of the heavy meson. The repre-
sentation of the composite fieldHaðxÞ assures it transforms
as an SU(2) spinor under heavy-quark spin rotations, under
the unbroken SUð3ÞV symmetry it transforms as an element
of the �3 fundamental representation (as denoted by the

subscript ‘‘a’’), and under both Lorentz and parity trans-
formations it is a bilinear. In the rest frame, the LO
HM�PT Lagrangian in mQ and �� consistent with sponta-

neously broken SUð3ÞL � SUð3ÞR is [16–18]:

L0 ¼ �iTr½ �HaðD0ÞbaHb� � gTr½ �HaHb ~� � ~Aba�5�

þ f2

8
Tr½@��y@��� þ f2

4
Tr½M�y þ H:c:�; (2)

whereM ¼ 1
2 diagðm2

�;m
2
�; 2m

2
K �m2

�Þ is the light meson

mass matrix, ~� is the spatial component of ��, D� ¼
@� þV� is the covariant derivative, f is the pion decay
constant, and the Goldstone bosons are encapsulated in the
operators,

� ¼ �2 ¼ exp

�
2iM

f

�
M

¼

�0ffiffi
2

p þ �ffiffi
6

p �þ Kþ

�� � �0ffiffi
2

p þ �ffiffi
6

p K0

K� �K0 �
ffiffi
2
3

q
�

0
BBBBB@

1
CCCCCA

A� ¼ i

2
ð�@��y � �y@��Þ

V� ¼ 1

2
ð�@��y þ �y@��Þ: (3)

At NLO inHM�PT there are a large number of corrections
to the Lagrangian that are consistent with velocity repar-
ametrization invariance (VRI) [36], but the terms that will
contribute to the volume dependence of the mass are the
following:

L1 ¼ � g1
mQ

Tr½ �HaHb ~� � ~Aba�5� � g2
mQ

Tr½ �Ha ~� � ~Aba�5Hb� þ 	

mQ

Tr½ �Ha

��Ha
��� þ �1

��

Tr½ �HaHa�ðA0A0Þbb

þ 
1

��

Tr½ �HaHbð�M�þ H:c:Þba� þ 
2

��

Tr½ �HaHað�M�þ H:c:Þbb� þ �2

��

Tr½ �HaHcA0
cbA

0
ba�

þ �3

��

Tr½ �HaHcAcb �Aba� þ �4

��

Tr½ �HaHa�ðA �AÞbb: (4)

The g0s, �0s, 
0s, and 	 are the relevant LECs of the
theory. At leading order, the hyperfine splitting can be
written in terms of 	, �Q � 8	

mQ
.

III. ZERO-MODES INTEGRATION
IN THE �-REGIME

In the �-regime, it is necessary to evaluate the pion zero-

modes, q� ¼ ð0; ~0Þ, contribution nonperturbatively. It is
convenient to integrate zero-mode out of the theory, leav-
ing an effective field theory in terms of the non-zero
modes. In the mixed regime, only the pion zero-modes
are removed [35], while the zero-modes of the kaon and eta

are treated perturbatively. This can be done by rewriting
the � operator as

�ðxÞ ¼ U�̂ðxÞU; U ¼ exp
i

f

�0
zffiffi
2

p �þ
z 0

��
z � �0

zffiffi
2

p 0
0 0 0

0
BB@

1
CCA

2
664

3
775:

(5)

The subscript z labels the zero-mode operators, while the
operators with a hat are operators whose contribution can
be treated perturbatively in the �-expansion. When inte-
grating over the zero-modes it is convenient to write the
operator U in terms of hyperspherical coordinates,
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U¼
cosðc Þþ icosðÞsinðc Þ sinðÞsinðc Þei� 0

sinðÞsinðc Þe�i� cosðc Þ� icosðÞsinðc Þ 0
0 0 1

0
B@

1
CA: (6)

When constructing the Lagrangian that is invariant under
chiral transformations, it is advantageous to define the
operator � � ffiffiffiffi

�
p

. Under the redefinition of Eq. (5), one
finds,

�ðxÞ ¼ U�̂ðxÞVyðxÞ ¼ VðxÞ�̂ðxÞU; (7)

where the definitions Vy ¼ �̂Uy
ffiffiffiffiffiffiffiffiffiffiffiffi
U�̂U

q
and V ¼ffiffiffiffiffiffiffiffiffiffiffiffi

U�̂U

q
Uy�̂y have been implicitly introduced. When inte-

grating over U, one may substitute A� ¼ VÂ�V
y and

V� ¼ VV̂�V
y þ iV@�V

y. The results presented here

will be truncated at Oð�4Þ, in which case one can safely
make the following approximation:

A� ’ Â� ¼ i

2
ð�̂@��̂y � �̂y@��̂Þ ¼ @�M̂

f
þOð�3Þ

V� ’ V̂
� ¼ 1

2
ð�̂@��̂y þ �̂y@��̂Þ ¼ M̂@�M̂

f2
þOð�4Þ:

(8)

The only contribution to the heavy-meson mass that origi-
nates from the zero-modes integration first appears at

Oð�4Þ, and comes from the second line in Eq. (4):

�LM ¼ 
1

��

Tr½ �HaHbð�M�þ H:c:Þba�

þ 
2

��

Tr½ �HaHað�M�þ H:c:Þbb�

’ 
1

��

Tr½ �H1H1 þ �H2H2�ðcosð2c Þm2
�Þ

þ 
1

��

Tr½ �H3H3�ð2m2
k �m2

�Þ þ 
2

��

Tr½ �HaHa�

� ð2m2
K þ ð�1þ 2 cosð2c ÞÞm2

�Þ: (9)

In order to evaluate the contribution of this term to the
heavy-meson mass, the c -dependence in this expression
must be integrated out using the nonperturbative weight
arising from the last term in Eq. (2). It is convenient to
perform this integral by analytically continuing to
Euclidean time t ! �it:

Z
DU2 exp

�Z
d4x

�
f2

4
Tr½MU2 þ H:c:� þ �LMÞ

�

¼ XðsÞ exp
�
�X0ðsÞ

XðsÞ m
2
�

Z
d4xðð
1 þ 2
2Þ

� ðP�y
a P�

a þ ~Py
a � ~PaÞ � 
1ðP�y

3 P�
3 þ ~Py

3 � ~P3ÞÞ
�
: (10)

where s ¼ 1
4 f

2m2
��L

3, and X(s) can be expressed in terms

of the modified Bessel function I1ð2sÞ of the first kind,

XðsÞ �
Z 8

�
dc cos2ðc Þsin2ðc Þe2s cosð2c Þ ¼ I1ð2sÞ

s
;

Z 8

�
dc cos2ðc Þsin2ðc Þe2s cosð2c Þ cosð2c Þ ¼ X0ðsÞ

2
: (11)

Since M has no spin structure, it results in the same shift
for both the masses of the pseudoscalar and vector fields,
yet it explicitly breaks the SUð3ÞV symmetry,

�MðP;P�Þ ¼ m2
�

��

ð
1 þ 2
2ÞX
0ðsÞ

XðsÞ þ

2

��

2ð2m2
K �m2

�Þ;

�MðP �s;P
�
�s Þ ¼ 2

m2
�

��


2

X0ðsÞ
XðsÞ þ


1 þ 
2

��

2ð2m2
K �m2

�Þ: (12)

This shifts the bare mass of the strange-pseudoscalar me-
son by �s

Q and the strange vector-meson mass by �s
Q,

�s
Q � ð�MP �s

� �MPÞðL¼1Þ ¼ 2
1

ð2m2
K �m2

�Þ
��

;

�s
Q � �Q þ �s

Q:

(13)

At leading order, one may associate �s
Q with physical value

of the splitting between the isospin doublet P and strange-
pseudoscalar P �s, which is on the order of 100MeV for both
the charm and bottom mesons, respectively. Both �s

Q and

�s
Q will assume the same power counting as �Q �Oð�2Þ.
This analysis introduces a volume dependence to the

mass of the nonzero pion modes, as well as for the K’s and
�’s,

m2
� ! m2

�

X0ðsÞ
2XðsÞ ;

m2
K ! m2

K �m2
�

2
þm2

�

X0ðsÞ
4XðsÞ ¼ m2

K þOð�4Þ
(14)

m2
� ! 4

3
m2

K � 2
m2

�

3
þm2

�

X0ðsÞ
6XðsÞ ¼

4

3
m2

K þOð�4Þ: (15)

After performing the integration over the zero-modes, the
finite-volume contribution from the remaining degrees of
freedom can be evaluated perturbatively. The finite-volume
Feynman diagrams can be evaluated in the standard way,
where the integral is replaced by a sum over discretized
four momenta and the zero mode is explicitly excluded in
the pion loops [19]. An outline of the methods used in
performing these sums is discussed in the appendix.
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IV. RESULTS

In taking the isospin limit, the pseudoscalar pair P ¼
fP �u; P �dg will receive the same mass contribution. P will
denote the isospin pair and P�s will denote the strange-
heavy meson. In order to formally categorize the different
terms contributing to the mass, it is important to consider
the ratio �QCD=mQ �Oð��Þ. The most relevant cases are

the following:

ðiÞ:�QCD=mQ�Oð�2Þ ðiiÞ:�QCD=mQ�Oð�Þ; (16)

corresponding to the static limit and LO heavy-quark mass
corrections, respectively. For simplicity, the expressions
below will include finite LO heavy-quark mass corrections.
The static limit can easily be obtained by taking the mQ !
1 limit (note �Q / m�1

Q ! 0). The individual diagrams

contributing to MP are written in the appendix. The nota-
tion �MP � MPðLÞ �MPð1Þ is used to denote the finite-
volume dependence of the mass.

A. SU(3) HM�PT

The SU(3) volume dependence of the P and P�s masses
up to and including Oð�4Þ is found by adding the finite-
volume contributions from the self-energy diagrams de-
picted in Figs. 1 and 2, where the Goldstone bosons can be
pions, kaons, and etas,

�MP ¼
�
g2 þ 2

gðg1 � g2Þ
mQ

��
3

4f2L3
þ 1

8�Lf2

�
m2

KN 1ðmK; LÞ þ 1

6
m2

�N 1ðm�;LÞ
��

þ g22
1m
2
K

f2��

�
2
N 2ðmK;LÞ
m1=2

K L5=2

�

þ g2�Q

2f2

�
� 3c1
8�L2

þ 1

3

N 2ðm�; LÞ
m1=2

� L5=2
þ 2

N 2ðmK; LÞ
m1=2

K L5=2

�
� �1

2f2��

�
6

c4
2�2L4

þ 8
m3

K

16�2L
K1ðmKLÞ

þ 2
m3

�

16�2L
K1ðm�LÞ

�
� �2

2f2��

�
3

c4
2�2L4

þ 2
m3

K

16�2L
K1ðmKLÞ þ 1

3

m3
�

16�2L
K1ðm�LÞ

�

� �3

2f2��

�
2

m3
K

16�2L
K2ðmKLÞ þ 1

3

m3
�

16�2L
K2ðm�LÞ

�
� �4

2f2��

�
8

m3
K

16�2L
K2ðmKLÞ þ 2

m3
�

16�2L
K2ðm�LÞ

�

þ m2
�

2��

ð
1 þ 2
2ÞX
0ðsÞ

XðsÞ ; (17)

�MP �s
¼ 2

f2

�
g2 þ 2

gðg1 � g2Þ
mQ

��
m2

K

8�L
N 1ðmK; LÞ þ 1

3

m2
�

8�L
N 1ðm�; LÞ

�
� 8g2
1m

2
K

f2L5=2��

N 2ðmK; LÞ
m1=2

K

þ 2g2�Q

f2L5=2

�N 2ðm�;LÞ
3m1=2

�

þN 2ðmK; LÞ
m1=2

K

�
� �1

2f2��

�
3

c4
2�2L4

þ 8
m3

K

16�2L
K1ðmKLÞ þ 2

m3
�

16�2L
K1ðm�LÞ

�

� �2

2f2��

�
4

m3
K

16�2L
K1ðmKLÞ þ 4

3

m3
�

16�2L
K1ðm�LÞ

�
� �3

2f2��

�
4

m3
K

16�2L
K2ðmKLÞ þ 4

3

m3
�

16�2L
K2ðm�LÞ

�

� �4

2f2��

�
8

m3
K

16�2L
K2ðmKLÞ þ 2

m3
�

16�2L
K2ðm�LÞ

�
þ 2
2

m2
�

2��

X0ðsÞ
XðsÞ : (18)

FIG. 1 (color online). �3 contribution to the pseudoscalar
heavy-meson mass. The solid line corresponds to the heavy
pseudoscalar, the double line denotes a vector meson, and the
dashed line represents a Goldstone boson.

FIG. 2 (color online). �4 contribution to the pseudoscalar heavy-meson mass. (a) Denotes the zero-modes contribution.
(b) Goldstone bosons loops originating from four-point vertices. (c) Incorporates operators that contribute the heavy flavor symmetry
breaking corrections to the PP�� vertex.
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where m2
� � 4m2

K=3, the discrete sums c1, c4, N i, and Ki are defined in Eqs. (A20), (A24), (A25), and (13) has used.
Similarly, the Oð�3Þ and Oð�4Þ corrections to the vector-meson masses are depicted in Figs. 3 and 4, respectively. In the
static limit, the pseudoscalar and the vector mesons are degenerate, therefore it is only necessary to evaluate the volume
dependence of the hyperfine splitting:

�MP� � �MP ¼ 8
gg2
3mQ

�
3

4f2L3
þ 1

8�Lf2

�
m2

KN 1ðmK; LÞ þ 1

6
m2

�N 1ðm�; LÞ
��

þ g2�Q

2f2

�
c1

2�L2
� 4

3

N 2ðmK; LÞ
m1=2

K L5=2
þ 2

9

N 2ðm�;LÞ
m1=2

� L5=2

�
(19)

�MP�
�s
� �MP �s

¼ 16gg2
3mQf

2

�
m2

K

8�L
N 1ðmK; LÞ þ 1

3

m2
�

8�L
N 1ðm�; LÞ

�
� 4

3

g2�Q

f2L5=2

�
2
N 2ðmK; LÞ

m1=2
K

þ 2

3

2g2�Q

3f2L5=2

N 2ðm�;LÞ
m1=2

�

�
: (20)

B. SU(2) HM�PT

In SU(2) Chiral Perturbation Theory, the kaons and eta
decouple from the theory. Only integrals including pions
depicted in Figs. 1–4 contribute to the volume dependence
of the masses,

�Mð2Þ
P ¼

�
ðgð2ÞÞ2 þ 2

gð2Þðgð2Þ1 � gð2Þ2 Þ
mQ

�
3

4f2L3

þ m2
�

2��

ð
ð2Þ
1 þ 2
ð2Þ

2 ÞX
0ðsÞ

XðsÞ �
ðgð2ÞÞ2�ð2Þ

Q

2f2
3c1
8�L2

� 3

2f2��

ð2�ð2Þ
1 þ �ð2Þ

2 Þ c4
2�2L4

; (21)

�Mð2Þ
P� � �Mð2Þ

P ¼ 2
gð2Þgð2Þ2

mQf
2L3

þ ðgð2ÞÞ2�ð2Þ
Q

f2
c1

4�L2
; (22)

where an additional superscript has been introduced in
order to explicitly distinguish the SU(2) LECs from those
contributing to the SU(3) theory. Note, these results have
been derived assuming �Q �Oð�2Þ, which should be ex-

pected to be the case for the charm mesons. For the bottom
mesons one should expect �b �Oð�3Þ. This would move
finite volumes effects related to this coupling to Oð�5Þ,
displacing them outside the scope of this calculation.

V. ANALYSIS AND DISCUSSION

The results presented in the previous section allow de-
termination of LECs that play an important role in the
determination of heavy-light meson scattering phase shifts.
In order to evaluate the LECs, one must fit the expressions
M1 þ �MðL;m�;mQÞ and �1 þ ��ðL;m�;mQÞ to

LQCD results of the heavy-meson masses for different
volumes and pion masses that fall within the �-regime,
where ðM1;�1Þ are the physical mass and hyperfine split-
ting, and ð�M; ��Þ denote the finite L, m� and mQ con-

tribution described by Eqs. (12), (13), and (17)–(22). The
corresponding LQCD calculation has not been performed
yet. Nevertheless, the uncertainty of the LECs (�li) as a

function of the standard deviation of the heavy-meson
masses (�Mh

) can be estimated. Because of the larger

number of LECs and the larger expansion parameters for
SU(3) HM�PT (mK=��, m�=��), the following discus-

sion will focus on SU(2) HM�PT.
In order to determine �li as a function of �Mh

, I have

analyzed fake data for the heavy pseudoscalar and vector-
meson masses. For both hadrons, a data set was generated
that follows the trend predicted by M1 þ �MðL;m�;mQÞ;
this required inputting randomly generated LECs.
Additional L, m� and mQ dependent terms were added

to M1 þ �MðL;m�;mQÞ in order to simulate the Oð�5Þ

FIG. 3 (color online). �3 contribution to the heavy vector-
meson mass.

FIG. 4 (color online). �4 contribution to vector-meson mass.
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corrections. The exact form of these terms is irrelevant for
the discussion at hand. Each hadron mass has been given a
corresponding uncertainty. Lastly, the set is fit to M1 þ
�MðL;m�;mQÞ in order to reproduce the randomly gen-

erated LECs. Since at leading order the heavy-meson mass
depends linearly in the heavy-quark mass, the mQ depen-

dence can be rewritten in terms of physical heavy-meson
mass, Mh. It is convenient to introduce variables that

encapsulate the linear combination of LECs appearing

in Eqs. (21) and (22): g23 � 2 gðg1�g2Þ
��

, g24 � 2 gg1
��

, 
 �
ð
1 þ 2
2Þ, ~� � g2�Q

Mh

��
, � � ð2�1 þ �2Þ. Using these

and Eqs. (12), (21), and (22), the m� and L dependence of
the pseudoscalar and vector masses can be written as
follows,

MPðL;m�;MhÞ

¼Mhþg2
3

4f2L3
þg23

��

Mh

3

4f2L3
þ


m2
�

2��

X0ðsÞ
XðsÞ �
2

2m2
�

��

� ~�
��

Mh

3c1
16�f2L2

��
3

2f2��

c4
2�2L4

; (23)

MP� ðL;m�;Mh� Þ

¼Mh� þg2
3

4f2L3
þg24

��

Mh�

3

4f2L3
þ


m2
�

2��

X0ðsÞ
XðsÞ

�
2

2m2
�

��

� ~�
��

Mh�

c1
16�f2L2

��
3

2f2��

c4
2�2L4

; (24)

where ðMh;Mh� Þ are the bare pseudoscalar and vector
masses.

FIG. 5 (color online). Prediction for the level of precision for
determining the LO LEC g2 by fitting Eqs. (23) and (24) to 18
pseudoscalar and vector masses [corresponding to six different
values of ðm�; LÞ that fall within the �-regime and three different
heavy-quark masses] with an uncertainty ranging from 0.5% to
0.01%.

FIG. 6 (color online). Prediction for the level of precision for determining the NLO LECs f~�Q; �; 
;
2; g
2
3; g

2
4g by fitting Eqs. (23)

and (24) to 18 pseudoscalar and vector masses [corresponding to six different values of ðm�; LÞ that fall within the �-regime and three
different heavy-quark masses] with an uncertainty ranging from 0.5% to 0.01%.
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Since the level of precision with which the LECs can be
determined depends on their magnitude, the parameters

were varied ~� ¼ f80–150g MeV, g2 ¼ f0:5–1:5g, jg23j ¼
f0:5–1:5g, jg24j ¼ f0:5–1:5g, j
j ¼ f0:5–1:5g, j
2j ¼
f0:5–1:5g, j�j ¼ f0:5–1:5g, while the pion decay constant
was fixed at f ¼ 130 MeV. For each value of the LECs, a
set of 18 pseudoscalar and vector masses was generated,
corresponding to six different ðm�;LÞ that fall within the
�-regime and three different heavy-quark masses. The
three heavy-quark masses were chosen such that Mh ¼
f1:8; 2:5; 3:0g GeV. Each heavy-meson mass was given
an uncertainty ranging from 0.5% to 0.01%. The randomly
generated LECs were then obtain by simultaneously
fitting the two data sets using Eqs. (23) and (24). The
estimate of the expected fractional standard deviation of
the LECs as a function of �Mh

=Mh is plotted in Fig. 5 and 6

as the shaded region. The range of possible standard
deviation for the LECs for a given uncertainty of the
heavy-meson mass manifests the fact that the precision
with which these LECs can be determined depend on their
absolute value.

VI. CONCLUSION

HM�PT is the EFT for calculating strong-interaction
quantities of heavy mesons. Currently, HM�PT is limited
by the determination of the LECs of the theory. In particu-
lar, the LECs in the Lagrangian discussed in this paper,
Eqs. (2)–(4), contribute to the evaluation of scattering
lengths, and are currently known to within a factor of three
[6,7].

These LECs can be evaluated from LQCD calculations.
One way to achieve this is to extract the LECs from the
volume dependence of the heavy-meson masses, since
these finite-volume effects are parametrized by the LECs
of the theory. With this in mind, the finite-volume depen-
dence of the heavy pseudoscalar and vector-meson masses
in the �-regime of HM�PT have been calculated to Oð�4Þ.
In the �-regime, LQCD calculations can be performed at
the physical point of QCD (m� � 140 MeV) if volumes
are small (L 	 4 fm).

Lastly, it was shown that by evaluating the pseudoscalar
and vector-meson masses with a precision of 0.1% for
six ðm�; LÞ and three mQ values, six of the SU(2) NLO

LECs can be determined within the 20% level of precision.
In order to calculate the heavy-light scattering lengths,
it is also necessary to determine the linear combination

2�ð2Þ
4 þ �ð2Þ

3 [6,7], which could be determined from the

volume dependence of the heavy-meson mass at Oð�6Þ.
Because of the nature of the �-regime, chiral corrections

are suppressed, and finite m� corrections to hadron masses
come in at NLO in the expansion parameter. This is in
contrast to the p-regime, where the finite m� contributions
are enhanced, contributing at LO in the expansion parame-
ter. As a result, one would expect better determination of

the 
 couplings from studying the m� dependence of the
heavy-meson mass in the p-regime.
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APPENDIX A

Finite-volume Feynman diagrams can be performed by
replacing integrals with sums over discretized four mo-
menta [19]. The sums contributing to the calculation of the
heavy-meson mass to Oð�4Þ are

A ðmL;�; L; �Þ ¼ 1

�L3

X
n��0

1

ið2�n0� þ!Þ ��

� ð2�~n
L Þ2

ð2�n0� Þ2 þ ð2�~n
L Þ2 þm2

L

; (A1)

B ðmL; L; �Þ ¼ 1

�L3

X
n��0

ð2�n0� Þ2
ð2�n0� Þ2 þ ð2�~n

L Þ2 þm2
L

; (A2)

C ðmL; L; �Þ ¼ 1

�L3

X
n��0

ð2�~n
L Þ2

ð2�n0� Þ2 þ ð2�~n
L Þ2 þm2

L

: (A3)

where ! is the external energy, and mL denotes the light
meson mass ðm�;mK;m�Þ. In the mixed regime, the � and

fK;�g loops must be treated separately. Because of the
field convention, the corrections to the mass are defined as
i
2�ð! ¼ 0Þ þ i�P

2 @!�ð! ¼ 0Þ, where� is the sum of the

amputated self-energy diagrams, and �P is the bare resid-
ual mass of the heavy meson. The superscripts of the terms
below denote the order at which they contribute in the
�-expansion. The Oð�3Þ correction to the pseudoscalar
mass, depicted in Fig. 1, is

Mð3Þðm�;�; L; �Þ
¼ 1

2

�
2~g

f

�
2 3

2

1

�L3

X
n��0

1

2ðið!þ 2�n0
� Þ � �Þ

� ð2�~n
L Þ2

ð2�n0� Þ2 þ ð2�~n
L Þ2 þm2

�

!!!0 3~g2

2f2
Aðm�;�; L; �Þ

¼ 3~g2

2f2
Að0;�; L; �Þ þOð�5Þ; (A4)
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Mð3ÞðmK;m�;�
s; L; �Þ ¼ ~g2

f2
AðmK;�

s; L; �Þ

þ ~g2

6f2
Aðm�;�

s; L; �Þ (A5)

where ~g ¼ gþ g1
mQ

. The first Oð�4Þ contribution comes

from integrating out the zero-modes using Eq. (12),
depicted by Fig. 2(a)],

Mð4Þ
a ðm�; L; �Þ ¼ m2

�

2��

ð
1 þ 2
2ÞX
0ðsÞ

XðsÞ : (A6)

The second graph, Fig. 2(b)], corresponds to the four-point
vertex contribution to the mass,

Mð4Þ
b ðm�; L; �Þ

¼ � 3�1 þ 6�2

2f2��

Bð0; L; �Þ þOð�6Þ;

Mð4Þ
b ðmK;m�; L; �Þ

¼ � 4�1 þ �2

f2��

BðmK; L; �Þ � �3 þ 4�4

f2��

ðBðmK; L; �Þ

þ CðmK; L;�ÞÞ � 6�1 þ �2

6f2��

Bðm�;L; �Þ

� �3 þ 6�4

6f2��

ðBðm�; L;�Þ þ Cðm�; L; �ÞÞ: (A7)

The third diagram, Fig. 2(c)], comes from the three-point
vertex corrections in the Lagrangian, and it results in the
following contribution to the P meson mass:

Mð4Þ
c ðm�;�; L; �Þ ¼ �6

gg2
2f2mQ

Að0;�; L; �Þ þOð�5Þ;

Mð4Þ
c ðmK;m��

s; L; �Þ ¼ � 4gg2
2f2mQ

AðmK;�
s; L; �Þ

� 2gg2
6f2mQ

A
�
2ffiffiffi
3

p mK;�
s; L; �

�
:

(A8)

In order to evaluate the temporal sum, the Abel-Plana
formula will be used:

1

�

X
n

f

�
2�n

�

�

¼
Z 1

�1
dz

2�
fðzÞ� iRes

�
fðzÞ

ei�z�1

���������lowerplane

þ iRes

�
fðzÞ

e�i�z�1

���������upperplane
: (A9)

The spatial sum can be performed using Poisson’s
Resummation formula,

1

L3

X
~n

ð2�~n
L Þ2m

ð2�~n
L Þ2 þ x2

¼ 1

L3

Z
d3k

k2m

k2 þ x2
X
~n

�

�
~k� 2�~n

L

�

¼
Z d3k

ð2�Þ3
k2m

k2 þ x2
X
~n

�

� ~kL
2�

� ~n

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}P

~n

eiL
~k� ~n

¼
Z d3k

ð2�Þ3
k2m

k2 þ x2
þ ð�x2Þm

4�L

� X
~n�0

e�nxL

n
: (A10)

As carefully discussed in Ref. [37], the finite tempera-
ture contributions in the �-regime are usually heavily sup-
pressed, and such is the case in all the integrals considered
here. This allows one to safely neglect finite temperature
terms. With this, one can extract the volume dependence of
the sum in Eq. (A1) as

�AðmL;�; L; �Þ
¼ AðmL;�; L; �Þ � AðmL;�; L ! 1; � ! 1Þ !!!0

�

�
Z 1

�1
dk0
2�

1

k20 þ �2

k20 þm2
l

4�L

X
~n�0

e�n
ffiffiffiffiffiffiffiffiffiffiffi
k2
0
þm2

l

p
L

n

þOð�6Þ: (A11)

1. �-Regime Integrals: mL ¼ m�

In the case that the sum arises from a pion loop, one can

take the chiral limit and substitute
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þm2

l

q
! k0 in the

above expression. Corrections to this approximation will
result in Oð�6Þ contributions to the heavy-meson masses.
All the integrals can be preformed using the following
generating formula:

I ð�;�Þ �
Z 1

0
dk0

1

k20 þ �2
e�k0�

¼ Cið��Þ sinð��Þ
�

þ cosð��Þð�2 � Sið��ÞÞ
�

;

(A12)

I 00ð�;�Þ �
Z 1

0
dk0

k2m0
k20 þ �2

e�k0� ¼ @2m

@�2m
Ið�;�Þ:

(A13)

Where CiðxÞ ¼ �þ logðxÞ þ R
x
0
cosðtÞ�1

t dt and SiðxÞ ¼R
x
0
sinðtÞ
t dt are the geometric integrals. From Eq. (A13),

it follows:
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�Að0;�;L;�Þ¼ �2

4�2

X
~n�0

1

nL�

�
1

nL�
�CiðnL�Þ

�sinðnL�ÞþcosðnL�Þ
�
SiðnL�Þ��

2

��
:

(A14)

Assuming �L� �, it is possible to expand about �L ¼ 0.
In this limit the sum may be approximated as an integral
over the variable z � nL�, [38],

L2�2
X
~n�0

1

nL�

�
1

nL�
� CiðnL�Þ sinðnL�Þ þ cosðnL�Þ

�
�
SiðnL�Þ � �

2

��
!L�!0

4�
Z 1

0

z2dz

z

�
�
1

z
� CiðzÞ sinðzÞ þ cosðzÞ

�
SiðzÞ � �

2

��
¼ 2�2:

(A15)

At leading order this matches to the approximation made in
Ref. [38] for the same integral. The next term in the
expansion comes from taking a derivative with respect
to �0 � L�

@

@�0 �
02X

~n�0

1

n�0

�
1

n�0 � Ciðn�0Þ sinðn�0Þ þ cosðn�0Þ

�
�
Siðn�0Þ � �

2

�����������0!0
¼ �X

~n�0

�

2n
(A16)

Expanding about L� ¼ 0 leads to a Oð�4Þ approximation
of Eq. (A14)

�Að0;�; L; �Þ ¼ 1

2L3
� X

~n�0

�

8n�L2
þOð�5Þ

¼ 1

2L3|{z}
Oð�3Þ

� �c1
8�L2|ffl{zffl}
Oð�4Þ

þOð�5Þ; (A17)

where Eq. (A20) has been used. To Oð�4Þ the remaining
integrals are

�Bðm�; L; �Þ ¼ 1

4�L

X
~n�0

Z 1

�1
dk0
2�

k20
e�nL

ffiffiffiffiffiffiffiffiffiffiffi
k2
0
þm2

�

p

n

¼ 1

2�2L4

X
~n�0

1

n4
þOð�6Þ

¼ c4
2�2L4

þOð�6Þ; (A18)

�Cðm�; L; �Þ ¼ � 1

2�2L4

X
~n�0

1

n4
þOð�6Þ

¼ � c4
2�2L4

þOð�6Þ: (A19)

In writing out the full expression of the masses,
it is important to note that �Bð0;L;�Þþ�Cð0;L;�Þ¼
0þOð�6Þ. Two previously calculated sums have been
used [39–42]:

c1 ¼
X
~n�0

1

jnj ¼ �2:8372974

c4 ¼
X
~n�0

1

jnj4 ¼ 16:532315:

(A20)

2. p-Regime Integrals: mL¼fmK;m�g
In the p-regime, the light meson mass is comparable to

the lowest nonzero momentum mL=�� � 2�=L�� � �.

In this regime, the small mass approximations used in the
previous sections are no longer valid. One must perform
the integral in Eq. (A11) without taking the chiral limit.
Although this integral cannot be evaluated exactly, in the
� ! 0 limit the integral is dominated by small values of
k0. In this case, the argument in the exponential can be

approximated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þm2

l

q
¼ ml þ k2

0

2mL
� k4

0

8m3
L

þ � � � ,

) �AðmL;�; L; �Þ ¼ �
X
~n�0

Z 1

�1
dk0
2�

1

k20 þ �2

k20 þm2
l

4�L

e�nmlLe�ðnLk2
0
=2mlÞ

n

�
1þ nLk40

8m3
L

�
þ � � �

¼ m2
L

8�L

X
~n�0

e�nmlL

n
þ X

~n�0

�
3þ 9mLnL� ðmLnLÞ2

64�2m1=2
L L5=2n5=2

� ffiffiffiffiffiffiffi
2�

p
�e�nmlL þOð�5Þ

� m2
L

8�L
N 1ðmL; LÞ þ �

m1=2
L L5=2

N 2ðmL; LÞ þOð�5Þ; (A21)

where the definition in Eq. (A24) have been used. The remaining integrals can be performed exactly,
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�BðmL; L; �Þ ¼ 1

4�L

X
~n�0

Z 1

�1
dk0
2�

k20
e�nL

ffiffiffiffiffiffiffiffiffiffiffi
k2
0
þm2

l

p

n
¼ m3

L

16�2L

X
~n�0

ðK3ðmLnLÞ � K1ðmLnLÞÞ þOð�5Þ;

� m3
L

16�2L
K1ðmLLÞ þOð�5Þ (A22)

�CðmL; L; �Þ ¼ � m3
L

16�2L

X
~n�0

ðK3ðmLnLÞ þ 3K1ðmLnLÞÞ þOð�5Þ � � m3
L

16�2L
ðK1ðmLLÞ �K2ðmLLÞÞ: (A23)

In writing Eqs. (A21)–(A23) the following dimensionless functions were used,

N 1ðmL; LÞ ¼
X
~n�0

e�nmlL

n
N 2ðmL; LÞ ¼

X
~n�0

�
3þ 9mLnL� ðmLnLÞ2

64�2n5=2

� ffiffiffiffiffiffiffi
2�

p
e�nmlL (A24)

K 1ðmLLÞ ¼
X
~n�0

ðK3ðmLnLÞ � K1ðmLnLÞÞ K2ðmLLÞ ¼ �4
X
~n�0

K1ðmLnLÞ; (A25)

where K� are the modified Bessel functions of the second kind. Finally, by adding the contributions from Eqs. (A4)–(A8)
and substituting the expressions of the respective sums, one arrives at Eq. (17).
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