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Wilson chiral perturbation theory (WChPT) is the effective field theory describing the long-distance

properties of lattice QCD with Wilson or twisted-mass fermions. We consider here WChPT for the theory

with two light flavors of Wilson fermions or a single light twisted-mass fermion. Discretization errors

introduce three low energy constants into partially quenched WChPT at Oða2Þ, conventionally called W 0
6,

W 0
7, and W 0

8. The phase structure of the theory at nonzero a depends on the sign of the combination

2W0
6 þW0

8, while the spectrum of the lattice Hermitian Wilson-Dirac operator depends on all three

constants. It has been argued, based on the positivity of partition functions of fixed topological charge, and

on the convergence of graded group integrals that arise in the � regime of WChPT, that there is a constraint

on the low energy constants arising from the underlying lattice theory. In particular, forW 0
6 ¼ W 0

7 ¼ 0, the

constraint found is W0
8 � 0. Here we provide an alternative line of argument, based on mass inequalities

for the underlying partially quenched theory. We find that W 0
8 � 0, irrespective of the values of W 0

6 and

W 0
7. Our constraint implies that 2W 0

6 > jW0
8j if the phase diagram is to be described by the first-order

scenario, as recent simulations suggest is the case for some choices of action.
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I. INTRODUCTION

Effective field theories such as chiral perturbation theory
(ChPT) contain coefficients, usually called low energy
constants (LECs), which are not determined by symmetry.
If the matching between the high and low energy theories is
nonperturbative, as is the case in the matching of QCD to
ChPT, then the LECs must be determined either by experi-
ment or by a nonperturbative method such as lattice QCD.
One usually has no information on the LECs, other than a
prediction for their order of magnitude based on naive
dimensional analysis. It is sometimes possible, however,
to constrain the signs of particular LECs based on the
physics of the high-energy theory. For example, certain
four-derivative terms in the chiral Lagrangian are con-
strained to be positive based on causality [1]. This argu-
ment has been generalized and applied widely in Ref. [2].
Another example concerns the chiral Lagrangian describ-
ing a lattice simulation at nonzero lattice spacing with a
mixed action (different valence and sea-quark actions). It is
found in Ref. [3] that, using generalized QCD mass in-
equalities [4], one finds a constraint on a combination of
the LECs which arise due to discretization errors.

A further method of constraining LECs has recently
been discovered in the context of calculating the low
energy spectrum and eigenvalue properties of the lattice
Hermitian Wilson-Dirac operator [5,6]. One line of argu-
ment is based on the positivity of the underlying two-flavor
fermion determinant, which follows from the �5

Hermiticity of the Wilson-Dirac operator. Specifically,
the partition function at fixed (odd) topology is positive

in the underlying theory but is only positive in the effective
theory [here partially quenched Wilson ChPT
(PQWChPT)] if the LECs satisfy a constraint [6]. In the
standard convention for LECs,1 this constraint isW 0

8 � 0 if
W 0

6 ¼ W 0
7 ¼ 0.2 Another line of argument notes that the

partially quenched partition function for zero-momentum
modes (which determines the leading order behavior in the
� regime) converges only if W 0

8 � W 0
6 þW 0

7 [5,6].3 We

also note that a similar constraint (specifically, W 0
8 � 0

independent of W 0
6 and W 0

7) was found earlier by one of

us, based on the finding that the method for calculating the
spectral density in infinite volume using PQWChPT only
worked if the constraint held [9]. It was not clear, however,
whether this was a fundamental constraint or simply a
shortcoming of the method of calculation.
The constraints found in Refs. [5,6,9] imply an interest-

ing corollary if one assumes that scaling at large Nc

(number of colors) is a good guide at Nc ¼ 3. In particular,
since W 0

6=W
0
8 �W 0

7=W
0
8 � 1=Nc, this assumption would

mean that one can ignoreW 0
6 andW

0
7 to first approximation.

Then the constraints imply that any discretization of
Wilson fermions will have an Aoki phase for small enough
physical quark mass. The other possible phase diagram—
the first-order scenario [10]—would not occur. This is in
apparent contradiction with the results of simulations using
dynamical twisted-mass fermions, which find strong
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1Note that our convention for W 0
j, which follows Ref. [7],

differs in sign from that used in Refs. [5,6].
2Since these LECs appear at leading order in the appropriate

power counting, they are independent of the renormalization
scale.

3It may be possible to obtain further constraints from these or
similar lines of argument [6,8].
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evidence for the first-order scenario [11–20]. Of course,
large Nc scaling may not be useful for Nc ¼ 3, in which
case the connection between the constraint and the phase
scenario need not hold.

Given this situation, we think that it is important to find
an alternative line of argument leading to such constraints.
This is what we provide in the present note. In particular,
we find that a generalization of the mass-inequality method
of Ref. [3] constrains the LECs of WChPT.4 Our constraint
results from considering the twisted-mass generalization of
Wilson fermions and comparing the quark-connected part
of the neutral pion propagator to the charged pion propa-
gator. A partially quenched setup is required to separate the
quark-connected and disconnected contractions, and this is
why it is the LECs of partially quenched WChPT which
enter. We find W 0

8 � 0, independent of W 0
6 and W 0

7.

The remainder of this note is organized as follows. In the
following section we explain how partial quenching allows
one to separately calculate the quark-connected part of the
neutral pion correlator. In Sec. III we present the calcula-
tion of the quark-connected neutral pion ‘‘mass’’ at leading
order inWChPT.We do so only at maximal twist, since this
suffices to show the constraint. In Sec. IV we derive an
inequality among quark-connected correlation functions,
from which follows the above-noted constraint. We sum-
marize and offer some concluding comments in Sec. V. We
relegate some technical details to two appendixes, the first
concerning the form of the condensate in the partially
quenched theory, and the second extending the analysis
of the main text from maximal to arbitrary twist.

II. USING PARTIAL QUENCHING TO SELECT
QUARK-CONNECTED CORRELATORS

Our argument uses twisted-mass fermions [22,23], so we
begin by recalling the salient features of this approach. In
an unquenched theory, the quark Lagrangian takes the form

L q ¼ �qSðDW þm0 þ i�0�5�3ÞqS; (1)

whereqS is an isodoublet of quarkfields (corresponding to the
up and down quarks), and DW is the Wilson-Dirac operator.
The subscript ‘‘S’’ indicates that these are sea quarks, appear-
ing in the fermion determinant, as opposed to the valence
quarks introduced below.5We refer tom0 as the normal (bare)

mass and �0 as the twisted (bare) mass. The following
considerations do not depend on whether DW is improved,
or on the formof the gauge action, sowe do not specify either.
We will need only the property of ‘‘�5 Hermiticity’’:

�5DW�5 ¼ Dy
W: (2)

When writing the Lagrangian in the form (1), we are using
what is commonly called the ‘‘twisted basis,’’ in which the
mass, and not the Wilson term, is twisted.
In the continuum limit, a mass term mþ i��5�3 can be

rotated into a purely normal mass mq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ�2

p
by an

appropriate axial rotation. Thus the apparent breaking of
flavor by the � term is misleading—flavor is preserved for
all�. At nonzero lattice spacing, however, flavor is explicitly
broken from SUð2Þ toUð1Þ, leading to a splitting of the pion
multiplet:m�� � m�0 . As iswell-known (andaswill be seen
explicitly in the following section) the splitting is ofOða2Þ.
The particular case of maximal twist corresponds to tun-

ing m0 ! mc such that the physical normal mass vanishes
(or is, at least, sufficiently small compared to the twisted
mass). There are a number of different tuning criteria that
can be used, leading to results for physical quantities differ-
ing only at Oða2Þ. For discussion of these issues see
Refs. [17,18,20,25–31]. All that matters here, however, is
that a consistent criterion exists in whichmc is fixed, such as
the one based on the partially conserved axial current mass
used in practice in present simulations [18–20].
We will also need to know the quark-level operators

which couple to the charged and neutral pions in the
twisted basis. These are given, e.g., in Appendix A of
Ref. [18]. The charged pions are created by

P� ¼ i �qS�5��qS
�
�� ¼ 1ffiffiffi

2
p ð�1 � i�2Þ

�
(3)

(independent of twist angle), while the neutral pion is
created at maximal twist by

S0 ¼ � �qSqS: (4)

Thus the two-point correlators of the charged fields,

C�ðnÞ ¼ hP�ð0ÞP�ðnÞi (5)

(n labeling lattice sites), have only quark-connected con-
tributions. For example,

CþðnÞ ¼ 2htrð�5Gð�Þ0;n�5Gð��Þn;0Þi; (6)

where the trace is over (implicit) color and Dirac indices,
and the quark propagator is

Gð�Þ0;n ¼
�

1

DW þmc þ i��5

�
0;n
: (7)

The neutral pion propagator, however, has both quark-
connected and -disconnected contributions:

C0ðnÞ ¼ hS0ð0ÞS0ðnÞi (8)

¼ C0;connðnÞ þ C0;discðnÞ; (9)

4The fact that mass inequalities can provide useful information
in twisted-mass theories has also been noted in Refs. [8,21].

5Simulations using two doublets of dynamical twisted-mass
fermions are also now being done, with the second such fermion
describing the strange and charm quarks [20]. The arguments in
this note apply equally well to such a setup, however, because
the second doublet contains degrees of freedom that are heavy on
the scale of the light up and down quarks. Thus the form of the
chiral Lagrangian used in Sec. III is unchanged (although
the values of the LECs will be different), and the argument for
the mass inequalities in Sec. IV goes through unchanged. It is
important in this regard that the determinant in such Nf ¼ 2þ
1þ 1 simulations remains real and positive [24].
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C0;connðnÞ¼�htrðGð�Þ0;nGð�Þn;0þGð��Þ0;nGð��Þn;0Þi;
(10)

C0;discðnÞ ¼ htrðGð�Þ0;0 þGð��Þ0;0Þ � trðGð�Þn;n
þGð��Þn;nÞi: (11)

In practice, the quark-connected part has a much better
signal to noise ratio than the disconnected part, but im-
proved techniques have allowed the computation of the
latter with errors small enough that the mass of the neutral
pion can be extracted [18].

What we are interested in here, however, is the quark-
connected part of the correlator. Since this is measured
with small errors (comparable to those for the charged
correlator), it is worthwhile investigating whether it
contains useful information. In the physical two-flavor
theory one cannot separate the two Wick contractions. It
is well-known, however, that if one considers the par-
tially quenched (PQ) extension of the theory [32], then,
by adding enough valence quarks, one can find correla-
tion functions which pick out any desired Wick contrac-
tion. In the present case it suffices to add a single
valence isodoublet qV and the corresponding ghost
quark isodoublet ~qV . The Lagrangian for each of these
quarks is the same as that for qS [the twisted-mass

Lagrangian (1)], except that �qS is replaced by ~qyS for

the ghost quark.6

Within this PQ setup, the correlation function which
yields the quark-connected part of the neutral pion corre-
lator involves the mixed valence-sea pion:7

C0;connðnÞ ¼ h �qSqVð0Þ �qVqSðnÞi: (12)

This is because there is no disconnected Wick contraction
between a �qS and qV . Although we will not use it, it is
perhaps of interest to note that the disconnected neutral
pion Wick contraction can be obtained as

C0;discðnÞ ¼ h �qSqSð0Þ �qVqVðnÞi: (13)

Partial quenching is often used to consider valence
masses (or actions) differing from those of the sea quarks.
In this work, by contrast, the valence and sea quarks have
identical actions and masses. Thus there is an exact SUð2Þ
flavor symmetry mixing valence and sea quarks. This is a
subgroup of the SUð4Þ flavor symmetry that emerges in the
continuum limit [itself a subgroup of the graded flavor
group Uð4j2Þ that holds for perturbative calculations in
the continuum PQ theory [35]].
We also remark that C0;conn and C0;disc are separately

unphysical—they cannot be expressed in terms of a sum of
exponentially falling terms with positive (real) coeffi-
cients. Nevertheless, they can be calculated using the
appropriate low energy effective theory—PQWChPT—
which itself is an unphysical theory, although perfectly
well defined in Euclidean space. It turns out that C0;conn

does have, at leading order in WChPT, a physical form at
long distances, which is all that we need for our argument.

III. WILSON CHPT CALCULATION OF
CONNECTED PION MASSES

In this section we calculate C0;conn and C� using
PQWChPT. We are interested in the differences between
these two correlators, which turn out to arise at Oða2Þ.
Thus we work to leading order (LO) in the ‘‘large cutoff
effects’’ or ‘‘Aoki’’ regime in which the power counting is
m��� a2�3

QCD, wherem and� are the physical normal

and twisted masses [defined in Eq. (16) below]. There is no
need to work to higher order, since for the purposes of
constraining the LECs we can imagine that m, �, and a2

are arbitrarily small.
At leading order, and after shifting the quark mass to

remove an OðaÞ term, the partially quenched chiral
Lagrangian is [7,10]

L� ¼ f2

4
Strð@��@��yÞ � f2

4
Strð�y�þ�y�Þ

� â2W 0
6 ½Strð�þ �yÞ�2 � â2W 0

7 ½Strð���yÞ�2
� â2W 0

8 Strð�2 þ ½�y�2Þ: (14)

6This glosses over an important subtlety. In the ghost sector,
convergence of the functional integral requires that the real part
of the eigenvalues of the discretized fermion operator are posi-
tive. This is not the case for DW þm0 þ i��3�5 given that one
always works with m0 < 0. This issue has been resolved, in the
context of the quenched theory, in Ref. [33], and a simple
generalization works here. The solution is to do an axial rotation
in the �3 direction by angle �=4, such that the fermion operator
becomes D� i�5�3ðW þm0Þ þ�, where D is the naive dis-
cretization of the Dirac operator and W the Wilson term. This
new operator consists of an anti-Hermitian part, with purely
imaginary eigenvalues, and a real offset �, which we choose to
be positive. (For negative �, an axial rotation in the other
direction resolves the problem.) For maximal twist, this is
exactly the axial rotation that brings one to the physical basis,
but for other twist angles it gives a different basis. In this new
basis one can add in valence and ghost quarks. One then goes
through the standard steps to obtain the chiral Lagrangian
including discretization errors [10], following a simple general-
ization of the analysis of Ref. [33]. Compared to the usual chiral
Lagrangian, one has additional factors of �i�3 in terms contain-
ing spurions coming from discretization errors. Thus the
Lagrangian looks nonstandard. In the quark sector (sea and
valence) one can, however, undo the axial rotation (now at the
level of the chiral fields) ending up with the standard form of the
chiral Lagrangian for WChPT [presented below in Eq. (14)].
This does not work in the ghost sector, since one is not allowed
to do normal axial rotations there. This restriction does not,
however, effect the present calculation, since we only consider
correlation functions in the quark sector. In fact, the correct
procedure in the ghost sector has been worked out in Ref. [34],
generalizing the methodology of Ref. [33].

7We could just as well add two isodoublets of valence quarks
(and corresponding ghosts) and use h �qV1qV2ð0Þ �qV2qV1ðnÞi. The
choice made in the text is, however, the minimal one.
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Here � 2 SUð4j2Þ, ‘‘Str’’ stands for supertrace, � ¼
2B0M with M the mass matrix, and â ¼ 2W0a. B0 and f
are continuum LECs (with the convention f� � 93 MeV),
while W0, W 0

6, W 0
7, and W 0

8 are LECs associated with

discretization errors. Since our setup requires just two
valence quarks and two ghosts, the graded chiral symmetry
is8 SUð4j2ÞL � SUð4j2ÞR.

The mass matrix in L� is related to the bare masses in

the underlying quark Lagrangian (1). For the unquenched
theory, we have

M ¼ mþ i��3 ¼ mqe
i!m�3 ; (15)

m ¼ Z�1
S ðm0 �mcÞ=a; � ¼ Z�1

P �0=a: (16)

Here!m is the ‘‘input’’ twist angle, andmq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ�2

p
is

the physical mass in the continuum limit. Maximal twist
corresponds to m ¼ 0. Note that in this case one does not
need to know the renormalization factorsZS andZP in order
to determine the twist angle. For the partially quenched
theory, the mass matrix, which has dimension 6� 6, is
block diagonal, with each block containing M. As noted
in the previous section, this mass matrix leaves an unbroken
SUð2Þ symmetry between sea and valence quarks.

We must first determine the orientation of the vacuum,
�0 ¼ h0j�j0i, taking into account the Oða2Þ terms. In the
unquenched sector this has been done in Refs. [36–38].
Writing

�unqu
0 ¼ ei!0�3 ; (17)

one needs in general to solve a quartic [given in Eq. (B1)]
to determine !0, and !0 �!m is generically of Oð1Þ. For
the special case of maximal twist, however, the solution is
simply !0 ¼ !m ¼ ��=2; i.e., the input and output twist
angles are the same.

For the partially quenched theory, we argue in
Appendix A that

�0 ¼
ei!0�3 0 0
0 ei!0�3 0
0 0 e�g

0
@

1
A; (18)

in a 2� 2 block notation with the blocks ordered as sea,
valence, and ghost quarks. In words, this result says that the
SUð2Þ valence-sea symmetry is unbroken (one implication
of which is that the vacuum twist in the valence sector is the

same as that in the sea sector) and that there are no quark-
ghost condensates. We do not need to discuss the (subtle
issue) of the ghost condensate e�g (which is a 2� 2
matrix), since we will not need propagators involving
ghosts. This issue has been discussed, albeit in a different
power counting, in Ref. [34].
Pion masses can now be obtained by considering small

oscillations around the condensate. To do this, we use

�¼�0�ph�0; �0¼
ei!0�3=2 0 0

0 ei!0�3=2 0

0 0 e�g=2

0
BB@

1
CCA (19)

with �ph ¼ expði ffiffiffi
2

p
�=fÞ containing the pion fields. We

will only need the quark part of the pion field, which we
decompose as follows:

P q�P q ¼
�SS �SV 0

�VS �VV 0

0 0 0

0
BB@

1
CCA; (20)

with P q the projector onto the quark subspace

P q ¼
1 0 0

0 1 0

0 0 0

0
BB@

1
CCA: (21)

The block pion fields in (20) contain isosinglet components
(i.e., 	-like fields) as well as the usual isovector pions, but
the isosinglet parts play no role in the following calcula-
tion. As we show below (following Ref. [39]), the sym-
metric positioning of the condensate in (19) leads to the
usual identification of the individual pion fields in �. In
particular, for the isovector fields, the decomposition for
each block is the usual one,

� ¼ �0=
ffiffiffi
2

p
�þ

�� ��0=
ffiffiffi
2

p
 !

: (22)

To show this, we next need to map the operators P�, S0,
and �qSqV of Eqs. (3), (4), and (12) into the effective theory.
This is a standard exercise, requiring the introduction of
scalar and pseudoscalar sources into the mass matrixM. At
LO in our power counting, the results are the same as in the
continuum. In particular for quark bilinears we have

i �qT�5q ! �i
f2B0

2
StrðP qT½�y � ��Þ (23)

and

�qTq ! � f2B0

2
StrðP qT½�þ�y�Þ; (24)

where T is an arbitrary flavor matrix acting on the 4� 4
quark subspace. Using this result, and the expansion (19),
we find

8The actual symmetry differs from this due to the constraints
from convergence of ghost integrals. For perturbative calcula-
tions, such as those we perform here, one can, however, work as
if the symmetry is as claimed. This was shown for the continuum
PQ theory in Ref. [35], and presumably carries over to
PQWChPT. In fact, all we need in the present calculation are
fluctuations in the quark sector, and here the appropriate sym-
metry is certainly SUð4Þ. For nonperturbative calculations, how-
ever, such as those done in Refs. [5,6], one must account for the
need to have convergent integrals in the ghost sector, which leads
to a different global group.
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P� ! �i
f2B0

2
StrðP SS��½�y

ph � �ph�Þ (25)

¼ �2fB0�
�
SS þOð�3Þ; (26)

S0!f2B0

2
StrðP SSfc0½�phþ�y

ph�� is0�3½�y
ph��ph�gÞ

(27)

¼ �s02fB0�
0
SS þOð�2Þ; (28)

� �qSqV !f2B0

2
StrðP SVfc0½�þ�y�� is0�3½�y

ph��ph�gÞ
(29)

¼�s02fB0�
0
VSþOð�2Þ: (30)

where c0 ¼ cos!0 and s0 ¼ sin!0. P SS is the projector
onto the sea-sea block, and P SV picks out the off-diagonal
valence-sea block:

P SS ¼
1 0 0
0 0 0
0 0 0

0
@

1
A; P SV ¼

0 1 0
0 0 0
0 0 0

0
@

1
A: (31)

Thus, at maximal twist (s0 ¼ 1), P� and S0 indeed couple
with equal strength to the charged and neutral pions,
respectively, as required by the underlying theory. We
also see that�0

VS is the appropriate field to use to determine

the connected part of the neutral correlator.
We can now calculate the correlators C�ðxÞ, C0ðxÞ, and

C0;connðxÞ of Eqs. (5), (8), and (12), respectively.9 At this
stage we specialize to maximal twist. This not only sim-
plifies the resulting expressions but also turns out, as
sketched in Appendix B, to give the same constraint on
the LECs as one finds when working at arbitrary twist.
Expressed in terms of the rotated fields, the chiral
Lagrangian becomes

L � ¼ f2

4
Strð@��ph@��

y
phÞ �

f2

4
2B0mq Strð�ph þ �y

phÞ
� â2W 0

6 ½Strð�0�ph þ �y
0�

y
phÞ�2

� â2W 0
7 ½Strð�0�ph � �y

0�
y
phÞ�2

� â2W 0
8 Strð�0�ph�0�ph þ �y

0�
y
ph�

y
0�

y
phÞ:

(32)

Keeping only terms quadratic in the pion fields, we find
that the W 0

6 term gives

� w0
6f

2ð�0
SS þ �0

VV þ ghost termsÞ2; (33)

the W 0
7 term vanishes, and the W 0

8 term becomes

�w0
8f

2ð12½�0
SS�2þ�0

SV�
0
VSþ 1

2½�0
VV�2þghost termsÞ: (34)

Here we are using rescaled, dimensionless LECs

w0
k ¼

16â2W 0
k

f4
ðk ¼ 6; 7; 8Þ: (35)

We see that, while theW 0
8 term contributes to the masses of

all the neutral pions, the W 0
6 term contributes only to the

neutral particles in the diagonal blocks (and thus not to the
�0

SV mass). This is because of the double-strace form of

W 0
6, which means that it gives ‘‘hairpin vertices’’ in the

usual PQChPT parlance.
Putting this all together, we find that, at leading order,

each correlator of interest is proportional to the propagator
of the corresponding pion. In momentum space we have
(still at maximal twist)

~C jðpÞ ¼ 4f2B2
0

p2 þ ðmj
�Þ2

; (36)

with j ¼ �, 0, and ‘‘0, conn,’’ where10

ðm�
� Þ2 ¼ ðm�

SSÞ2 ¼ 2B0�; (37)

ðm0
�Þ2 ¼ ðm0

SSÞ2 ¼ 2B0�� ð2w0
6 þ w0

8Þf2; (38)

ðm0;conn
� Þ2 ¼ ðm0

SVÞ2 ¼ 2B0�� w0
8f

2: (39)

The results for m�� and m�0 agree with those of
Refs. [36–38], while that for the connected neutral pion
is new. It is the latter result which provides the key con-
straint, as we now explain.

IV. MASS INEQUALITYAND THE CONSTRAINT
ON LECS

We begin by rewriting the charged correlators using
�5Gð��Þ�5 ¼ Gð�Þy (which follows from
�5-Hermiticity):

CþðnÞ ¼ 2 htrðGð�Þ0;nGð�Þyn;0Þi; (40)

C�ðnÞ ¼ 2 htrðGð�Þy0;nGð�Þn;0Þi: (41)

These two correlators are equal by charge conjugation
symmetry, i.e., after averaging over each gauge field and
its complex conjugate. Note that both correlators are a sum
over positive definite terms, which leads us to expect
that they are larger than all other correlators (assuming

9Note that we are now in a continuum theory, so the lattice
label n is replaced by Euclidean position x (with the correspon-
dence x� an).

10There is one subtlety in the calculation. As can be seen from
Eq. (33), there are off-diagonal terms proportional to w0

6 con-
necting �0

SS to �0
VV and ghost terms. These do not contribute,

however, due to a cancellation between valence and ghost
contributions, as must be the case because, for a purely sea-
quark pion, we can do the calculation solely in the unquenched
WChPT, leading to the result stated.
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appropriate overall normalization factors). This is the basis
for the mass-inequality method.

In the present case, we can adapt the argument given
in Ref. [3]. We start by noting that, on each gauge
configuration,

0 � j½Gð�Þ þGð�Þy�0a;nbj2 (42)

¼ ½Gð�Þ þGð�Þy�0a;nb½Gð�Þy þGð�Þ�nb;0a; (43)

where a and b are color-Dirac indices. Multiplying out,
summing over the color-Dirac indices, averaging over
configurations (allowed since the quark determinant is
real and positive), and using Eqs. (6) and (10), we arrive
at the key inequality11

CþðnÞ þ C�ðnÞ
2

¼ CþðnÞ 	 C0;connðnÞ; (44)

which holds for all n.
Now, for long distances, we can use the forms predicted

by PQWChPT, which we know from the previous section
to be (after Fourier transforming)

CþðnÞ / ðmþ
SSÞ1=2ðanÞ�3=2e�mþ

SSan; (45)

C0;connðnÞ / ðm0
SVÞ1=2ðanÞ�3=2e�m0

SV
an; (46)

with a common coefficient of proportionality. We stress
that, although C0;conn is unphysical, PQWChPT predicts
that it has a single-particle exponential falloff at long
distances. The only way that (45) and (46) can be consis-
tent with the inequality (44) for n large enough that the
exponential damping dominates is if

mþ
SS � m0

SV (47)

or, equivalently,

m�
� � m0;conn

� : (48)

Combining this with the results for the masses from
PQWChPT, Eqs. (37) and (39), we find that

w0
8 � 0 , W0

8 � 0: (49)

As shown in Appendix B, one finds no other constraints on
the LECs if one repeats the argument at nonmaximal twist.

The inequality (48) can be directly tested in lattice
simulations, and present results (see, e.g., Fig. 6 of
Ref. [18]) clearly satisfy the inequality.

We close this section by noting a relationship between
the mass inequality (48) and the analysis of the condensate
given in Appendix A. One of the conclusions from the
appendix is that the sea-valence SUð2Þ symmetry cannot be
spontaneously broken for nonzero �0. This is consistent
with the mass inequality because, if there were a mixed
sea-valence condensate, then one would expect that fluc-
tuations in the sea-valence direction would diverge, and
thus that ðm0

SVÞ2 would pass through zero and become

negative. The mass inequality says that this cannot
happen while mþ

SS is positive, as it is expected to be for

any nonzero �0.

V. CONCLUSIONS

We have shown that the sign of one of the LECs induced
in Wilson ChPT by discretization errors can be determined
by combining partially quenched WChPT with mass in-
equalities. The core of the argument is technically very
simple, requiring only a tree-level computation and a sim-
ple inequality. The only connection between our argument
and those given in Refs. [5,6] is that both require the
positivity of the determinant.
The constraint we find is that W 0

8 � 0, independent of
the values of W 0

6 and W 0
7. We find no constraints on the

latter two LECs. These results are the same as found in
Ref. [9], based on the failure of a method to calculate the
spectral density of the Hermitian Wilson-Dirac operator.
Our constraint is also consistent with that given in Ref. [6]
based on the positivity of the partition function in odd
topological sectors (W 0

8 � 0 if W 0
6 ¼ W 0

7 ¼ 0). It differs
from that found using the convergence of the zero-mode
partition function, namely, W 0

8 � W 0
6 þW 0

7 [6]. Whether

our result is stronger or weaker than this constraint depends
on the signs of W 0

6 and W 0
7.

We stress that all arguments leading to constraints rely
on the applicability of partially quenched ChPT. In our
case, wework in the ‘‘p regime’’—i.e., large volumes, with
only small perturbations around the ground state—while
Refs. [5,6] work in the � regime in which the zero modes
must be integrated over the entire group manifold.
Our calculation also provides a simple way of determin-

ing W 0
8 using the result (valid at maximal twist, and

generalized to arbitrary twist in Appendix B)

ðm0;conn
� Þ2 � ðm�

� Þ2 ¼ �w0
8f

2 þOða4; a2m2
�Þ (50)

¼ � 16â2W 0
8

f2
þOða4; a2m2

�Þ: (51)

It appears from recent simulations with twisted-mass fer-
mions (see, e.g., Refs. [18,19]) that this should give a fairly
accurate determination. The only concern is whether the
LO contribution will dominate. It would thus be interesting
to extend the one-loop calculation of Refs. [40,41] to the
partially quenched theory. It would also be interesting to

11The correlators C� are real and positive, while C0;cont is
a priori only known to be real but of indeterminate sign. The
PQWChPT result (36) shows, however, that at long distances
C0;cont is also positive. Thus we chose to consider the sum
Gð�Þ þGð�Þy in Eq. (42), so that C0;conn would appear with a
positive sign on the right-hand side of the inequality (44). We
note for completeness, however, that we could also have con-
sidered the difference in Gð�Þ �Gð�Þy in Eq. (42), from which
one would deduce that, in general, CþðnÞ 	 jC0;connðnÞj.
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compare results obtained using (51) with those from other
recently proposed methods for determining W 0

8, which are

based on using a mixed action [42] or on partially
quenched pion scattering amplitudes [43].

We return now to the implications for the phase structure
of unquenched twisted-mass fermions. As noted in the
introduction, this depends on the sign of the combination
of LECs, 2W 0

6 þW 0
8. If this combination is negative, then

one is in the Aoki-phase scenario, which means that
m�

� < m0
� as long as �0 � 0 [as can been seen from

Eqs. (37) and (38)]. The results of Refs. [11–20], however,
favor the first-order scenario, with m�

� > m0
� for �0 � 0.

This means that 2W 0
6 þW 0

8 > 0, which, combined with the

inequalityW 0
8 � 0, implies in turn that 2W 0

6 > jW 0
8j. There

is nothing theoretically inconsistent with this possibility,
but it is somewhat surprising given thatW 0

6=W
0
8 / 1=Nc for

large Nc.
A related implication of the presence of the first-order

scenario is that quark-disconnected contributions play an
important role. It is these contributions which, despite
being suppressed by 1=Nc, lower the neutral pion mass
below that of the charged pion. This violation of large Nc

counting (Zweig’s rule) is superficially analogous to the
situation with the 	0 in QCD. Here, however, the effect has
the opposite sign,12 and is of Oða2Þ rather than a physical
effect.
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APPENDIX A: FORM OF THE PARTIALLY
QUENCHED CONDENSATE

In this appendix we present the arguments for the form
of the condensate given in Eq. (18). The discussion is
carried out in the underlying theory.

We first note that we know from a general argument
given in Ref. [3] that quark-ghost condensates vanish. This
leads to the zero entries in the rightmost column and
bottom row (aside from the bottom-right block).

Second, we show that the valence-sea SUð2Þ symmetry
is unbroken, leading to the other zeros in (18), as well as
the result that the condensate in the valence-valence block
is the same as that in the sea-sea block. The argument is a
generalization of the Vafa-Witten theorem on the absence

of flavor breaking [45]. A similar argument was made in
Ref. [3] concerning the absence of flavor breaking in the
valence sector alone, but this was dependent on the fact
that the valence sector contained quarks with an exact
chiral symmetry, so that the Dirac operator has a continu-
umlike spectrum. In the present case we have valence and
sea Wilson fermions, with no chiral symmetry, so the
argumentation is different. In fact, it is surprising that
one can make such an argument at all, since we know
that the SUð2Þ symmetry in the sea sector can be sponta-
neously broken—this is, after all, what happens in the Aoki
phase. The key difference here is that we are working at
nonvanishing twisted mass, which avoids the appearance
of small eigenvalues of the Wilson-Dirac operator.
We show first that the sea-valence condensate

h �qSu�5qVui (A1)

vanishes. The notation here is that, in each 2� 2 block, we
label the two states by u and d. Thus qVu is the valence u
quark. We work in a volume V, at nonzero lattice spacing
a, and with �0 nonzero. We turn on a source term

L source ¼ ��qVu�5qSu; (A2)

chosen to ‘‘push’’ the condensate in a direction such that
(A1) is nonzero. We then take V ! 1, followed by� ! 0,
and find that (A1) vanishes. This implies the absence of
spontaneous symmetry breaking.
Explicitly, a simple calculation yields (up to corrections

proportional to �3)

1

V

X
n

h �qSu�5qVuðnÞi

¼�

V

�
Tr

�
�5

1

DWþm0þi�0�5

�5

1

DWþm0þi�0�5

��
(A3)

¼ �

V

�
Tr

�
1

Qþ i�0

1

Qþ i�0

��
(A4)

¼ �
Z

d
�ð
Þ 1

ð
þ i�0Þ2
: (A5)

Here the traces are over space, Dirac, and color indices,
Q ¼ �5ðDW þm0Þ is the Hermitian Wilson-Dirac opera-
tor, which has (real) eigenvalues denoted by 
, and �ð
Þ is
the density of eigenvalues per unit volume after averaging
over gauge fields. Note that we expect �ð0Þ to be non-
vanishing in general (which gives rise to the Aoki phase
[10,46]) but the presence of �0 � 0 shields us from the
potential singularity at 
 ¼ 0. Indeed, the coefficient mul-
tiplying� is finite for any nonzero a, since the range of the
integration over 
 is finite. Thus the sea-valence conden-
sate vanishes when � ! 0.
Note that to make this argument we need the eigenvalue

density to be well defined, and for this we need the12This point has been stressed recently in Ref. [44].
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integration over gauge fields to have a positive weight,
which is the case for twisted-mass fermions.

Similar arguments show that all the condensates
h �qSj�5qVki vanish, with j and k running independently

over u and d. Also, by using different twisted masses for
valence and sea quarks one can show that condensates
h �qSj�5qSk � �qVj�5qVki vanish. For the corresponding

scalar condensates, e.g., h �qSjqVki, one ends up with

expressions such as

�

V

�
Tr

�
�5

1

Qþ i�0

�5

1

Qþ i�0

��
: (A6)

Although an eigenvalue decomposition cannot be used
here, there is no reason to expect that the coefficient of �
diverges for nonzero a, given the presence of �0 � 0.
Assuming so, we find that all sea-valence condensates
vanish.

APPENDIX B: CONNECTED PION MASSES AT
ARBITRARY TWIST ANGLE

In this appendix we give the values of the masses ðm�
� Þ2,

ðm0
�Þ2, and ðm0;conn

� Þ2 at arbitrary twist angle. For a lattice
theory in the large cutoff effects regime, if the mass twist
angle !m is not an integer multiple of �=2, then it will
differ from the twist angle in the condensate, !0. As a
result, when the leading order chiral Lagrangian is ex-
pressed in the physical basis (in terms of �ph), the form

of both the mass term and theOða2Þ terms is altered by the
twist. Expanding the leading order chiral Lagrangian to
Oð�2Þ, one fixes the relation between !m and !0 by
demanding that the linear term vanish. This relation is
the same as in the unquenched case [36–38]:

2B0� sinð!0 �!mÞ ¼ �f2ð2w0
6 þ w0

8Þs0c0: (B1)

This can be used to rewrite the quadratic terms in L� so

that they depend only on !0 and not !m. One may then
read off the masses

ðm�
� Þ2 ¼ 2B0�

s0
; (B2)

ðm0
�Þ2 ¼ 2B0�

s0
� f2ð2w0

6 þ w0
8Þs20; (B3)

ðm0;conn
� Þ2 ¼ 2B0�

s0
� f2w0

8s
2
0: (B4)

The results for the unquenched charged and neutral pions
agree with those of Refs. [37,39].
By generalizing the arguments of Sec. IV one can show

that the connected neutral mass can be no smaller than the
charged mass. We sketch the generalization briefly. The
form of the charged correlator, Eq. (6), is independent of
twist. The neutral correlator does, however, depend on
twist; the operator used to create the neutral sea-valence
pion becomes

�q Si�5�3e
i�5�3!qV: (B5)

Here ! is the twist angle determined in the simulation,
from either the input masses or using one of the other
possible definitions. It will not matter which definition is
used, since the inequality holds independent of!. Thus the
connected neutral correlator becomes

C0;conn
! ðnÞ¼�htrði�5e

i�5!Gð�Þ0;ni�5e
i�5!Gð�Þn;0

þ i�5e
�i�5!Gð�Þy0;ni�5e

�i�5!Gð�Þyn;0Þi: (B6)

Now, using

j½�Gð�Þi�5e
i�5!0 þ i�5e

�i�5!0Gð�Þy�0a;nbj2 	 0; (B7)

and following similar steps as in the main text, one finds
that

C0;conn
! ðnÞ � CþðnÞ: (B8)

We stress that this inequality holds separately at each value
of the input bare masses m0 and �0, and furthermore, for
fixed m0 and �0, it holds for any choice of !. When we
evaluate the correlators in WChPT it is most natural to
choose ! ¼ !0, for then the connected neutral correlator
couples to the sea-valence neutral pion with the same
strength as the charged correlator does to the charged
pion.13 This means that the WChPT result Eq. (36) still
holds, except that the masses which appear are now those
of Eqs. (B2)–(B4) above.
Putting this all together, it follows that

ðm0;conn
� Þ2 � ðm�

� Þ2 ¼ �f2w0
8s

2
0 þOða3Þ 	 0: (B9)

Thus, on the one hand, the result W 0
8 � 0 can be demon-

strated using any nonzero twist angle, but on the other,
working at arbitrary twist does not provide an additional
constraint on the LECs.
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