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We study some properties of nucleons with a simplified version of a Faddeev equation at finite

temperature and baryon chemical potential in the framework of the Nambu–Jona-Lasinio model. By

taking diquark-quark bubble summation, we constructed the nucleon propagator and calculated the

dynamical masses of the diquark and the nucleon in the pole approximation. We show that diquarks

can survive as resonant states in the chiral symmetry restored phase at high temperature, and that nucleons

are restricted in the chiral symmetry broken phase at low temperature. The phase diagram of the strongly

interacting matter is then given.
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While quantum chromodynamics (QCD) which is the
fundamental theory for strong interaction, works well in
the perturbative region, it is still difficult to extend it to the
nonperturbative region and to study hadron properties
where quarks and gluons are confined. As the most impor-
tant three-quark system, even though some properties of a
nucleon have been studied in the global color symmetry
model [1–4], in the spirit of the Dyson-Schwinger equation
approach of QCD [5], because the collective quantization
in the case of nonlocal interaction has not yet been settled
down well [6], it has long been a challenging topic to
understand the nucleon structure and its evolution in a
hot and dense medium in QCD directly. Furthermore,
although some properties of the nucleon have been de-
scribed with the quark-diquark model and even the
Faddeev equation approach with the direct help of the
Dyson-Schwinger equation approach [7,8], the tempera-
ture and baryon density effects have not yet been inves-
tigated either. In this paper, we discuss then nucleons in a
QCD model, the Nambu–Jona-Lasinio (NJL) model [9] at
quark level [10–12], at finite temperature and density,
and focus on how the chiral phase transition affects the
property of a nucleon.

Similar to the description of mesons as quark-antiquark
bound states in the framework of the Bethe-Salpeter equa-
tion, we take a simple picture and regard a baryon as a
composite of three valence quarks, which can describe
some important features of baryons such as the mass
spectrum, the electromagnetic form factors, and the quark
distribution functions [7,13,14]. The relativistic Faddeev
equation is usually taken to describe the bound states of
three-quark systems where baryons are considered as poles
of their corresponding Green’s functions [15–19]. In gen-
eral, the Faddeev equation is a complicated inhomogene-
ous integral equation. If one concentrates only on the static

properties of baryons, the free term can be neglected, and
the equation turns into a homogenous one. In this paper, we
implement a simplified version of the Faddeev equation,
namely, the quark-diquark model. According to QCD, the
two quarks in the color-�3 channel can form a diquark since
the interaction between them is attractive. If the attraction
is strong enough, it makes the Fermi sea of quarks unstable
at high density, and the diquarks will then condense and the
system will go into a color-superconducting phase, and the
gap can be of the order of 100 MeV [20]. To simplify
calculations, we will concentrate on the temperature effect
and take into account only the case at low baryon density
where quarks can pair but not form a condensate. Diquarks
are not observable particles because they are not color
singlets. They can then exist only inside baryons if the
density of the system is not high enough. The idea of the
quark-diquark model for baryons is the following: consider
first the scattering of two quarks in the color-�3 channel,
which can be described by the Bethe-Salpeter equation,
and then couple it to the third quark after a suitable
projection onto color, flavor, and spin spaces of baryons.
This procedure simplifies the three-body problem to an
effective two-body problem. Eichmann and his collabora-
tors have taken the full Poincáre covariant structure of the
three-quark amplitude in the Faddeev equation approach
[8] and found that the resulting current-mass evolution of
the nucleon mass agrees well with the lattice data and
deviates only by 5% from the quark-diquark result ob-
tained in previous studies.
Two approaches are usually taken in the practical cal-

culation to study baryon properties in the vacuum in the
framework of the relativistic Faddeev equation. One imple-
ments the Dyson-Schwinger equation, and the other works
in the framework of the NJL model. Both methods can
guarantee the covariance and Ward-Takahashi identity in
the case of electromagnetic current [21]. Here we adopt
simply the NJL model at quark level to discuss the static
properties of nucleons and the phase diagram at finite
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temperature and baryon density. The NJL model shares the
same global symmetries with QCD and incorporates the
mechanism of spontaneous chiral symmetry breaking.
Within this model, one can obtain the hadronic mass
spectrum and the static properties of mesons remarkably
well. In particular, one can recover the Goldstone mode,
and some important low-energy properties of current alge-
bra such as the Goldberger-Treiman and Gell-Mann-
Oakes-Renner relations [12]. In the NJL model, the
four-fermion point interaction simplifies the calculation
dramatically in comparison with directly treating the rela-
tivistic three-body Faddeev equation.

Generally, both the scalar and the axial vector diquark
channel contribute to the binding energy of baryons. Since
the attraction in the scalar channel is sufficient to bind three
quarks into a baryon, it plays the central role. In the chiral
symmetry broken phase, the exchanged quark is heavy
[22], we can then apply the static approximation to the
quark-diquark model, and therefore neglect the momentum
dependence of the quark exchange kernel [18]. Under this
approximation, the propagator of the exchanged quark
between the quark-diquark bubbles is only a function of
the constituent quark mass, the Faddeev equation turns into
a separable one and can be reduced to an effective Bethe-
Salpeter equation.

Most work on the Faddeev equation discusses the prop-
erties of baryons in vacuum, since the equation at finite
temperature and density is more difficult to deal with. Until
now, only a few papers discussed the properties of baryons
at finite temperature and/or density [23–27]. , Here we
adopt a revised version of the pole approximation to the
diquark propagator and explicitly include the chemical
potential in it, which is different from thework in Ref. [25].

In this paper, we apply the Hartree approximation to the
quark propagator and random phase approximation to the
diquark[28–30]. The two-flavor NJL model at quark level
is defined through the Lagrangian density [26,29]

L¼ �c ði��@��m0þ��0Þc þGs½ð �c c Þ2þð �c i�5�c Þ2�
þGd

X
a

ð �c�5C�2�
a �c TÞðc TC�1�5�2�

ac Þ; (1)

where m0 is the current quark mass; Gs and Gd are,
respectively, the coupling constants in the scalar and
pseudoscalar meson channel and the scalar diquark
channel with dimension ðGeVÞ�2; the Pauli operators � ¼
ð�1; �2; �3Þ and the quark chemical potential � ¼
diagð�u;�dÞ ¼ diagð�B=3; �B=3Þ are matrices in flavor
space where �B is the baryon chemical potential; the

matrices �a ¼ ffiffiffiffiffiffiffiffi
3=2

p
�a for a ¼ 2; 5; 7 project the system

onto the �3 channel; the quark fields c and �c are defined in
flavor, color, and Dirac space; and C ¼ i�2�0 is the charge
conjugation matrix. The system has the symmetryUBð1Þ �
SUIð2Þ � SUAð2Þ, corresponding to baryon number sym-
metry, isospin symmetry, and chiral symmetry. The last
term in Eq. (1) denotes the scalar diquark channel which

can be obtained from the original NJL model with a Fierz
transformation. We have neglected here the axial diquark
channel.
The quarks obtain the dynamic mass Mq from the spon-

taneous breaking of chiral symmetry. In the mean field
approximation, the contribution is from the quark loop
which reads (see, for example, Refs. [10,28])

Mq ¼ m0 � 2Gsh �c c i ¼ m0 þ 2iGs

Z d4p

ð2�Þ4 TrSðpÞ; (2)

where the trace is taken in flavor, color, and Dirac space. At
finite temperature, p0 ¼ i!n ¼ ið2nþ 1Þ�Tðn ¼
0;�1;�2; . . .Þ where !n is the Matsubara frequency of

quark. The
R d4p

ð2�Þ4 should correspondingly be replaced with

i�T
P

nð2nþ 1ÞR d3p
ð2�Þ3 . Furthermore, at finite chemical

potential, it has been known that there is no diquark
condensate if the baryon chemical potential is not high
enough; the mean field quark propagator can be expressed
as

SðpÞ ¼ 1

��p� �Mq þ �0�
:

For nonzero current quark massm0, the order parameter for
chiral phase transition, namely, the chiral condensate h �c c i
or dynamic quark mass Mq ¼ m0 � 2Gsh �c c i, cannot

reach zero; the critical temperature T� at a fixed chemical

potential is then defined by the maximum change of
MqðTÞ.
Since the model is not renormalizable, one needs to

resort to a regularization scheme in order to make the
momentum integral in the gap equation [Eq. (2)] finite.
The three parameters m0, Gs, and Gd in the Lagrangian
and the momentum cutoff � in Eq. (2) are then usually
determined by fitting the vacuum values of the pion mass
m�, pion decay constant f�, nucleon mass Mn, and
the chiral condensate h �c c i. With the values m� ¼
135 MeV, f� ¼ 92:4 MeV, Mn ¼ 939 MeV, and
h �c c i ¼ �ð242:4 MeVÞ3 for each flavor being fitted,
one has m0 ¼ 5:47 MeV, Gs ¼ 8:68 GeV�2, Gd ¼
0:87Gs, and � ¼ 0:569 GeV [11]. In the following nu-
merical calculations, we take such a set of parameters. In
the usual quark-diquark model, the constituent quark
mass in vacuum Mq is larger than one third of the nucleon

mass in order to fix the nucleon mass Mn ¼ 939 MeV at
zero temperature and zero baryon chemical potential with
a remarkable binding energy. As a consequence, we get
the constituent quark mass as Mq ¼ 499 MeV in the

present case.
In the random phase approximation, the diquark propa-

gator D can be expressed as (see, for example, Ref. [29])

DðkÞ ¼ 2iGd

1� 2Gd�dðkÞ ; (3)

with the diquark polarization function,
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�dðkÞ¼ i
Z d4p

ð2�Þ4 Tr½�5C�2�
aSð�pÞT�5C�2�

aSðkþpÞ�;
(4)

where k0 ¼ i!m ¼ 2im�Tðm ¼ 0;�1;�2; . . .Þ, and !m

are the Matsubara frequencies for diquark. The integral has
the same meaning as that in Eq. (2). After the Matsubara
summation over n (corresponding to the p0 in the integral),
we can obtain the Matsubara frequency!m (corresponding
to the k0) dependent diquark propagator DðkÞ.

In order to determine the diquark mass, we need to
analytically continue the Matsubara frequency !m to the
real variable i!m ! k0. The diquark mass �Md is defined as
the pole of the propagator at k2 ¼ �M2

d. At finite tempera-

ture and density, there is no more Lorentz invariance, �d

depends separately on k20 and k
2, and �Md is determined by

the real part of the diquark polarization function�d. In our
case, we do thus not consider the decay width of diquark,
which is related with the imaginary part of the diquark
polarization function at high temperature and density [28].
In the following, we neglect the symbol, Re, in front of the
diquark polarization function for simplification. The pole
condition can be simply written as

1� 2Gd�dðk0 ¼ �Md;k ¼ 0Þ ¼ 0: (5)

The diquark polarization function �d at k ¼ 0 and finite
temperature and baryon chemical potential can be expli-
citly written as

�dðk0;k ¼ 0Þ ¼ �12
Z d3p

ð2�Þ3
�
2fðEp þ�B=3Þ � 1

k0 þ 2ðEp þ�B=3Þ

� 2fðEp ��B=3Þ � 1

k0 � 2ðEp ��B=3Þ
�
; (6)

with the quark energy Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ p2
q

and Fermi-Dirac

distribution fðxÞ ¼ 1=ðex=T þ 1Þ.
With increasing temperature, the diquarks will finally

melt in the hot medium, the dissociation temperature Td is
defined as the temperature at which the pole equation (5)
starts to have no solution.

While in our calculation we did not consider color con-
densate at low temperature and high baryon density, the
critical temperature Tc for the color superconductivity to
appear can be determined by theThouless criterion [29–31],

1� 2Gd�dðk0 ¼ 0;k ¼ 0Þ ¼ 0: (7)

Now we investigate nucleons in the NJL model. A
nucleon constructed by three quarks can be described by
the three-body Faddeev equation [15,16,19]. In the static
approximation [18], the Faddeev equation is reduced to an
effective Bethe-Salpeter equation constructed by a quark
and a diquark, and the quark propagator between the
quark—diquark bubbles becomes a function of the con-
stituent quark mass Mq. In this case, we can use again the

random phase approximation to derive the nucleon propa-
gator [32]

DnðqÞ ¼
3=Mq

1� ð3=MqÞ�nðqÞ ; (8)

where �n is the nucleon polarization function,

�nðqÞ ¼ �
Z d4k

ð2�Þ4 DðkÞSðq� kÞ; (9)

where q0 ¼ i!l ¼ ið2lþ 1Þ�Tðl ¼ 0;�1;�2; . . .Þ where
!l is the Matsubara frequency of the nucleon, and the four
momentum integral is, in fact, the integral over the three
momentum and the summation over the Matsubara
frequencies.
After the analytic continuation to the real variable i!l !

q0, the nucleon mass �Mn is given by the real part of the pole
position of the propagator [in Eq. (8)] at zero momentum,

detð1� ð3=MqÞ�nðq0 ¼ �Mn;q ¼ 0ÞÞ ¼ 0; (10)

where the determinant is taken in Dirac space. Similar to
the diquark dissociation temperature Td, the nucleon dis-
sociation temperature Tn in a hot and dense medium is
determined by the disappearance of the solution of this
pole equation.
To further simplify the numerical calculation, we take in

the nucleon polarization [in Eq. (9)] the pole approxi-
mation for the diquark propagator, i.e.,

DðkÞ ¼ �ig2Dqq

ðk0 þ 2�B=3Þ2 � ðð �Md þ 2�B=3Þ2 þ k2Þ

¼ �ig2Dqq

ðk0 þ 2�B=3Þ2 � ðM2
d þ k2Þ ; (11)

where gDqq is the diquark-quark-quark coupling constant

defined in the pole approximation,

g�2
Dqq ¼

@�dðk0 þ 2�B=3;k ¼ 0Þ
@ðk0 þ 2�B=3Þ2

��������k0þ2�B=3¼Md

: (12)

Note that at the finite chemical potential, the diquark pole
mass �Md defined by the real part of the pole position of the
diquark propagator is not exactly the dynamical mass Md

defined through the Lagrangian density. The two quantities
satisfy the relation Md ¼ �Md þ 2�B=3. Similarly, there is
Mn ¼ �Mn þ�B for the nucleon pole mass �Mn and the
dynamical mass Mn.
Making use of the pole approximation for Eq. (11), we

can explicitly express the nucleon polarization function at
q ¼ 0 as a function of temperature and baryon chemical
potential,

�nðq0Þ ¼
g2Dqq

4

Z d3k

ð2�Þ3
�
Mq

Ek

ðA� BÞ � �0ðAþ BÞ
�

(13)

with definitions,
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Aðq0;kÞ ¼ 1� 2fð�Ek þ�B=3Þ
�2k � ðEk � ð�B þ q0ÞÞ2

� 1

2�k

cothðð�k � 2�B=3Þ=ð2TÞÞ
�k þ Ek � ð�B þ q0Þ

þ 1

2�k

cothðð�k þ 2�B=3Þ=ð2TÞÞ
�k � Ek þ ð�B þ q0Þ ;

Bðq0;kÞ ¼ 1� 2fðEk þ�B=3Þ
�2k � ðEk þ ð�B þ q0ÞÞ2

þ 1

2�k

cothðð�k � 2�B=3Þ=ð2TÞÞ
�k � Ek � ð�B þ q0Þ

� 1

2�k

cothðð�k þ 2�B=3Þ=ð2TÞÞ
�k þ Ek þ ð�B þ q0Þ ; (14)

in which the diquark energy �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

d þ k2
q

.

We now show our numerical results on the quark, di-
quark, and nucleon dynamic masses and the corresponding
phase diagram. The obtained pure temperature effect on
Mq,Md,Md þMq, andMn is displayed in the upper panel

of Fig. 1. The figure manifests apparently that, with
increasing temperature, the dynamically broken chiral
symmetry is gradually restored with the quark mass de-
creasing gradually against the increasing of temperature as
a manifestation. For a nonzero current quark mass m0, the
chiral symmetry can not be fully restored, and the critical

temperature T� is defined through the maximum change of

the order parameterMq. With the parameters chosen in our

calculation, it is determined as T� ¼ 282 MeV. At this

point, the diquark mass changes its temperature depen-
dence from a decreasing to an increasing function, similar
to the behavior of mesons in the original NJL model [28]
even with the Polyakov-loop improvement [33,34]. From
the definition for the diquark and nucleon dissociation
temperature in the hot medium, namely, the disappearance
of the corresponding pole, we have the diquark dis-
sociation temperature Td ¼ 412 MeV> T� and the

nucleon dissociation temperature Tn ¼ 253 MeV< T�.

This means that nucleons can survive only in the chiral
symmetry broken phase but diquarks can exist not only in
the chiral symmetry broken phase but also in the chiral
symmetry restored phase. This result is qualitatively in
agreement with the physics picture: a three-body system
is easier to be melted than a two-body system. The higher
dissociation temperature for diquarks can be understood
clearly from the results shown in Fig. 1, since the figure
demonstrates apparently that the binding energy 2Mq �
Md for diquarks is quite large but the binding energyMd þ
Mq �Mn for nucleons is small. Therefore, diquarks are

tightly bound states of quarks but nucleons are relatively
weakly bound states. It is necessary to note that the di-
quarks become resonant states in the chiral symmetry
restored phase where the binding energy becomes negative
2Mq �Md < 0. Such an evolution process provides more

evidence, such that the quark matter at the temperature
above but near the critical one (corresponding to the Tn

here) is in the strongly correlated state [35–38].
In the case of nonzero chemical potential, for instance

�B ¼ 600 MeV, the obtained temperature dependence of
the nucleon and its compositions are shown in the lower
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FIG. 1. Calculated temperature dependence of the quark, di-
quark, and nucleon dynamic masses Mq (multiplied by a factor

2), Md, and Mn. 2Mq, Md, Md þMq, and Mn are, respectively,

displayed by dashed, dot-dashed, dotted, and solid lines. The
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panel of Fig. 1. From the figure, one can notice evidently
that the density effect reduces the chiral phase transition
temperature T� and the dissociation temperatures Td and

Tn. However, the relation among them Td > T� > Tn is

always satisfied. In our calculation of nucleon mass, we
adopted the static approximation for the quark propagator
between the diquark-quark bubbles. From Fig. 1, one can
see easily that, in the temperature region where nucleons
can survive, we haveMq > 400 MeV, and the requirement

for the static approximation is reasonably satisfied.
With the above results, we can get the phase diagram

of the strongly interacting matter at finite temperature
and chemical potential. The obtained phase diagram is
illustrated in Fig. 2 where the temperature is scaled by
the critical temperature Tc

� ¼ 282 MeV of the chiral

phase transition at �B ¼ 0 and the chemical potential
is scaled by the critical chemical potential �c

B ¼
720 MeV for the color superconductivity to appear at
T ¼ 0. The phase boundary for the chiral symmetry
restoration and those of the diquark dissociation and
nucleon dissociation are displayed in the figure as
dashed, dot-dashed, and solid lines (marked with
T�; Td; Tn), respectively. Recalling Fig. 1, one can rec-

ognize that, at low baryon density and below the disso-
ciation temperatures Tn, there exists definitely positive
binding energy Mq þMd �Mn. The temperature depen-

dence of the binding energy at several values of the
chemical potential is displayed in Fig. 3 for intuitiveness.
Such a positive binding energy means that nucleons can
survive as the bound states of a quark and a diquark. The
strongly interacting matter at low temperature and/or low
chemical potential is then nuclear matter. As the baryon
density and the temperature get larger, the nucleons will
melt due to the positivity of the binding energy being
violated before the chiral symmetry is restored, but the
diquarks can survive (as resonant states, as mentioned
above) at temperatures much higher than the critical one
of the chiral phase transition temperature. It hints that as
the baryon density �=�c

B > 1, the color-superconducting
phase emerges. Since we have not introduced explicitly
the diquark condensate at high baryon chemical poten-
tial, the phase transition line of color superconductivity
is calculated through the Thouless criterion [29–31]. The
obtained boundary is shown as the dotted line (marked
with Tc) in Fig. 2. The temperature relation Td > Tc

means that the thermal excitations of the diquark con-
densates at Tc are diquarks at moderate chemical poten-
tial instead of quarks at high chemical potential. Only at
the higher temperature Td do the diquarks melt and the
system becomes a pure quark system [39]. This indicates

that the color superconductivity is in the phase of Bose-
Einstein condensation at moderate baryon density and of
Bardeen-Cooper-Schrieffer condensation at extremely
high baryon density.
In summary, we have investigated some properties of

nucleons and the phase diagram of the strongly interacting
matter in the framework of the NJL model at finite tem-
perature and baryon density. With the Faddeev equation
approach, we constructed nucleons by the summation of
diquark-quark bubbles and obtained the nucleon propaga-
tor under the static approximation. With the diquark and
nucleon dissociation temperatures being defined as that at
which the corresponding poles disappear, our calculation
shows that diquarks can survive beyond the chiral phase
transition; nucleons are dissociated as the chiral symmetry
has not yet been completely restored. The phase diagram of
the strongly interacting matter is then given. In addition,
we found that the diquark condensate is in the Bose-
Einstein condensation phase at moderate baryon density.
By the way, it is necessary to mention that our calculation
shows that the binding energy of the nucleon (as a bound
state of a quark and a diquark) at the finite chemical
potential changes nonmonotonously with respect to tem-
perature. It may be interesting to explore the mechanism of
such nonmonotonousness.
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