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The leading-order hadronic contribution to the muon g� 2, aHAD� , is determined entirely from theory

using an approach based on Cauchy’s theorem in the complex squared energy s-plane. This is possible

after fitting the integration kernel in aHAD� with a simpler function of s. The integral determining aHAD� in

the light-quark region is then split into a low-energy and a high-energy part, the latter given by

perturbative QCD (PQCD). The low energy integral involving the fit function to the integration kernel

is determined by derivatives of the vector correlator at the origin, plus a contour integral around a circle

calculable in PQCD. These derivatives are calculated using hadronic models in the light-quark sector. A

similar procedure is used in the heavy-quark sector, except that now everything is calculable in PQCD,

thus becoming the first entirely theoretical calculation of this contribution. Using the dual-resonance

model realization of large Nc QCD to compute the derivatives of the correlator leads to agreement with the

experimental value of a�. Accuracy, though, is currently limited by the model-dependent calculation of

derivatives of the vector correlator at the origin. Future improvements should come from more accurate

chiral perturbation theory and/or lattice QCD information on these derivatives, allowing for this method to

be used to determine aHAD� accurately entirely from theory, independently of any hadronic model.
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The value of the muon g� 2 is well-known as a test of
the standard model (SM) of particle physics. [1]. The SM
result for the anomalous magnetic moment of the muon is
conveniently separated into the contributions due to QED,
the hadronic sector, and the electroweak sector. A sizable
theoretical uncertainty arises from the (leading-order) had-
ronic vacuum polarization term, the second largest contri-
bution after that of QED. A substantial effort has been
made to determine this contribution from experimental
data on eþe� ! hadrons and � ! hadrons [2,3].
Currently, there is some yet unresolved discrepancy be-
tween both results, although a recent reanalysis appears to
resolve this discrepancy [4]. Writing the muon anomaly in
the SM as

aSM� ¼ aQED� þ aHAD� þ aEW� ; (1)

the leading contribution is that from QED, followed by the
hadronic and the electroweak terms. In this paper, we
concentrate on the leading-order hadronic contribution
and discuss a new approach to its calculation entirely
from theory. The method relies on Cauchy’s theorem in
the complex squared energy s-plane, after fitting the inte-
gration kernel entering aHAD� with a simple function of s. In

the region of the light-quark sector, the method requires
knowledge of some of the derivatives of the (electromag-
netic) vector correlator at zero momentum, as well as its
perturbative QCD (PQCD) behavior. Currently, these de-
rivatives will be obtained here from hadronic models, thus
being affected by systematic uncertainties. Hence, at this
stage, the method cannot rival in accuracy with the stan-
dard approach of using experimental data on the vector

correlator at low/intermediate energies. However, future
precision determinations of these derivatives from chiral
perturbation theory (CHPT) or lattice QCD would render
this calculation of aHAD� independent of experimental data

on eþe� ! hadrons and � ! hadrons. It must be empha-
sized that as a consequence of Cauchy’s theorem, this
method only requires knowledge of the derivatives of the
vector correlator at the origin, rather than its full expression
over an extended energy region. In addition, the method
allows for a straightforward incorporation of the charm- and
bottom-quark contributions to aHAD� calculable exclusively

from PQCD, i.e. without the need for data on the vector
correlator. This leads to the first entirely theoretical calcu-
lation of this contribution. We begin with the standard
expression of the (lowest-order) muon anomaly [1]

aHAD� ¼ �2
EM

3�2

Z 1

sth

ds

s
KðsÞRðsÞ; (2)

where �EM is the electromagnetic coupling and the stan-
dard R -ratio is RðsÞ ¼ 3

P
fQ

2
f½8�Im�ðsÞ�, where Qf are

the quark charges and �ðsÞ is the vector current correlator
normalized to 8�Im�ðsÞ ¼ 1þ �s=�þ . . . . The integra-
tion kernel KðsÞ in Eq. (2) is given by [5]

KðsÞ ¼
Z 1

0
dx

x2ð1� xÞ
x2 þ s

m2
�
ð1� xÞ ; (3)

where m� is the muon mass. A popular approach to com-

pute aHAD� has been to split the integral in Eq. (2) into a

low-energy region from threshold up to s ¼ s0 ’
ð1:8 GeVÞ2, followed by a high-energy region from
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s ¼ s0 to infinity. The integral in the former region was
calculated using data of eþe� ! hadrons or (isospin-
rotated) data on � ! hadrons. The integration in the
high-energy region was performed assuming PQCD. In
this paper, we discuss a new approach based entirely on
theoretical input. For later convenience, we split the con-
tributions to the leading-order aHAD� into three pieces,

aHAD� ¼ aHAD� juds þ aHAD� jc þ aHAD� jb; (4)

where the first term on the right-hand side corresponds to
the contribution of the three light quarks, and the second
and third term refer to the charm- and bottom-quark con-
tributions. In the light-quark sector, the first step is to fit the
integration kernel KðsÞ in an interval sth � s � s0 with a
function K1ðsÞ:

K1ðsÞ ¼ a0sþ
X
n¼1

an
sn

; (5)

with coefficients determined by minimizing the chi-
squared. The upper limit s0 is below the charm threshold.
Next, the integration range in Eq. (2) is split into a low-
energy (s � s0) and a high-energy (s > s0) region where
PQCD would be valid. In the former region, Cauchy’s
theorem is used to obtain

Z s0

sth

ds

s
K1ðsÞ 1� Im�udsðsÞ

¼Res

�
�udsðsÞK1ðsÞ

s

�
s¼0

� 1

2�i

I
jsj¼s0

ds

s
K1ðsÞ�udsðsÞ;

(6)

where the integral on the right-hand side, around the circle
of radius s0 ’ ð1:8 GeVÞ2, is computed using PQCD in the
light-quark sector. This is known up to the five-loop level
[6]. The contour integration can be performed using fixed-
order perturbation theory (FOPT) or, alternatively, contour-
improved perturbation theory. There is no clear a priori
criterion to decide which is best in a given application.
However, in the present case, the difference between the
two methods turns out to be negligible, as discussed later.
The residues are given in terms of derivatives of the corre-
lator at zero momentum, for which one can use hadronic
models, CHPT or lattice QCD. Hence, Eq. (2) becomes

aHAD� juds¼8�2
EM

X
i¼u;d;s

Q2
i

�
Res

�
�udsðsÞK1ðsÞ

s

�
s¼0

� 1

2�i

I
jsj¼s0

ds

s
K1ðsÞ�udsðsÞjPQCD

þ
Z 1

s0

ds

s
KðsÞ 1

�
Im�udsðsÞjPQCD

�
; (7)

where the last integral above involves the exact integration
kernelKðsÞ and PQCD is used for the spectral function. It is

important to stress that this contribution to the anomaly
only requires knowledge of a few derivatives of the vector
correlator at the origin (to compute the residue). It does not
require knowledge of the correlator itself in the extended
energy region from threshold up to s0 ’ ð1:8 GeVÞ2. The
choice of this particular value for the onset of PQCD will
allow for a fair comparison with determinations based
entirely on data [2]. It is also supported by experimental
results from the BES Collaboration [7], which show the
onset of PQCD at s0 ’ 4:0 GeV2. The stability of results
against changes in this threshold value will be analyzed
later.
In order to incorporate charm-quark information, we add

an extra contribution determined as follows. A new fit to
the integration kernel KðsÞ is performed in a region s1 �
s � s2, where s1 ’ M2

J=c , and s2 ’ ð5:0 GeVÞ2. Using this
kernel and Cauchy’s theorem, the charm contribution is
given by an expression similar to Eq. (7), except that s0 is
replaced by s2 and K1ðsÞ by the new fit function K2ðsÞ. The
residues can now be computed directly from PQCD using
the low-energy expansion of the heavy-quark correlator,
known up to four-loop order. No hadronic model nor data is
needed here. A similar procedure can be followed to
incorporate the contribution of the bottom quark.
We proceed to fit the integration kernel, K1ðsÞ in the

region sth � s � s0. If one were to choose a polynomial fit
of the form K1ðsÞ ¼

P
i¼1cis

i, then the residues in Eq. (7)
would all vanish, and the anomaly would be determined
entirely from QCD [8]. There are two drawbacks to such a
fit. First, even taking many terms in the series expansion of
K1ðsÞ, the fit is not accurate enough. Second, the higher
powers of s bring in higher-dimensional condensates in the
operator product expansion, thus reducing further the ac-
curacy of this approach. An inspection of the s-behavior of
the kernel KðsÞ suggests that a series expansion involving
inverse powers of s should be a better option. In fact, this
turns out to be the case, e.g. the fit function, Eq. (5), up to
s�3 becomes

K1ðsÞ ¼ 2:257� 10�5sþ 3:482� 10�3s�1

� 1:467� 10�4s�2 þ 4:722� 10�6s�3; (8)

where s is expressed in GeV2, and the numerical coeffi-
cients have the appropriate units to render K1ðsÞ dimen-
sionless. Figure 1 shows the exact kernel KðsÞ in Eq. (2)
(solid curve) together with the fit K1ðsÞ as in Eq. (8) (solid
dots). The relative difference between the two curves lies
in the range 0–1% in the low-energy region, where it
contributes the most. A further estimate of the accuracy
of the fit function, Eq. (8), can be obtained by using all
available experimental data on RðsÞ in Eq. (2), together
with (a) the exact kernel Eq. (3), and (b) the fit kernel
Eq. (8). We find aHAD� juds ¼ 641:69 for procedure (a) and

aHAD� juds ¼ 641:16 for procedure (b), i.e. a difference of

0.08%. Using additional inverse powers of s terms in the
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fit, while improving it slightly, does not lead to any appre-
ciable difference in the final result for aHAD� . For instance,

the difference in aHAD� from adding two additional inverse

powers in Eq. (8) is less than 0.16%.
We discuss now the incorporation of the heavy-quark

sector contribution to the anomaly, starting with the charm-
quark piece aHAD� jc. The fit to the integration kernel, which
we name K2ðsÞ, is performed in the region s1 ’ M2

J=c �
s � s2 ’ ð5:0 GeVÞ2. The very simple function

K2ðsÞ ¼ a1
s
þ a2

s2
; (9)

where a1¼0:003712GeV2 and a2 ¼ �0:0005122 GeV4,
provides an excellent fit withK2ðsÞ differing from the exact
kernelKðsÞ by less than 0.02%. In this case, aHAD� jc is given
by a similar expression as aHAD� juds, Eq. (7), with obvious

replacements. An important difference is that now aHAD� jc
only involves the correlator and its imaginary part calcu-
lable in PQCD, i.e. no hadronic model is needed for the
residue. In fact, the Taylor expansion of the correlator
around the origin is given by

�cðsÞjPQCD ¼ 3

32�2
Q2

c

X
n�0

�Cnz
n; (10)

where z ¼ s=ð4 �m2
cÞ. Here, �mc � �mcð�Þ is the charm-quark

mass in the MS-scheme at a renormalization scale �. The
coefficients �Cn up to n ¼ 30 are known at the three-loop
level [9,10]. At the four-loop level �C0 and �C1 were deter-
mined in Refs. [9–11], �C2 in Ref. [10], and �C3

in Ref. [12]. Because of the s-dependence of K2ðsÞ, no
coefficients �C4 or higher contribute to Res½�cðsÞpðsÞ;
s ¼ 0�. Using as input � ¼ 3 GeV, �ð4Þ

s ð3 GeVÞ ¼
0:2145ð22Þ [13], and �mcð3 GeVÞ ¼ 0:986ð10Þ GeV [14],
we find

�cðsÞ ¼ 0:03604þ 0:001833sþ 0:00012335s2

þ 0:000012472s3 þOðs4Þ; (11)

where s is expressed in GeV2, and the numerical coeffi-
cients have the appropriate units to render �cðsÞ dimen-
sionless. The residue in the charm-quark sector is

Res

�
�cðsÞjPQCDK2ðsÞ

s

�
s¼0

¼ 76:1ð5Þ � 10�7; (12)

where the error is due to the uncertainty in �s and to the
truncation of PQCD. For the bottom-quark case the fit
function

K3ðsÞ¼0:003719GeV2s�1�0:0007637GeV4s�2 (13)

differs from the exact kernel by less than 0.0005% in the
range M2

� � s � ð12 GeVÞ2. The residue is now

Res

�
�bðsÞjPQCDK3ðsÞ

s

�
s¼0

¼ 6:3� 10�7; (14)

where the error is negligible. Next, in order to calculate the
contour integral around the circle of radius s2, we make use
of PQCD, i.e.

�PQCDðsÞ ¼
X1
n¼0

�
�sð�2Þ

�

�
n
�ðnÞðsÞ; (15)

where

�ðnÞðsÞ ¼ X1
i¼0

�
�m2

s

�
i
�ðnÞ

i : (16)

The complete analytical result in PQCD up to
Oð�2

s ; ð �m2=sÞ6Þ is given in Ref. [15], with new results up
to order Oð�2

sð �m2=sÞ30Þ obtained recently [16]. There are

also exact results for �ð3Þ
0 and �ð3Þ

1 from Ref. [17], while

�ð3Þ
2 is known up to a constant term [18]. This constant

term does not contribute to the contour integral due to the
s-dependence of K2ðsÞ. Finally, at the five-loop level, the

full logarithmic terms in �ð4Þ
0 and �ð4Þ

1 are known from

Refs. [19,20], respectively. The contour integrals in
FOPT are

1

2�i

I ds

s
KnðsÞ�qðsÞjPQCD¼

8>>><
>>>:
135:3ð6Þ�10�7

20:3ð1Þ�10�7

3:6ð2Þ�10�7

; (17)

for n ¼ 1, 2, 3 and q ¼ uds, c, b, respectively. For n ¼ 1,
the result in contour-improved perturbation theory is
135:6ð6Þ � 10�7, i.e. a 0.2% difference with FOPT. Also
for n ¼ 1, changing the PQCD threshold in the interval
s0 ¼ ð1:8� 2:0Þ2 GeV2 leads to a change of only 0.15% in
the final value of aHAD� . The BES Collaboration data [7]

agrees well with PQCD in this region and beyond. The
results for the third integral in Eq. (7) and their equivalent
for the charm- and bottom-quark sectors are

0.5 1.0 1.5 2.0 2.5 3.0

0.000
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FIG. 1. The exact kernel KðsÞ, Eq. (3), (solid line) together
with the fit in the light-quark region, Eq. (8), (solid circles).
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Z 1

sj

ds

s
KðsÞ 1

�
Im�qðsÞjPQCD ¼

8>>><
>>>:
151:8ð1Þ � 10�7

20:0ð4Þ � 10�7

3:4ð2Þ � 10�7

;(18)

with j ¼ 0, 2, 4 for q ¼ uds, c, b, respectively.
Substituting the results from Eqs. (17) and (18) into
Eq. (7) and the corresponding expressions for the charm-
and bottom-quark contributions, the leading order aHAD� is

aHAD� ¼16

3
�2
EMRes

�
�udsðsÞK1ðsÞ

s

�
s¼0

þ19:4ð2Þ�10�10:

(19)

The contributions to aHAD� from the charm- and bottom-

quark sectors obtained from PQCD are

aHAD� jc ¼ 14:4ð1Þ � 10�10; (20)

and

aHAD� jb ¼ 0:29ð1Þ � 10�10: (21)

Finally, we discuss the calculation of the first term on the
right-hand side of Eq. (6). Given the parametrization in
Eq. (8), this term can be conveniently written as

Res

�
�udsðsÞK1ðsÞ

s

�
s¼0

¼ lim
s!0

X3
n¼1

an
n!

dn

dsn
�udsðsÞ; (22)

where the an are the coefficients of the s�1, s�2 and s�3

terms in Eq. (8), respectively. To demonstrate the effective-
ness of the method, we consider three hadronic models for
the vector correlator, (single �) vector meson dominance
(VMD), the Kroll-Lee-Zumino (KLZ) quantum field the-
ory model [21,22], and the dual-resonance model realiza-
tion of QCD in the large Nc limit (Dual-QCD1)[23–25].
We reiterate that the use of hadronic models to compute the
derivatives of the vector correlator at the origin is only
provisional. In the future, these derivatives will be pro-
vided with increased accuracy by CHPT and/or lattice
QCD. The error on VMD can be estimated to be of order
Oð10–20%Þ, judging from its predictions of the pion radius
and form factor. The KLZmodel is a renormalizable theory
of pions and a neutral �-meson which provides the neces-
sary quantum field theory platform for VMD and leads to
loop corrections to VMD. The loop corrections in the KLZ
model bring the pion radius and form factor into better
agreement with experiment. In VMD-type models, the
vector correlator is related to the pion form factor through
�udsðsÞ ¼ F�ðsÞ=f2�, where f� ¼ 4:96� 0:02 [13] is the

�� � coupling and F�ðsÞ is the pion form factor. The
�-VMD expression for the correlator is

�udsðsÞjVMD ¼ 1

f2�

M2
�

ðM2
� � sÞ ; (23)

which involves the underlying standard VMD universality
relation g���=f� ¼ 1. With g��� ¼ 5:92� 0:01 from

experiment [13], this relation is off by roughly 20%. The
result for the residue in Eq. (19) is

Res ½�udsðsÞK1ðsÞ=s�VMD
s¼0 ¼ 2:20ð2Þ � 10�4; (24)

leading to

aHAD� jVMD ¼ 644ð6Þ � 10�10: (25)

For the correlator in the KLZ model, we use the result from
Ref. [26] (see also Ref. [22]) and obtain

Res ½�udsðsÞK1ðsÞ=s�KLZs¼0 ¼ 2:22ð2Þ � 10�4; (26)

and

aHAD� jKLZ ¼ 650ð6Þ � 10�10: (27)

The errors for VMD and KLZ are only those due to the
uncertainty in f� and do not include possible (systematic)

model errors. The latter can be gauged from the deviation
from universality g���=f� ¼ 1, off by some 20%, as well

as from the pion charge radius in VMD hr2�i ¼ 0:394 fm2,
to be compared with the experimental value [27] hr2�i ¼
0:439� 0:008 fm2. While QCD in the limit of an infinite
number of colors leads to a hadronic spectrum consisting
of an infinite number of zero-width resonances, it does not
specify the mass spectrum nor the couplings. Dual-QCD1
[23–25] provides this information leading to hadronic form
factors in excellent overall agreement with data in the
spacelike region. The vector correlator in this framework
is given by

�udsðsÞjQCD1 ¼
1

f2�

1ffiffiffiffi
�

p �ð��1=2Þ
�ð��1Þ Bð��1;1=2�s=2M2

�Þ;

(28)

where � is a free parameter and Bðx; yÞ is the Euler beta
function. From the power series expansion of Bðx; yÞ, it is
easy to see that Eq. (28) represents an infinite number of
(zero-width) resonances corresponding to the �-meson and
its radial excitations. The latter account for the deviation
from the VMD result g���=f� ¼ 1 leading to [23]

g���=f� ¼ 1:2 in agreement with the experiment. For

� ¼ 2, Eq. (28) reduces to single �-VMD. The value � ¼
2:30ð3Þ results in an excellent fit to all data on the pion
form factor F�ðsÞ in the spacelike region up to s ¼
�10 GeV2 with a chi-squared per degree of freedom �F ’
1:5 [23]. In contrast, the VMD fit yields �F ’ 11. In
addition, the Dual-QCD1 model gives a value of the pion
charge radius hr2�i ¼ 0:436� 0:004 fm2 [23] to be com-
pared with the most recent experimental value [27] hr2�i ¼
0:439� 0:008 fm2. Since the first derivative of the vector
correlator dominates in Eq. (22), it is very important for a
hadronic model to reproduce the pion radius. The result for
the residue in Eq. (19) is

Res

�
�udsðsÞK1ðsÞ

s

�
QCD1

s¼0
¼ 2:47ð3Þ � 10�4; (29)
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and using Eq. (19), the hadronic aQCD1
� is

aHAD� jQCD1 ¼ 722ð9Þ � 10�10; (30)

where the error is mostly due to that in �. The result,
Eq. (30), can be compared with the value aHAD� ¼
692:3ð4:2Þ � 10�10 from Refs. [2,3] using eþe� data, or
aHAD� ¼ 701:5ð4:7Þ � 10�10 using � data. However, a more

recent reanalysis based on � data [4] finds aHAD� ¼
690:96ð4:65Þ � 10�10. In the QCD1 framework, the
1=Nc corrections arise in the timelike region from finite
width resonance effects. These corrections to the form
factor are of orderOð�2=M2Þ near the origin. While small,
they might have an impact on the residues, Eq. (29).
Shifting the poles in Eq. (28) to the second Riemann sheet
in the complex s-plane, while preserving the normalization
at the origin and the vanishing of the imaginary part of
F�ðsÞ at threshold [23,28], leads to a reasonable finite
width model. The first derivative of the form factor at the
origin, which is the main contribution to Eq. (29), receives
no width correction. The second derivative is reduced with
respect to the zero-width result by less than 2%, and the
third derivative by some 3%. This translates into an in-
crease in the value given in Eq. (30) of 0.1%.

Adding to Eq. (30) the QED contribution [29]

aQED� ¼ 11658471:809� 0:015, the electroweak [30]
aEW� ¼ 15:4� 0:2, the higher-order hadronic [3]

aHAD� jHO ¼ �9:79� 0:09, and the light-by-light contribu-

tion [31] aLbL� jHO ¼ 11:6� 4:0, all in units of 10�10, we

find it intriguing that the Dual-QCD1 prediction, Eq. (30),
leads to

a�jQCD1 ¼ 11659210:6� 9:8� 10�10; (31)

to be compared with the experimental value

aEXP� ¼ 11659208:9� 6:3� 10�10: (32)

Equation (31) does suggest that it might be possible to
understand the muon anomaly entirely within the SM. Our
approach to determine aHAD� appears to be optimally de-

signed for use in CHPT, as the main input is the power
series of the correlator around the origin. TheOðp6Þ vector
correlator was determined in Refs. [32,33]. The derivative
at zero momentum, in terms of the usual chiral constants, is

d

ds
�udsj�pTð0Þ ¼ 0:0105557� 4Cr

93 � 0:77725Lr
10

þ 1:0346Lr
9: (33)

Two of these constants have been calculated on the lattice,
Lr
9 ¼ 3:08ð23Þð51Þ � 10�3 [34] and Lr

10 ¼ �5:2ð2Þðþ5
�3Þ �

10�3 [35]. The constant Cr
93 has not been determined on

the lattice yet. We have to rely on a very rough estimate
of this constant from [32] using VMD, Cr

93 � �17�
10�3 GeV�2. With these values, we obtain
d
ds�udsð0Þj�pT � 0:0857. Given the very large uncertainty

in Cr
93 and the fact that the contribution of the second and

the third derivative is very small, we find

Res

�
�udsðsÞK1ðsÞ

s

�
s¼0

’ 2:8; (34)

leading to

aHAD� ’ 815� 10�10: (35)

This is a great deal larger than the value expected from the
experiment. The reason for this is that the constant Cr

93

dominates this result. Furthermore, in Ref. [32], it is argued
that the estimates of the Oðp6Þ constants could be larger
than the physical constants. Therefore, it makes sense that
this result for aHAD� represents an overestimate, rather than

an underestimate. One can reverse this argument and give
the first model independent determination of Cr

93. Making

use of aHAD� ¼ 692:3ð4:2Þ from Ref. [2], we find thatCr
93 ¼

�13:9ð2Þ � 10�3 GeV�2.
In summary, we have discussed a new approach to the

determination of the leading aHAD� entirely from theory, i.e.

without the use of experimental data on the vector corre-
lator in an extended energy region. This can be achieved by
fitting the integration kernel, Eq. (3), in the light-quark
sector with the simple function Eq. (8) and subsequently
invoking Cauchy’s theorem in the complex s-plane. This
leads to the result, Eq. (7), which only requires knowledge
of a few derivatives of the vector correlator at the origin.
This must be contrasted with the standard approach which
requires the complete correlator in the wide energy region
from threshold up to s0 ’ ð1:8 GeVÞ2. Such detailed infor-
mation can only be reliably and accurately obtained from
data. Currently, these derivatives can be estimated using
hadronic models, examples of which have been presented
here. In the future, though, more accurate determinations
of the derivatives from CHPT and/or lattice QCD should
become available, thus allowing for a model-independent
calculation of this contribution. In the heavy-quark sector,
this problem does not arise, as it is possible to calculate the
anomaly entirely from PQCD, with the results given in
Eqs. (20) and (21).
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