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A proposal by Lüscher enables us to extract the elastic scattering phases from two-particle energy

spectrum in a cubic box using lattice simulations. Rummukainen and Gottlieb further extend it to the

moving frame, which is devoted to the system of two identical particles. In this work, we generalize

Rummukainen-Gottlieb’s formula to the generic two-particle states where two particles are explicitly

distinguishable, namely, the masses of the two particles are different. Their relations with the elastic

scattering phases of two-particle energy spectrum in the continuum are obtained for both C4v and C2v

symmetries. Our analytical results will be very helpful for the study of some resonances, such as kappa,

vector kaon, and so on.
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I. INTRODUCTION

Many low-energy hadrons, such as kappa, sigma, can
observed as resonances in scattering experiments. The
energy eigenvalues of two-particle states with definite
symmetry can be obtained by measuring appropriate cor-
relation functions through lattice simulations. Therefore, it
is highly desirable to relate these calculated energy eigen-
values to the scattering phases measured by a scattering
experiment. This was accomplished through the methods
proposed by Lüscher [1–5] for a cubic box. In these
references, Lüscher established a nonperturbative relation
of the energy of a two-particle state in a cubic box with the
corresponding elastic scattering phases in the continuum.
The finite size formula presented by Rummukainen and
Gottlieb further extended Lüscher’s formula to the moving
frame (MF) [6]. The studies of two-particle scattering
states provided by Feng et al. generalized Lüscher’s
formula in an asymmetric box [7]. These formula have
been extensively utilized in different applications [8–19].

For some cases, we have to use the generic two-particle
system to extract the resonance parameters in the moving
frame. However, all of these aforementioned formulae in
the moving frame can apply only to two identical particle
systems. For example, to examine the behavior of the �
resonance, it is highly desired for us to investigate the �K
scattering with nonzero total momentum modes in the
moving frame. In a generic two-particle system, the origi-
nal Rummukainen-Gottlieb formulae, which only give the
relation between the energy eigenvalues of two identical
particle states in the finite box and the continuum elastic
scattering phase shifts with the nonzero total momentum,
must be modified accordingly. To this purpose, we strictly
derive the equivalents of the famous Rummukainen-
Gottlieb formulae for a generic two-particle system in
the moving frame not only from theoretical aspects, but
also from practical considerations. This scenario is quite
useful in practice since it provides an important feasible

method in the study of the � decay, vector kaon K� decay,
and so on.
The modifications which we must be implemented, as

compared with Ref. [6], are mainly concerned with the
different symmetries of the two-particle system in a cubic
box. The representations of the rotational group are decom-
posed into irreducible representations of the D4h and D2h

cubic groups for the system of two identical particles with
the nonzero total momentum in a cubic box [6]. In a
generic two-particle state, the symmetry of the system is
further reduced. In the case of d ¼ ð0; 0; 1Þ, the basic group
becomes C4v instead of D4h; As for d ¼ ð0; 1; 1Þ, the
symmetry is further reduced to C2v. Hence, the final ex-
pression connecting the energy eigenvalues of the system
and the scattering phases is certainly new.
This paper is organized as follows. In Sec. II, we discuss

the general properties of the generic two-particle states in a
cubic box for free and then interacting cases. In Secs. III
and IV, we investigate the theoretical aspects of our alter-
ation: in Sec. III, we extend Rummukainen-Gottlieb for-
malism to the generic case and derive the fundamental
relationship for the phase shift in Eq. (17), and in Sec. IV
we present the symmetry considerations. Our brief con-
clusions are given in Sec. V. Some details of the numerical
calculation are provided in the Appendices for reference.

II. GENERIC TWO-PARTICLE STATES
ON A CUBIC BOX

In this section we derive the formalisms required for
calculating the scattering phase shifts in a periodic cubic
box. Here we just consider the continuous space-time. In
practice we should apply these results to the discrete
periodic lattices, and address for the lattice artifacts [20].
The formulae presented here are enough for analyzing
the lattice data. We follow the essential formalisms and
notations introduced by Rummukainen and Gottlieb [6],
spreading them to the generic two-particle states.
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Without loss of generality, we consider two particles
with masses m1 and m2 for particle 1 and particle 2,
respectively. In this work we are specially interested in a
system having a nonzero total momentum, namely, the
lattice frame or the moving frame [6]. Using a moving
frame with total momentum P ¼ ð2�=LÞd, d 2 Z3, the
energy eigenvalues for our system in the noninteracting
case are given by [6]

EMF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
2

q
; (1)

where p1 ¼ jp1j, p2 ¼ jp2j, and p1, p2 denote the three-
momenta of particle 1 and particle 2, respectively, which
satisfy periodic boundary condition,

p i ¼ 2�

L
ni; ni 2 Z3; (2)

and the relation

p1 þ p2 ¼ P: (3)

In the center-of-mass (CM) frame, the total center-of-
mass momentum disappears, namely,

p� ¼ jp�j; p� ¼ p�
1 ¼ �p�

2; (4)

where p� ¼ ð2�=LÞn, and n 2 Z3. Here and hereafter we
denote the center-of-mass momenta with an asterisk (*).
The possible energy eigenvalues of two-particle system are
given by

ECM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p�2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p�2
q

: (5)

The relativistic four-momentum squared is invariant,
and ECM is related to EMF in the moving frame through
the Lorentz transformation

E2
CM ¼ E2

MF � P2: (6)

In the moving frame, the center-of-mass is moving with a
velocity of v ¼ P=EMF. Using the standard Lorentz trans-

formation with a boost factor � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, the ECM can

be obtained through ECM ¼ ��1EMF, and momenta pi and
p� are related by the standard Lorentz transformation,

p 1 ¼ ~�ðp� þ vE�
1Þ; p2 ¼ � ~�ðp� � vE�

2Þ; (7)

where E�
1 and E�

2 are energy eigenvalues of the particle 1
and particle 2 in the center-of-mass frame, respectively,

E�
1 ¼

1

2ECM

ðE2
CM þm2

1 �m2
2Þ;

E�
2 ¼

1

2ECM

ðE2
CM þm2

2 �m2
1Þ;

(8)

and the boost factor acts in the direction of v, here and
hereafter we adopt the shorthand notation

~�p ¼ �pk þ p?; ~��1p ¼ ��1pk þ p?; (9)

where pk and p? are components of p parallel and per-

pendicular to the center-of-mass velocity, respectively,
namely,

p k ¼ p � v
jvj2 v; p? ¼ p� pk: (10)

Therefore, by inspecting Eqs. (3), (7), and (8), it can be
seen that the p� are quantized to the values

p � ¼ 2�

L
r; r 2 Pd; (11)

where the set Pd is

Pd ¼
�
rjr ¼ ~��1

�
nþ d

2
�
�
1þm2

2 �m2
1

E2
CM

��
;n 2 Z3

�
:

(12)

In the interacting case, the �ECM is given by

�E CM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ k2
q

; k ¼ 2�

L
q; (13)

where q is no longer required to be a integer, which is
stemmed from a quantized momentum mode. Solving this
equation for scattering momentum k we get

k ¼ 1

2 �ECM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ �E2

CM � ðm1 �m2Þ2�½ �E2
CM � ðm1 þm2Þ2�

q
:

(14)

We can rewrite Eq. (14) to an elegant form as

k2 ¼ �E2
CM

4
þ ðm2

1 �m2
2Þ2

4 �E2
CM

�m2
1 þm2

2

2
: (15)

It is exactly this energy shift between the noninteracting
situation and the interacting case, namely, �ECM � ECM (or
equivalently jnj2 � q2), that we can calculate the two-
particle scattering phase.
As it is done in Ref. [6], in the current study, we mainly

investigate two moving frames. One is d ¼ ð0; 0; 1Þ, where
energy eigenstates transform under the tetragonal group
C4v, only the irreducible representation A1 is relevant for
two-particle scattering states in infinite volume with angu-
lar momentum l ¼ 0. Another one is d ¼ ð0; 1; 1Þ, where
energy eigenstates transform under the tetragonal group
C2v, only the irreducible representation A1 is relevant for
two-particle s-wave scattering states in infinite volume.
For the other cases, like d ¼ ð1; 1; 1Þ, etc., we can easily
work out from almost the same way without difficulty.
Assuming that the phase shifts �l with l ¼ 1; 2; 3; . . . are

negligible in the energy range of interest, the phase shift �0

is related to the momentum k by

tan�0ðkÞ ¼ ��3=2q

Zd
00ð1; q2Þ

; (16)

where k ¼ ð2�=LÞq, and the modified zeta function is
formally defined by
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Z d
00ðs; q2Þ ¼

X
r2Pd

1

ðjrj2 � q2Þs ; (17)

and the set Pd is

Pd ¼
�
rjr ¼ ~��1

�
nþ d

2
�
�
1þm2

2 �m2
1

E2
CM

��
;n 2 Z3

�
:

(18)

For Eq. (16), we note that the almost same result has
already existed in Eq. (1) of Ref. [21], where the formula
was just presented without any explanation. We can view
our work as further confirming and strictly proving this
formula. The modified zeta function converges when
Re2s > lþ 3, and can be analytically continued to whole
complex plane. The k is the scattering momentum defined

from the invariant mass
ffiffiffi
s

p
as

ffiffiffi
s

p ¼ �ECM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
2

q
. The calculation method of Zd

00ð1; q2Þ is dis-

cussed in Appendix A and in Ref. [20]. Using Eq. (16),
we can obtain the phase shift from the energy eigenvalue
calculated in the lattice simulations. If we now set
m1 ¼ m2, all the results in Ref. [6] are elegantly recovered.

III. DERIVATION OF THE PHASE
SHIFT FORMULA

In this section we derive the fundamental phase shift
formula in Eq. (16) for the generic two-particle system of
spin-0. We utilize the formalisms derived in Ref. [6], and
generalize them to the generic two-particle system. To
make the derivation simple, we are studying the system
by the relativistic quantum mechanics.

Throughout this section, we employ the metric tensor
sign convention g�� ¼ diagð1;�1;�1;�1Þ, write the sca-
lar productions in a compact form p2 ¼ p � p ¼ p�p

�,

etc., and express the quantities in natural units with ℏ ¼
c ¼ 1. Here and hereafter we follow the original notations
in Ref. [6].

A. Lorentz transformation of wave function

Let us consider the generic system of two spin-0 parti-
cles with mass m1, and m2, respectively, in an infinite
volume. The state of the system is described by the scalar
wave function c ðx1; x2Þ, where xi ¼ ðx0i ;xiÞ; i ¼ 1, 2 are
the four-dimensional Minkowski space-time coordinates of
two particles. The wave function transforms under the
Lorentz transformations as

c ðx1; x2Þ ¼ c 0ðx01; x02Þ ¼ c 0ð�x1;�x2Þ; (19)

where ðx0Þ� ¼ �
�
� x� denotes the standard Lorentz trans-

formation of the four-vector x. The wave function depends
on two four-vectors x1, x2. Moreover, the space and time
coordinates are mixed under the Lorentz transformations.

We can make the problem simpler by using the special
properties of the center-of-mass frame of the particles. Let

us first consider the two noninteracting particles, and in any
inertial frame the wave functions satisfy the Klein-Gordon
equations

ðp̂1�p̂
�
1 �m2

1Þc ðx1; x2Þ ¼ 0;

ðp̂2�p̂
�
2 �m2

2Þc ðx1; x2Þ ¼ 0;
(20)

where p̂i�; i ¼ 1, 2 is the four-momentum operator. It is

well known that the problem simplifies if we separate the
variables under the transformations

X ¼ m1x1 þm2x2
m1 þm2

; (21)

x ¼ x1 � x2; (22)

where X is the position of the center of mass, and x is the
relative coordinate of two particles. Let us restrict our-
selves to the solutions which are the eigenstates of the
center-of-mass momentum operator. Then Eq. (20) can
be transformed into the form��

m1

M

�
2
P̂�P̂

� þ p̂�p̂
� � 2m1

M
p̂� � P̂� þm2

1

�
c ðx;XÞ ¼ 0;

(23)

��
m2

M

�
2
P̂�P̂

� þ p̂�p̂
� þ 2m2

M
p̂� � P̂� þm2

2

�
c ðx;XÞ ¼ 0;

(24)

where

p̂ ¼ m2p̂1 �m1p̂2

m1 þm2

; (25)

P̂ ¼ p̂1 þ p̂2; (26)

M ¼ m1 þm2; (27)

p̂ is the relative 4-momentum operator, P̂ is the total
4-momentum operator, and M is the total mass of two
particles.
Adding 1=m1 � ð23Þ to 1=m2 � ð24Þ and subtracting

(23) from (24), respectively, yields�
M2

m1m2

p̂�p̂
� �M2 þ P̂�P̂

�

�
c ðx; XÞ ¼ 0; (28)

�
p̂�P̂

� �m1 �m2

2M
P̂�P̂

� �m2
1 �m2

2

2
�c ðx; XÞ ¼ 0:

(29)

It is well known that, without external potentials, the
total momentum of the two-particle system is conserved;
then we can restrain ourselves to the eigenfunctions of P,
namely,

c ðx; XÞ ¼ e�iP�X
�
�ðxÞ; (30)
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where P� is a constant timelike vector, and P is denoted

through P2 ¼ P�P
�.

In the present study, we are specially interested in the
center-of-mass frame, which is denoted as the frame where
the spatial components of the total momentum of the
system disappear, namely, P� ¼ 0. Therefore, we can
only take the positive kinetic energy solutions P�

0 ¼
E�
CM >m1 þm2 into consideration. Therefore, Eqs. (28)

and (29) can be rewritten as�
p̂�
�p̂

�� þ E2
CMm1m2

ðm1 þm2Þ2
�m1m2

�
�CMðx�Þ ¼ 0; (31)

�
p̂�
0 �

ECM

2

m1 �m2

m1 þm2

�m2
1 �m2

2

2ECM

�
�CMðx�Þ ¼ 0: (32)

Equation (32) indicates that p̂�
0�CMðx�Þ � 0 for m1 � m2.

By inspecting Eqs. (31) and (32), we can reasonably as-
sume that the wave function �CMðx�Þ can be expressed in
the form,

�CMðx�Þ � ei�x
�0
�CMðx�Þ; (33)

where x�0 ¼ x�01 � x�02 is the relative temporal separation

of two particles, and � is a constant, namely,

� ¼ ECM

2

m2 �m1

m1 þm2

þm2
2 �m2

1

2ECM

: (34)

It is obvious that when m1 ¼ m2, � ! 0. Therefore, in
the center-of-mass frame the wave function depends ex-
plicitly on the time variable t� � X�0 ¼ ðm1x

�0
1 þm2x

�0
2 Þ=

ðm1 þm2Þ, the relative spatial separation of the particles
x� ¼ x�

1 � x�
2, and the relative temporal separation of the

particles x�0, namely,

c CMðx�; t�Þ ¼ e�iECMt
�
ei�x

�0
�CMðx�Þ; (35)

where the constant � is denoted in Eq. (34).
Let us now discuss the case in the moving frame. The

transformation from the moving frame to the center-
of-mass frame can be expressed as r�� ¼ ��

�r
�, where

r is any position 4-vector and quantities without * stand
for those of the moving frame. With the shorthand defini-
tion in Eq. (9), we have

r�0 ¼ �ðr0 þ v � rÞ; (36)

r � ¼ ~�ðrþ vr0Þ; (37)

where � is a boost factor, and v ¼ P=P0 is the 3-velocity of
the center of mass in the moving frame. We can rewrite v to
a form for later use as

v ¼ 2�

LEMF

d ¼ 2�

�LECM

d: (38)

Using the Lorentz transformation in Eq. (19), the identity
P�X

� ¼ P�
�X

��, and Eq. (30), the wave function in the

moving frame can be expressed as

cMFðx; XÞ ¼ e�iP�X
�
�MFðxÞ; (39)

where

�MFðxÞ � �MFðx0;xÞ ¼ �CMð�ðx0 þ v � xÞ; ~�ðxþ vx0ÞÞ:
(40)

Therefore, the wave function �MF depends on time sepa-
ration x0 ¼ x01 � x02 explicitly. However, in the moving

frame we only consider the case where two particles have
equal time coordinate, namely, x0 ¼ 0. In the center-of-
mass frame this corresponds to the tilted plane ðx�0;x�Þ ¼
ð�v � x; ~�xÞ. Since �CM is dependent of the relative tem-
poral separation x�0, we can clearly observe the effect of
the tilt to the wave function, and Eq. (40) takes the form

�MFð0;xÞ ¼ �CMð�v � x; ~�xÞ: (41)

Using Eqs. (33) and (38), we can rewrite Eq. (41) as

�MFð0;xÞ ¼ ei�
0�d�x=L�CMð ~�xÞ; (42)

where �0 is a constant, namely,

�0 ¼ m2 �m1

m1 þm2

þm2
2 �m2

1

E2
CM

: (43)

Equation (42) has a simple physical interpretation: the
center-of-mass system watches the torus in the moving
frame expanded by a boost factor � to the direction of
total momentum, while the length scales to the perpen-
dicular directions are preserved. Equation (42) relates the
moving frame wave function,

cMFð0;x; t;XÞ ¼ e�iEMFtþiP�X�MFð0;xÞ; (44)

to the center-of-mass frame wave function Eq. (35). The
total energy of two-particle system from both frames is
connected by identity E2

MF ¼ E2
CM þ P2. By inspecting

Eqs. (31), (32), and (35), and after some manipulations,
we finally achieve that the wave function �CM satisfies the
Helmholtz equation

ðr2
x� þ k�2Þ�CMðx�Þ ¼ 0; (45)

where

k�2 ¼ E2
CM

4
þ ðm2

1 �m2
2Þ2

4E2
CM

�m2
1 þm2

2

2
: (46)

This result is consistent with the solution in Ref. [22].
The Eqs. (42) and (45) will be essentially important

when we consider the wave functions of the system on a
cubic box, and the boundary conditions imposed by the
cubic box in the moving frame are transformed by Eq. (42)
into the boundary conditions on the solutions in Eq. (45).
Thus, Eq. (45) is an important result, which represents one
of the main results of the present work. In the following
discussions, we remove the superscript * from the quanti-
ties in the center-of-mass frame. We can easily check that if
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we take m1 ¼ m2, all the corresponding results in Ref. [6]
are restored.

B. The scattering wave function

For our concrete problem, we only suppose that the
Klein-Gordon equation (20) in the center-of-mass frame
still have a square integral solution even with the inclusion
of the potential V�ðxÞ, which has a finite range [2], namely,

V�ðxÞ ¼ 0 for jxj> R; (47)

where we assume that there exists R such that Eq. (47) is
true both in the center-of-mass and moving frames. Then
Klein-Gordon equation (22) hold true when jxj>R, and
the wave functions Eqs. (35) and (44) are connected by
Eq. (42) in this region.

In the center-of-mass frame the interaction of the system
is spherically symmetric. The wave function is usually
expanded in spherical harmonics

�CMðxÞ ¼
X1
l¼0

Xl
m¼�l

Ylmð	; ’Þ�lmðxÞ; (48)

where x ¼ xðsin	 cos’; sin	 sin’; cos	Þ. It is well known
that the expansion of the two-particle scattering wave
function in terms of spherical harmonics has a physical
meaning only in the center-of-mass frame. This is espe-
cially relevant in the study of resonance scattering, where
the resonance channel is an eigenstate of the angular
momentum.

When x > R, �CM is a solution of Eq. (45), and the
functions �lm satisfy the radial differential equation�

d2

dx2
þ 2

x

d

dx
� lðlþ 1Þ

x2
þ k2

�
�lmðxÞ ¼ 0; (49)

where

k2 ¼ E2
CM

4
þ ðm2

1 �m2
2Þ2

4E2
CM

�m2
1 þm2

2

2
: (50)

The solutions of Eq. (49) can be expressed as linear com-
binations of the spherical Bessel functions

�lmðxÞ ¼ clm½alðkÞjlðkxÞ þ blðkÞnlðkxÞ�: (51)

Although in the region x < R the form of the radial
equation is unknown. By comparing the wave functions
defined in Eqs. (48) and (51), we obtain the well-known
connection between the scattering phase shift and the co-
efficients al and bl [2], namely,

ei2�lðkÞ ¼ alðkÞ þ iblðkÞ
alðkÞ � iblðkÞ : (52)

Since al and bl can be taken real-valued when k > 0, �lðkÞ
is a real analytic function. Now, for a given l sector, the
phase shift �lðkÞ can be expressed in terms of the moving
frame energy EMF through the relation

k2 ¼ E2
MF � P2

4
þ 1

4

ðm2
1 �m2

2Þ2
E2
MF � P2

�m2
1 þm2

2

2
: (53)

C. Eigenstates on a cubic box

In the moving frame, we now investigate two generic
particles enclosed in a cubic box of size L� L� L with
periodic boundary conditions. The temporal direction of
the box is chosen to be infinite. The moving frame wave
functions cMF should be periodic with respect to the
position of each particle, namely,

cMFðx1;x2Þ ¼ cMFðx1 þ lL;x2 þmLÞ; l;m 2 Z3:

(54)

The form of the wave function cMF is given by Eq. (44)

cMFðx1;x2Þ ¼ exp

�
i
P � ðm1x1 þm2x2Þ

m1 þm2

�
�MFðx1 � x2Þ:

(55)

Combining Eqs. (54) and (55) yields

P ¼ 2�

L
d; (56)

�MFðxÞ ¼ ei�ð2m1=ðm1þm2ÞÞd�n�MFðxþ nLÞ; (57)

where n ¼ l�m, d, n 2 Z3 and P is the total momen-
tum.1 The quantization rule (57) separates the wave func-
tions into the discrete total momentum sectors, which we
can categorize by the 3-vector d. In the current study,
we are naturally interested in sectors d ¼ ð0; 0; 1Þ and
d ¼ ð0; 1; 1Þ (and its permutations).
Now we are in the position to employ Eq. (42) to get the

corresponding periodicity rule for the center-of-mass wave
function. For a chosen vector d, we have

�CMðxÞ¼ei�d�nð1þððm2
2�m2

1Þ=E2
CMÞÞ�CMðxþ ~�nLÞ; n2Z3:

(58)

For compactness, we refer to the functions obeying the
periodicity rule (58) as modified d-periodic functions. As
we see later, the modified d-periodic rule (58) is a mile-
stone in this work.
In the center-of-mass frame, the interaction of the sys-

tem holds the same period as the wave function. Assuming
that L > 2R, we can denote the ‘‘exterior’’ region

�CM ¼ fr 2 R3jjr� ~�nLj>R;n 2 R3g; (59)

1Equation (57) can also be written as

�MFðxÞ ¼ e�i�ð2m2=ðm1þm2ÞÞd�n�MFðxþ nLÞ:
Following the almost same procedures and addressing the cor-
responding formulae, we can arrive at the same final numerical
results. For our case, d � n is an integer.
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where the potential VL disappears. In this region the wave
function �CM satisfies the Helmholtz in Eq. (45). In the
region R< r < L=2 the solution for�CM of the Helmholtz
equation can be expanded in spherical harmonics and
spherical Bessel functions. Following Sec. III B, it is easily
verified that there exists a unique solution of the full
interacting equations of motion in R3 which coincides
with �CM in the external region.

Now the major task for us is to combine the boundary
condition in Eq. (58) and the spherical components given
by Eq. (48). We accomplish this by looking the general
form of the Helmholtz equation and expanding it in spheri-
cal harmonics and Bessel functions in the region R< r <
L=2 [6].

D. Singular d-periodic solutions
of the Helmholtz equation

In this subsection we derive the general solutions of the
Helmholtz equation obeying the modified periodicity rule
(58). Except the modified d-periodicity, our derivation
follows the works in Sec. 4.4 of Ref. [6].

We will call a function � a singular modified d-periodic
solution of the Helmholtz equation, when it is a smooth
function defined for all x � ~�nL, n 2 Z3, and it satisfies
the Helmholtz equation, namely,

ðr2 þ k2Þ�ðxÞ ¼ 0; (60)

for some value of k > 0, and obeys the modified
d-periodicity rule, namely,

�ðxÞ ¼ ei
�d�n�ðxþ ~�nLÞ; n 2 Z3; (61)

here and hereafter, for compactness, we defined a factor 
,
namely,


 � 1þm2
2 �m2

1

E2
CM

: (62)

Whenm1 ¼ m2, 
 ¼ 1, this is the case Rummukainen and
Gottlieb studied in Ref. [6]. Moreover, we require that the
wave function is bounded by a power of 1=jxj near the
origin:

lim
x!0

jx�þ1�ðxÞj<1 (63)

for some positive integer �, which is the degree of �. For
our purpose, it suffices to study the regular values of k,
namely,

k �
2�

L

�������� ~��1ðnþ 


2
d

���������; n 2 Z3: (64)

We can now denote the Green function

Gdðx; kÞ ¼ ��1L�3
X
p2�

eip�x

p2 � k2
; (65)

where summation over p is over the momentum lattice

� ¼
�
p 2 R3

��������p ¼ 2�

L
~��1

�
nþ 


2
d

�
;n 2 Z3

�
: (66)

Equation (65) is well defined since k is nonsingular. If now
we select k ¼ ð2�=LÞ ~��1ðmþ 


2 dÞ for some m 2 Z3,

then

k � ðxþ ~�nLÞ ¼ k � xþ 
�d � nþ 2�m � n; (67)

where n 2 Z3, and the function Gdðx; kÞ meets clearly the
modified d-periodicity rule, as we expected. Furthermore,
it satisfies

ðr2 þ k2ÞGdðx; kÞ ¼ � X
n2Z3

ei
�d�n�ðxþ ~�nŁÞ: (68)

We can easily check that the functionGdðx; kÞ is a singular
modified d-periodic solution of Helmholtz equation with
degree 1. More singular periodic solution can be obtained
by differentiating Gd with respect to x. Let us denote
functions

Gd
lmðx; kÞ ¼ YlmðrÞGdðx; kÞ; (69)

where we introduce the harmonic polynomials YlmðxÞ ¼
xlYlmð	; ’Þ. Since YlmðrÞ commutes with r2, the func-
tions Gd

lm are singular modified d-periodic solutions of the
Helmholtz equation. We can show that the functions Gd

lm

form a complete set of solutions, and any singular modified
d-periodic solution of degree � is a linear combination of
the functions Gd

lmðx;pÞ with l � � [2]. When 0< x<
L=2 the functions Gd

lm can be expanded in usual spherical

harmonics. The expansion takes the form

Gd
lmðx;kÞ ¼

ð�1Þlklþ1

4�

�
nlðkxÞYlmð	;’Þ

þX1
l0¼0

Xl
m0¼�l

Md
lm;l0m0 ðkÞjl0 ðkxÞYl0m0 ð	;’Þ

�
; (70)

where the singular part at x ¼ 0 is directly computable
from the action of YlmðrÞ to the function n0ðkxÞ. The
regular part contains coefficients Md

lm;l0m0 ðkÞ. In practice

we need only the first few of them, for completeness, we
provide the general expression:

M d
lm;l0m0 ðkÞ ¼ ð�1Þl

��3=2

Xlþl0

j¼jl�l0j

Xj
s¼�j

ij

qjþ1
Zd

jsð1;q2ÞClm;js;l0m0 ;

(71)
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where q ¼ kL=ð2�Þ. The tensorClm;js;l0m0 can be expressed

in terms of Wigner 3j symbols [23]

Clm;js;l0m0 ¼ ð�1Þm0
il�jþl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2jþ 1Þð2l0 þ 1Þ

q
� l j l0

m s �m0

 !
l j l0

0 0 0

 !
: (72)

The modified zeta function is formally denoted by

Z d
lmðs; q2Þ ¼

X
r2Pd

YlmðrÞ
ðr2 � q2Þs ; (73)

where the summation is over the set

Pd ¼
�
r 2 R3jr ¼ ~��1

�
nþ 


2
d

�
;n 2 Z3

�
: (74)

The sum in Eq. (73) converges when Re2s > lþ 3, and
can be analytically continued to the whole complex plane.

In Table I we summarized the expressions of Md
lm;l0m0

for l, l0 � 3. For compactness, we denoted

wlm ¼ 1

�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ��1q�l�1Zd
lmð1;q2Þ: (75)

The necessary Wigner 3j-symbol values can be obtained in
Ref. [23]. Matrix elements missing from the Table I are
either zero, or can be obtained through the symmetry
relations.
We can easily verify that, if we set m1 ¼ m2, all of the

above definitions and formulae nicely reduce to the those
obtained in Ref. [6], as we expected. Of course, if we select
d ¼ 0, the moving frame and the center-of-mass frame
coincide, � ! 1 and Pd ! Z3, and they further neatly
reduce to the forms given in Ref. [2]. Table I can be
compared with Table 3 in Ref. [6], which summaries the
matrix elements for m1 ¼ m2. The major difference is the
appearance of functions w10, w30, and w50 in Table I. If we
set m1 ¼ m2, then w10 ! 0, w30 ! 0, and w50 ! 0, and
Rummukainen-Gottlieb’s results are immediately restored.

E. Construction of energy eigenstates

The general form of the solutions of the equations of
motion in the region R< jxj< L=2 was given in Eqs. (48)
and (51). Thus, the functions Gd

lmðx; k2Þ [6] form a com-

TABLE I. Matrix elements Md
lm;l0m0 for d ¼ ð0; 0; 1Þ, m1 � m2 and for l, l0 � 3.

l m l0 m0 Md
lm;l0m0

0 0 0 0 w00

1 0 0 0 iw10

1 0 1 0 w00 þ2w20

1 1 1 1 w00 �w20

2 0 0 0 � ffiffiffi
5

p
w20

2 0 1 0 i
ffiffi
4
5

q
w10 i

ffiffiffiffi
27
35

q
w30

2 1 1 1 i
ffiffi
1
5

q
w10 i

ffiffiffiffi
18
35

q
w30

2 0 2 0 w00 þ 10
7 w20 þ 18

7 w40

2 1 2 1 w00 þ 5
7w20 � 12

7 w40

2 2 2 �2 3
7

ffiffiffiffiffiffi
70

p
w44

2 2 2 2 w00 � 10
7 w20 þ 3

7w40

3 0 0 0 �iw30

3 0 1 0 � 3
7

ffiffiffiffiffiffi
21

p
w20 � 4

7

ffiffiffiffiffiffi
21

p
w40

3 1 1 1 � 3
7

ffiffiffiffiffiffi
14

p
w20 þ 3

7

ffiffiffiffiffiffi
14

p
w40

3 3 1 �1 2
ffiffiffi
3

p
w44

3 0 2 0 �i3
ffiffiffiffi
3
35

q
w10 �i 43

ffiffi
1
5

q
w30 �i 109

ffiffiffiffiffiffi
1

111

q
w50

3 1 2 1 �i2
ffiffiffiffi
6
35

q
w10 �i

ffiffiffiffiffiffi
2
105

q
w30 �i 59

ffiffiffiffiffiffi
2

111

q
w50

3 2 2 2 i
ffiffi
3
7

q
w10 i 23w30 i 13

ffiffiffiffi
5
11

q
w50

3 0 3 0 w00 þ 4
3w20 þ 18

11w40 þ 100
33 w60

3 1 3 1 w00 þw20 þ 3
11w40 � 25

11w60

3 2 3 �2 3
11

ffiffiffiffiffiffi
70

p
w44 þ 10

11

ffiffiffiffiffiffi
14

p
w64

3 2 3 2 w00 � 21
11w40 þ 10

11w60

3 3 3 �1 3
11

ffiffiffiffiffiffi
42

p
w44 � 5

33

ffiffiffiffiffiffiffiffi
210

p
w64

3 3 3 3 w00 � 5
3w20 þ 9

11w40 � 5
33w60
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plete set of singular modified d-periodic solutions when
l � �, where � is the degree of the function. If we require
that these functions are equal, we have

X�
l¼0

Xl
m¼�l

vlmG
d
lmðx; k2Þ

¼X�
l¼0

Xl
m¼�l

clm½alðkÞjlðkxÞþblðkÞnlðkxÞ�Ylmð	;’Þ (76)

for some constants clm and vlm. Using the Eq. (70), we can
remove vlm and obtain

clmalðkÞ ¼
X�
l0¼0

Xl0
m0¼�l0

cl0m0bl0 ðkÞMd
l0m0;lmðkÞ: (77)

The matrix elements Ml0m0;lm can be viewed as the matrix

element of an operatorM. If the determinant of a matrix is
zero, we can obtain a nontrivial solution for the vector clm.
We rewrite Eq. (77) as a matrix equation,

CðA� BMÞ ¼ 0;

where matrix AðlmÞ;ðl0m0Þ ¼ alðpÞ�l;l0�m;m0 (similar for B).
Since A and B are diagonal and all the diagonal elements of
A� iB are nonzero, we can denote the phase shift matrix
[2,6],

e2i� ¼ Aþ iB

A� iB
: (78)

The determinant condition requires that [6]

det½e2i�ðM� iÞ � ðMþ iÞ� ¼ 0: (79)

This relation is equal to Eq. (4.10) in Ref. [2].

IV. SYMMETRY DISCUSSIONS

When the moving frame and center-of-mass frame co-
incide, the two-particle system exhibits a cubic symmetry
and the wave functions transform under the representations
of the cubic group Oh. However, if the two frames are not
equivalent, the Lorentz translation boost from the moving
frame to the center-of-mass frame in effect ‘‘deforms’’ the
cubical volume and only some subgroups of the original
Oh group survive [6].

According to Eq. (42), the deformations caused by the
Lorentz boost are like this: the length scales to the direction
of the boost are multiplied by �, while the perpendicular
length scales are preserved. Depending on the orientation
of the boost with respect to the directions defined by the
periodicity of the moving frame torus, some different sub-
groups of the cubic symmetry survive. In this work, we
mainly consider a boost along one of the coordinate axes,
namely d ¼ ð0; 0; 1Þ. The geometry of the box changes
ð1; 1; 1Þ ! ð1; 1; �Þ, and the relevant symmetry group is
tetragonal point group C4v. This group has 8 elements: 4
rotations through an angle ðn�=2Þ, where n ¼ 0, 1, 2, 3,

around the x3 axis; and all four of the above multiplied by
the reflection with respect to the (1,3) plane.
The relevant point groups and the boost vectors are

classified in Table II. We should bear in mind that only
Oh group contains the parity transformation x ! �x.
In this paper we are mainly interested in the three lowest

total momentum sectors, jdj ¼ 0, 1 and 2 due to the
reasons discussed in Ref. [6]. Therefore, in the following
we mainly discuss the cubic and tetragonal symmetry
groups Oh, C4v, and C2v.
Generally speaking, the energy eigenvalues will belong

to some irreducible representation of the corresponding
symmetry group of the generic two-particle system. The
tetragonal group C4v has four one-dimensional representa-
tions A1, A2, B1, B2, and one two-dimensional representa-
tion E [24]. The representations of the rotational group are
reduced into irreducible representations of C4v as

�ð0Þ ¼ A1; �ð1Þ ¼ A1 �E; �ð2Þ ¼ A1 �B1 �B2 �E:

(80)

The representations can be obtained through using the
character tables [24] or by enumerating harmonic polyno-
mials of degree l which transform under the representa-
tions of C4v. The basis polynomials for the corresponding
representations are summarized in Table III for l � 2, and
the polynomials are the linear combinations of the har-
monic polynomials YlmðxÞ for each l sector.
The tetragonal group C2v has four one-dimensional

representations A1, A2, B1, B2 [24]. The representations
of the rotational group are further reduced into irreducible
representations of C2v as

TABLE II. The classification of the Lorentz boosts on a torus
and the reduction of the cubic symmetry. The first column
displays the direction of the boost (modulo permutations); a is
taken to be a nonzero real number. The notation used for the
groups is the Schoenflies notation [24].

d Point group Classification Nelements

(0, 0, 0) Oh Cubic 48

ð0; 0; aÞ C4v Tetragonal 8

ð0; a; aÞ C2v Orthorhombic 4

TABLE III. The basis polynomials of the irreducible represen-
tations of C4v.

Representation l ¼ 0 l ¼ 1 l ¼ 2 Indices

A1 1 x3 x23 � 1
3 x

2

A2

B1 x21 � x22
B2 x1x2
E xi xix3 i ¼ 1, 2
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�ð0Þ ¼A1; �ð1Þ ¼A1�B1�B2; �ð2Þ ¼A1�A2�B1�B2:

(81)

Similarly, we can obtain the basis polynomials for the
C2v representation, which are summarized in Table IV for
l � 2, and the polynomials are the linear combinations of
the harmonic polynomials YlmðxÞ for each l sector.

In a typical lattice calculation, the symmetry sector that
is easiest to investigate is the sector: A1. We will therefore
concentrate on this particular symmetry sector. As is seen,
up to l � 2, s wave, p wave, and d wave contribute to this
sector. The other symmetry sectors can be easily worked
out in the same way.

First, let us consider the case where the angular momen-
tum cutoff � ¼ 0. From the reduction relations (80) and
(81) and Tables III and IV, we note that only Md

00;00

belongs to this sector, and Eq. (79) is one dimensional. It
can be written to the form

tan�0ðkÞ ¼ 1

Md
00;00

¼ �q�3=2

Zd
00ð1; q2Þ

; q ¼ L

2�
k: (82)

This is our essential result for the generic two-particle
system.

If � ¼ 1, then the sector l ¼ 1 is included, and the
matrix in Eq. (79) is two dimensional. Hence the determi-
nant condition contains both phase shifts �0 and �1, cor-
responding to the infinite volume l ¼ 0 scalar and l ¼ 1
vector scattering channels:

½e2i�0ðm00 � iÞ � ðm00 þ iÞ�½e2i�1ðm11 � iÞ � ðm11 þ iÞ�
¼ m2

10ðe2i�0 � 1Þðe2i�1 � 1Þ; (83)

where we denote mab � Md
a0;b0. If �1 vanishes, namely,

�1 ¼ 0 (mod �), as what we expected, Eq. (83) reduces
immediately to Eq. (82). Let us now discuss the case where
the �1 does not disappear, namely, �1 � 0. Normally we
can reasonably suppose that the low-energy scattering
phase is dominated by the lowest l channel and that the
scattering phases at higher l channels are relative small.
This is particularly right in low-energy elastic scattering
[2,6]. It is well known that for small scattering momentum
k, the leading low-energy behavior of the scattering phases
�lðkÞ looks like

�lðkÞ ¼ nl�þ alk
2lþ1 þOðk2lþ3Þ; (84)

for some integer nl [2]. Therefore, in the low-energy limit,
It is a good approximation to treat the p-wave and d-wave
scattering phases as small perturbations.
If we expand �0 ¼ �0

0 þ �0, where �
0
0 satisfies Eq. (82)

and �0 is a perturbative term, we can work out the first
order correction due to Eq. (83) as

�0ðkÞ ¼ �ðkÞ�1ðkÞ: (85)

The function �ðkÞ represents the sensitivity of higher
scattering phases. For C4v symmetry, it is given by

�ðkÞ ¼ � m2
10

m2
00 þ 1

; (86)

which is not naturally small and there is no ‘‘built-in’’
mechanism which would automatically decouple the
l ¼ 1 channel and the l ¼ 0 channel. In order for the
Eq. (82) to be a good approximation, the phase shift
�1ðkÞðmod�Þ has to be small. Luckily, the case is usually
so: the scattering of two particles is dominated by the
lowest allowed angular momentum channel.
The sensitivity function �ðq2Þ can be calculated using

the matrix elements given in Eq. (75), and in Appendices A
and B, we give a detailed procedure to evaluate the zeta
function. The sensitivity function �ðq2Þ versus q2 for C4v

symmetry with 
 ¼ 1:15 and � ¼ 1:177 is illustrated in
Fig. 1, here � is a boost factor, and 
 factor is defined in
Eq. (62), which are typical values we used in Ref. [20]. The
lower panel in Fig. 1 is simply the same function as in
the upper panel with the scale of the vertical axis being

TABLE IV. The basis polynomials of the irreducible represen-
tations of C2v.

Representation l ¼ 0 l ¼ 1 l ¼ 2

A1 1 x3 x23 � 1
3 x

2

A2 x1x2
B1 x1 x1x3
B2 x2 x2x3

FIG. 1 (color online). The sensitivity �ðq2Þ as a function of q2

for C4v symmetry with parameters 
 ¼ 1:15 and � ¼ 1:177.
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magnified, in order to show the detailed variation of the
sensitivity function.

In the work, we also calculate the sensitivity function
�ðq2Þ using the typical 
 and � with various values, we
found it mostly varies in the range 0–20, in Figs. 2–4, we
plotted just three of them. It is seen that the sensitivity
function �ðq2Þ is finite for all q2 > 0. For some special
values of q2, however, the sensitivity function �ðq2Þ has a
sharp peak. This is because of the almost coincidence of
singularities of matrix elements m00 and matrix elements

m01 for some choices of 
 and �. For all other values of q2

away from these values, the sensitivity �ðp2Þ is quite
moderate. These characteristics of sensitivity function
�ðq2Þ is somewhat similar to that of the sensitivity function
�2ðq2Þ in Ref. [7].
We also notice that, when q ! 0, the sensitivity function

�ðq2Þ is usually large. However, this does not normally
cause any problem because it is nicely canceled out by �1

which is of small q3 order at small q. Therefore, for the
range 0< q2 < 1:1 (except some special q2 values), the
Eq. (82) can be reasonably considered to be a good ap-
proximation. In fact, this is the range which are usually
used to study the elastic scattering [20].
We should bear in mind that if �1ðkÞ is not small, it is

very difficult to extract the phase shift functions from the
energy spectrum: there are two unknown functions �0ðkÞ
and �1ðkÞ but only one Eq. (83). In principle, we still can
extract the s-wave scattering phase shift from Eq. (83)
through dividing the p-wave phase shift by lattice simula-
tions at various energy, since the corrections due to scat-
tering phases with higher l can be estimated from lattice
calculations as well. For example, from Table III, it is
obviously seen that, for lattices with C4v symmetry, by
inspecting energy eigenstate with E symmetry on the lat-
tice, one can obtain a rough estimate for the p-wave
scattering phase �1 which dominates this symmetry sector.
It seems to be too difficult, but naturally, it is still possible
to compute the energy spectrum; this is our future task.
If we choose the sector d ¼ 0, the moving frame and the

center-of-mass frame coincide, � ! 1 and Pd ! Z3, and
Eq. (83) immediately reduces to the form given in Ref. [2].
Of course, if we select m1 ¼ m2 and Pd ! fr 2 R3jr ¼
~��1ðnþ d=2Þg, n 2 Z3, and Eq. (83) nicely reduces to the
form presented in Ref. [6]. These are what we expected.
As for � ¼ 2 or higher, it is quite complicated. See the

relevant discussion in Ref. [7]. Bearing in mind that this
work is an exploratory study for some systems like the �K
system, the main purpose is to present some conceptual
and theoretical issues, we think that it is enough justified
these above assumptions and simplifications.

V. CONCLUSION

In this paper, we strictly investigated the generic two-
particle scattering states with periodic boundary condi-
tions, and the best-efforts are paid to derive the modified
d-periodic rule which is crucial to the modification of the
original Rummukainen-Gottlieb formula. The expressions
of the energy eigenvalues and the scattering phases in the
continuum, which can be regarded as a direct generaliza-
tion of the famous Rummukainen-Gottlieb formulae to the
generic two-particle system in the moving frame, are de-
veloped. In particular, we show that the s-wave scattering
phase is related to the energy shift by a pretty simple
formula, which is just a small alteration of the correspond-
ing formula. We also checked that all of Rummukainen-

FIG. 3 (color online). The sensitivity �ðq2Þ as a function of q2

for C4v symmetry with parameters 
 ¼ 1:1 and � ¼ 1:067.

FIG. 2 (color online). The sensitivity �ðq2Þ as a function of q2

for C4v symmetry with parameters 
 ¼ 1:05 and � ¼ 1:177.

FIG. 4 (color online). The sensitivity �ðq2Þ as a function of q2

for C4v symmetry with parameters 
 ¼ 1:15 and � ¼ 1:067.
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Gottlieb’s results in Ref. [6] are nicely restored if we set
m1 ¼ m2.

Since the so-called � meson is a low-lying scalar meson
with strangeness, a study of � meson decay is an explicit
exploration of the three-flavor structure of the low-energy
hadronic interactions, which is not directly probed in ��
scattering, therefore, it is a significant step for us under-
standing the dynamical aspect of hadron reactions with
QCD. Moreover, the BES Collaboration recently carried
out some experimental measurements [25,26] to investi-
gate � resonance mass and its decay width. With the
modified formula in Eq. (82) and our strict discussion
of this formula from theoretical aspects, now it will be
possible to compute the resonance masses and perhaps its
decay widths of some resonances, including possible ex-
otic hadrons as well as traditional hadrons like � and vector
kaon K�, etc., directly from lattice simulation in a correct
manner. We have already used these formulae to prelimi-
narily analyze our �K scattering at the I ¼ 1=2 channel
[20], and the reasonable results of our lattice simulation
data supports these formula.
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APPENDIX A: THE CALCULATION
OF ZETA FUNCTION

The method for evaluating the zeta function when d ¼ 0
has been discussed by Lüscher in Ref. [2]. Rummukainen
and Gottlieb extended this discussion in the moving frame
for d � 0, 
 ¼ 1 [6]. The formalism used here is further
adapted to the case of d � 0, 
 � 1, and we just present
the essential formulae for numerically calculating zeta
function without detailed derivation.

We first denoted the heat kernel of the Laplace operator
on a modified d-periodic torus in Eq. (58), namely,

Kdðt;xÞ ¼ 1

ð2�Þ3
X
r2Pd

eir�x�tr2 ; (A1)

where the summation for r is carried out over the set

Pd ¼
�
rjr ¼ ~��1

�
nþ 


2
d

�
;n 2 Z3

�
; (A2)

here the factor 
 is denoted in Eq. (62), and the operation
~��1 is defined in Eq. (9). Following Poisson’s identity, we
can rewrite the heat kernel as

Kdðt;xÞ ¼ �
1

ð4�tÞ3=2 e
i1=2
d�x X

n2Z3

e�i
�d�n

� exp

�
� 1

4t
ðx� 2� ~�nÞ2

�
: (A3)

The expression in Eq. (A1) is fast convergent when t is
large, and the expression in Eq. (A3) is useful when t is
small. We denote the truncated heat kernel K�

dðt;xÞ as
K�

dðt;xÞ ¼ Kdðt;xÞ �
X

r2Pd;jrj<�

expðir � x� tr2Þ: (A4)

We apply the operator Ylmð�irxÞ to the heat kernels as

K �
d;lmðt;xÞ ¼ Ylmð�irxÞK�

dðt;xÞ: (A5)

It can be shown that the zeta function has a rapidly con-
vergent integral expression

Zd
lmð1; q2Þ ¼

X
r2Pd;jrj<�

YlmðrÞ
r2 � q2

þ ð2�Þ3
Z 1

0
dt

�
etq

2
K�

d;lmðt; 0Þ �
��l;0�m;0

16�2t3=2

�
:

(A6)

This is our desired integral representation. To calculate
the integrand, we use the kernel expression (A1) when
t 	 1, and the kernel expression (A3) in the case of
t < 1. The cutoff � is chosen so that �2 > Req2. We can
easily verify that, when m1 ¼ m2 (or equivalently 
 ¼ 1),
Rummukainen-Gottlieb’s result in Ref. [6] is restored.

APPENDIX B: THE EVALUATION OF THE ZETA
FUNCTION Z10ðs; q2Þ

In this appendix we briefly discuss one useful method
for numerical evaluation of zeta function Z10ðs;q2Þ. Here
we follow the methods and notations in Ref. [11].
The definition of zeta function Zd

10ðs; q2Þ in Eq. (73) isffiffiffiffiffiffiffi
4�

3

s
�Zd

10ðs; q2Þ ¼
X
r2Pd

r3
ðr2 � q2Þs ; (B1)

where the summation for r is carried out over the set

Pd ¼
�
rjr ¼ ~��1

�
nþ 


2
d

�
;n 2 Z3

�
; (B2)

here the factor 
 is denoted in Eq. (62). The operation ~��1

is defined in Eq. (9). Without loss of generality, we con-
sider that the value q2 can be a positive or negative.
First we consider the case of q2 > 0, and we separate the

summation in Zd
10ðs;q2Þ into two parts asX

r2Pd

r3
ðr2 � q2Þs ¼

X
r2<q2

r3
ðr2 � q2Þs þ

X
r2>q2

r3
ðr2 � q2Þs :

(B3)
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The second term can be written in an integral form,X
r2>q2

r3
ðr2 � q2Þs ¼

1

�ðsÞ
X

r2>q2

r3

�Z 1

0
dtts�1e�tðr2�q2Þ

þ
Z 1

1
dtts�1e�tðr2�q2Þ

�

¼ 1

�ðsÞ
Z 1

0
dtts�1eq

2t
X
r

r3e
�r2t

� X
r2<q2

r3
ðr2 � q2Þs þ

X
r

r3
e�ðr2�q2Þ

ðr2 � q2Þs :

(B4)

The second term neatly cancels out the first term in
Eq. (B3). With Poisson’s resummation formula we can
rewrite the first term in Eq. (B4) as

1

�ðsÞ
Z 1

0
dtts�1etq

2
X
r

r3e
�r2t

¼
ffiffiffiffi
�

p
�ðsÞ

Z 1

0
dtts�1etq

2

�
�

t

�
2 X
n2Z3

in3e
�i
�n�de�ð� ~�nÞ2=t

¼
ffiffiffiffi
�

p
�ðsÞ

Z 1

0
dtts�1etq

2

�
�

t

�
2 X
n2Z3

n3 sinð
�n �dÞe�ð� ~�nÞ2=t;

(B5)

where the imaginary parts are neatly canceled out.

After gathering all of the terms, we obtain the represen-
tation of the zeta function at s ¼ 1,

ffiffiffiffiffiffiffi
4�

3

s
�Zd

10ð1;q2Þ ¼
X
r2Pd

r3
e�ðr2�q2Þ

r2 � q2
þ ffiffiffiffi

�
p Z 1

0
dtetq

2

�
�

t

�
2

� X
n2Z3

n3 sinð
�n � dÞe�ð� ~�nÞ2=t: (B6)

When 
 ¼ 1, we can prove that this equation should be
zero, then Rummukainen-Gottlieb’s result is restored.
For the case of q2 � 0, it is not necessary for us to

separate the summation in Z10ðs;q2Þ, and it can be also
written in an integral form. Following the same procedures,
we arrive at the same expression in Eq. (B6). Hence,
Eq. (B6) can be applied for both cases.
Substituting d ¼ ð0; 0; 1Þ into Eq. (B6) we obtain the

representation of the zeta function that appeared in Eq. (73)

ffiffiffiffiffiffiffi
4�

3

s
�Zd

10ð1; q2Þ ¼
X
r2Pd

r3
e�ðr2�q2Þ

r2 � q2
þ ffiffiffiffi

�
p Z 1

0
dtetq

2

�
�

t

�
2

� X
n2Z3

n3 sinð
�n3Þe�ð� ~�nÞ2=t: (B7)

We can easily verify that, if m1 ¼ m2 (or equivalently

 ¼ 1), zeta function Z10ð1;q2Þ ! 0, Rummukainen-
Gottlieb’s result is recovered.
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