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We calculate the set of Oð�sÞ corrections to the double differential decay width d�77=ðds1ds2Þ for the
process �B ! Xs�� originating from diagrams involving the electromagnetic dipole operator O7. The

kinematical variables s1 and s2 are defined as si ¼ ðpb � qiÞ2=m2
b, where pb, q1, and q2 are the momenta

of the b quark and two photons. While the (renormalized) virtual corrections are worked exactly for a

certain range of s1 and s2, we retain in the gluon bremsstrahlung process only the leading power with

respect to the (normalized) hadronic mass s3 ¼ ðpb � q1 � q2Þ2=m2
b in the underlying triple differential

decay width d�77=ðds1ds2ds3Þ. The double differential decay width, based on this approximation, is free

of infrared and collinear singularities when combining virtual and bremsstrahlung corrections. The

corresponding results are obtained analytically. When retaining all powers in s3, the sum of virtual and

bremsstrahlung corrections contains uncanceled 1=� singularities (which are due to collinear photon

emission from the s quark), and other concepts, which go beyond perturbation theory, such as parton

fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our

paper.
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I. INTRODUCTION

Inclusive rare B-meson decays are known to be a unique
source of indirect information about physics at scales of
several hundred GeV. In the standard model (SM) all these
processes proceed through loop diagrams and thus are
relatively suppressed. In the extensions of the SM the
contributions stemming from the diagrams with ‘‘new’’
particles in the loops can be comparable or even larger
than the contribution from the SM. Thus getting experi-
mental information on rare decays puts strong constraints
on the extensions of the SM or can even lead to a disagree-
ment with the SM predictions, providing evidence for some
‘‘new physics.’’

To make a rigorous comparison between experiment and
theory, precise SM calculations for the (differential) decay
rates are mandatory. While the branching ratios for �B !
Xs� [1] and �B ! Xs‘

þ‘� are known today even to next-to-
next-to-leading logarithmic (NNLL) precision (for re-
views, see [2,3]), other branching ratios, such as the one
for �B ! Xs�� discussed in this paper, are only known to
leading logarithmic (LL) precision in the SM [4–7]. In
contrast to �B ! Xs�, the current-current operator O2 has
a nonvanishing matrix element for b ! s�� at order �0

s

precision, leading to an interesting interference pattern
with the contributions associated with the electromagnetic
dipole operator O7 already at LL precision. As a conse-
quence, potential new physics should be clearly visible not
only in the total branching ratio, but also in the differential
distributions.

As the process �B ! Xs�� is expected to be measured at
the planned super B factories in Japan and Italy, it is

necessary to calculate the differential distributions to
next-to-leading logarithmic (NLL) precision in the SM,
in order to fully exploit its potential concerning new phys-
ics. The starting point of our calculation is the effective
Hamiltonian, obtained by integrating out the heavy parti-
cles in the SM, leading to

H eff ¼ � 4GFffiffiffi
2

p V?
tsVtb

X8
i¼1

Cið�ÞOið�Þ; (1.1)

where we use the operator basis introduced in [8]:

O 1 ¼ ð �sL��T
acLÞð �cL��TabLÞ;

O2 ¼ ð �sL��cLÞð �cL��bLÞ;
O3 ¼ ð �sL��bLÞ

X
q

ð �q��qÞ;

O4 ¼ ð �sL��T
abLÞ

X
q

ð �q��TaqÞ;

O5 ¼ ð �sL������bLÞ
X
q

ð �q������qÞ;

O6 ¼ ð �sL������T
abLÞ

X
q

ð �q������TaqÞ;

O7 ¼ e

16�2
�mbð�Þð�sL���bRÞF��;

O8 ¼ gs
16�2

�mbð�Þð�sL���TabRÞGa
��:

(1.2)

The symbols Ta (a ¼ 1, 8) denote the SUð3Þ color gen-
erators: gs and e, the strong and electromagnetic coupling
constants. In Eq. (1.2), �mbð�Þ is the running b-quark mass

in the MS scheme at the renormalization scale �. As we
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are not interested in CP-violation effects in the present
paper, we made use of the approximation VubV

�
us � VtbV

�
ts

when writing Eq. (1.1). Furthermore, we also put ms ¼ 0.
While the Wilson coefficients Cið�Þ appearing in

Eq. (1.1) are known to sufficient precision at the low scale
��mb since a long time (see e.g. the reviews [2,3] and
references therein), the matrix elements hs��jOijbi and
hs��gjOijbi, which in a NLL calculation are needed to
order g2s and gs, respectively, are not known yet. To calcu-
late the ðOi;OjÞ-interference contributions for the differ-

ential distributions at order �s is in many respects of
similar complexity as the calculation of the photon energy
spectrum in �B ! Xs� at order �2

s needed for the NNLL
computation. There, the individual interference contribu-
tions, which all involve extensive calculations, were pub-
lished in separate papers, sometimes even by two
independent groups (see e.g. [9,10]). It therefore cannot
be expected that the NLL results for the differential dis-
tributions related to �B ! Xs�� are given in a single
paper. As a first step in this NLL enterprise, we derive in
the present paper the Oð�sÞ corrections to the
ðO7;O7Þ-interference contribution to the double differen-
tial decay width d�=ðds1ds2Þ at the partonic level. The
variables s1 and s2 are defined as si ¼ ðpb � qiÞ2=m2

b,

where pb and qi denote the four-momenta of the b quark
and the two photons, respectively.

At order �s there are contributions to d�77=ðds1ds2Þ
with three particles (s quark and two photons) and four
particles (s quark, two photons, and a gluon) in the final
state. These contributions correspond to specific cuts of the
b-quark’s self-energy at order�2 � �s, involving twice the
operator O7. As there are additional cuts, which contain,
for example, only one photon, our observable cannot be
obtained using the optical theorem, i.e., by taking the
absorptive part of the b-quark self-energy at three-loop.
We therefore calculate the mentioned contributions with
three and four particles in the final state individually.

As discussed in Sec. II, we work out the QCD correc-
tions to the double differential decay width in the kine-
matical range

0< s1 < 1; 0< s2 < 1� s1:

Concerning the virtual corrections, all singularities (after
ultraviolet renormalization) are due to soft gluon ex-
changes and/or collinear gluon exchanges involving the
s quark. Concerning the bremsstrahlung corrections (re-
stricted to the same range of s1 and s2), there are in addition
kinematical situations where collinear photons are emitted
from the s quark. The corresponding singularities are not
canceled when combined with the virtual corrections, as
discussed in detail in Sec. IV. We found, however, that
there are no singularities associated with collinear
photon emission in the double differential decay width
when only retaining the leading power with respect to the
(normalized) hadronic mass s3 ¼ ðpb � q1 � q2Þ2=m2

b in

the underlying triple differential distribution d�77=
ðds1ds2ds3Þ. Our results of this paper are obtained within
this ‘‘approximation.’’ When going beyond, other concepts
which go beyond perturbation theory, such as parton frag-
mentation functions of a quark or a gluon into a photon, are
needed [11].
Before moving to the detailed organization of our paper,

we should mention that the inclusive double radiative
process �B ! Xs�� has also been explored in several ex-
tensions of the SM [5,7,12]. Also the corresponding ex-
clusive modes, Bs ! �� and B ! K��, have been
examined before, both in the SM [6,13–21] and in its
extensions [12,17,18,22–30]. We should add that the
long-distance resonant effects were also discussed in
the literature (see e.g. [6] and references therein). Finally,
the effects of photon emission from the spectator quark
in the B meson were discussed in [13,17,31].
The remainder of this paper is organized as follows. In

Sec. II we work out the double differential distribution
d�77=ðds1ds2Þ in leading order, i.e., without taking into
account QCD corrections to the matrix element
hs��jO7jbi. We retain, however, terms up to order �1,
with � being the dimensional regulator (d ¼ 4� 2�).
Section III is devoted to the calculation of the virtual
corrections of order �s to the double differential decay
width. In Sec. IV the corresponding gluon bremsstrahlung
corrections to the double differential width are worked out
in the approximation where only the leading power
with respect to the (normalized) hadronic mass s3 is re-
tained at the level of the triple differential decay width
d�77=ðds1ds2ds3Þ. In Sec. V virtual and bremsstrahlung
corrections are combined and the result for the double
differential decay width, which is free of infrared and
collinear singularities, is given in analytic form. In
Sec. VI we illustrate the numerical impact of the NLL
corrections and in Sec. VII we present the technical details
of our calculations. The paper ends with a short summary
in Sec. VIII.

II. LEADING-ORDER RESULT

In this section we discuss the double differential decay
width d�77=ðds1ds2Þ at lowest order in QCD, i.e. �0

s . The
dimensionless variables s1 and s2 are defined everywhere
in this paper as

s1 ¼ ðpb � q1Þ2
m2

b

; s2 ¼ ðpb � q2Þ2
m2

b

: (2.1)

At lowest order the double differential decay width is based
on the diagrams shown in Fig. 1. The variables s1 and s2
form a complete set of kinematically independent variables
for the three-body decay b ! s��. Their kinematical
range is as follows:

0 � s1 � 1; 0 � s2 � 1� s1:
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The energies E1 and E2 in the rest frame of the b quark of
the two photons are related to s1 and s2 in a simple way:
si ¼ 1� 2Ei=mb. As the energies Ei of the photons have
to be away from zero in order to be observed, the values of
s1 and s2 can be considered to be smaller than 1. By
additionally requiring s1 and s2 to be larger than zero, we
exclude collinear photon emission from the s quark, be-
cause 2psq1 ¼ ðps þ q1Þ2 ¼ ðpb � q2Þ2 ¼ s2m

2
b > 0 and

2psq2 ¼ ðps þ q2Þ2 ¼ ðpb � q1Þ2 ¼ s1m
2
b > 0. It is also

easy to implement a lower cut on the invariant mass
squared s of the two photons by observing that s ¼ ðq1 þ
q2Þ2 ¼ 1� s1 � s2. To parametrize all the mentioned con-
ditions in terms of one parameter c (with c > 0), one can
proceed as suggested in [5]:

s1 � c; s2 � c; 1� s1 � s2 � c: (2.2)

Applying such cuts, the relevant phase-space region in the
ðs1; s2Þ plane is shown by the shaded area in Fig. 2. Our aim
in this paper is to work out the double differential
decay width in this restricted area of the s1 and the s2
variable also when discussing the gluon bremsstrahlung

corrections.1 In this restricted region of the phase space,
the tree-level amplitude is free of infrared and collinear
singularities. To exhibit the singularity structure of the
virtual corrections discussed in the next section in a trans-
parent way, it is useful to give the leading-order spectrum
in d ¼ 4� 2� dimensions. We obtain

d�ð0;dÞ
77

ds1ds2
¼ �2 �m2

bð�Þm3
bjC7;effð�Þj2G2

FjVtbV
�
tsj2Q2

d

1024�5

�
�

mb

�
4�
r

(2.3)

with

r ¼ ½r0 þ �ðr1 þ r2 þ r3 þ r4Þ�ð1� s1 � s2Þ
ð1� s1Þ2s1ð1� s2Þ2s2

: (2.4)

In r we retained terms of order �1, while discarding terms
of higher order. The individual pieces r0; . . . ; r4 read

r0 ¼ �48s32s
3
1 þ 96s22s

3
1 � 56s2s

3
1 þ 8s31 þ 96s32s

2
1

� 192s22s
2
1 þ 112s2s

2
1 � 56s32s1 þ 112s22s1 � 96s2s1

þ 8s1 þ 8s32 þ 8s2;

r1 ¼ �16s22s
3
1 þ 16s2s

3
1 � 16s32s

2
1 þ 48s22s

2
1 � 32s2s

2
1

þ 16s21 þ 16s32s1 � 32s22s1 � 16s2s1 þ 16s22;

r2 ¼ ð48s32s31 � 96s22s
3
1 þ 56s2s

3
1 � 8s31 � 96s32s

2
1

þ 192s22s
2
1 � 112s2s

2
1 þ 56s32s1 � 112s22s1 þ 96s2s1

� 8s1 � 8s32 � 8s2Þ logðs1Þ;

FIG. 2. The relevant phase-space region for ðs1; s2Þ used in this
paper is shown by the shaded area.

b s sO
7

q
1

q
2

b s sO
7
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q
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b b sO
7

q
1
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2

b b sO
7

q
2

q
1
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O

7
O

7

q
1

q
2

s

q
1

q
2

FIG. 1. On the first line the diagrams defining the tree-level amplitude for b ! s�� associated with O7 are shown. The four-
momenta of the b quark, the s quarks, and the two photons are denoted by pb, ps, q1, and q2, respectively. On the second line the
contribution to the decay width corresponding to the interference of the first and second diagrams is shown.

1In this case, the normalized invariant mass squared s of the
two photons reads s ¼ 1� s1 � s2 þ s3, where s3 is the nor-
malized hadronic mass squared. The condition 1� s1 � s2 � c
then still eliminates two-photon configurations with small in-
variant mass.
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r3 ¼ r2ðs1 $ s2Þ;

r4 ¼ ½48s32s31 � 96s22s
3
1 þ 56s2s

3
1 � 8s31 � 96s32s

2
1

þ 192s22s
2
1 � 112s2s

2
1 þ 56s32s1 � 112s22s1 þ 96s2s1

� 8s1 � 8s32 � 8s2� logð1� s1 � s2Þ:

In Eq. (2.3) the symbols �mbð�Þ and mb denote the mass of

the b quark in the MS scheme and in the on-shell scheme,
respectively.

In d ¼ 4 dimensions, the leading-order spectrum (in our
restricted phase space) is obtained by simply putting � to
zero, obtaining

d�ð0Þ
77

ds1ds2
¼ �2 �m2

bð�Þm3
bjC7;effð�Þj2G2

FjVtbV
�
tsj2Q2

d

1024�5

� ð1� s1 � s2Þ
ð1� s1Þ2s1ð1� s2Þ2s2

r0: (2.5)

III. VIRTUAL CORRECTIONS

We now turn to the calculation of the virtual QCD
corrections, i.e. to the contributions of order �s with three
particles in the final state. The diagrams defining the (un-
renormalized) virtual corrections at the amplitude level are
shown on the first four lines of Fig. 3. As the diagrams with
a self-energy insertion on the external b- and s-quark legs
are taken into account in the renormalization process, these

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1 q

2

b sO
7

q
2

q
1

b sO
7

q
1

q
2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

s b sO
7

q
2 q

1

s b sO
7

q
1 q

2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

b sO
7

q
2 q

1

b sO
7

q
1 q

2

b sO
7

q
2 q

1

b bs
O

7
O

7

q
1

q
2

s

q
1

q
2

3P

FIG. 3. On the first four lines the diagrams defining the one-loop amplitude for b ! s�� associated with O7 are shown.
Diagrams with self-energy insertions on the external quark legs are not shown. On the last line the contribution to the decay
width corresponding to the interference of the first diagram on the second line with the second (tree-level) diagram in Fig. 1 is
shown.

ASATRIAN et al. PHYSICAL REVIEW D 85, 014020 (2012)

014020-4



diagrams are not shown in Fig. 3. In order to get the
(unrenormalized) virtual corrections d�bare

77 =ðds1ds2Þ of
order �s to the decay width, we have to work out the
interference of the diagrams on the first four lines in
Fig. 3 with the leading-order diagrams in Fig. 1. One of
these interference contributions is shown on the last line in
Fig. 3. To illustrate the calculational procedure for getting
the virtual corrections to the decay width, we describe in
Sec. VII A the relevant steps for the particular interference
shown in Fig. 3.

In addition, we have to work out the counterterm con-
tributions to the decay width. They can be split into two
parts, according to

d�ct
77

ds1ds2
¼ d�ct;ðAÞ

77

ds1ds2
þ d�ct;ðBÞ

77

ds1ds2
: (3.1)

Part (A) involves the Lehmann-Symanzik-Zimmermann fac-

tors
ffiffiffiffiffiffiffiffi
ZOS
2b

q
and

ffiffiffiffiffiffiffiffi
ZOS
2s

q
for the b- and s-quark fields, as well as

the self-renormalization constant ZMS
77 of the operatorO7 and

ZMS
mb

renormalizing the factor �mbð�Þ present in the operator

O7. The explicit results for these Z factors are given to
relevant precision in Appendix C. For part (A) we get

d�ct;ðAÞ
77

ds1ds2
¼ ½	ZOS

2b þ 	ZOS
2s þ 2	ZMS

mb
þ 2	ZMS

77 �
d�ð0;dÞ

77

ds1ds2
;

(3.2)

where d�ð0;dÞ
77 =ðds1ds2Þ is the leading-order double differen-

tial decay width in d dimensions, as given in Eq. (2.3).
The counterterms defining part (B) are due to the in-

sertion of �i	mb
�bb in the internal b-quark line in the

leading-order diagrams as indicated in Fig. 4, where

	mb ¼ ðZOS
mb

� 1Þmb:

More precisely, part (B) consists of the interference of the
diagrams in Fig. 4 with the leading-order diagrams in
Fig. 1.

By adding d�bare
77 =ðds1ds2Þ and d�ct

77=ðds1ds2Þ, we get
the result for the renormalized virtual corrections to the

spectrum, d�ð1Þ;virt
77 =ðds1ds2Þ. It is useful to decompose this

result into two pieces,

d�ð1Þ;virt
77

ds1ds2
¼ d�ð1;aÞ;virt

77

ds1ds2
þ d�ð1;bÞ;virt

77

ds1ds2
: (3.3)

The infrared and collinear singularities are completely

contained in d�ð1;aÞ;virt
77 =ðds1ds2Þ. Explicitly, we obtain

d�ð1;aÞ;virt
77

ds1ds2
¼ �s

4�
CF

�
� 2

�2
þ 4 logðs1 þ s2Þ � 5

�

�

�
�
�

mb

�
2� d�ð0;dÞ

77

ds1ds2
; (3.4)

where d�ð0;dÞ
77 =ðds1ds2Þ is understood to be taken exactly as

given in Eqs. (2.3) and (2.4), i.e., by including the terms of

order �1 in r. From the explicit expression d�ð1;aÞ;virt
77 =

ðds1ds2Þ we see that the singularity structure consists of
a simple singular factor multiplying the corresponding
tree-level decay width in d dimensions. We stress that
singularities (represented by 1=�2 and 1=� poles) are en-
tirely due to soft and/or collinear gluon exchange. The

infrared finite piece d�ð1;bÞ;virt
77 =ðds1ds2Þ can be written as

d�ð1;bÞ;virt
77

ds1ds2
¼ �2 �m2

bð�Þm3
bjC7;effð�Þj2G2

FjVtbV
�
tsj2Q2

d

1024�5

� �s

4�
CF

� �4r0ð1� s1 � s2Þ
ð1� s1Þ2s1ð1� s2Þ2s2

log
�

mb

þ
P

20
i¼1 vi

3ð1� s1Þ3s1ð1� s2Þ3s2
�
; (3.5)

where the individual quantites v1; . . . ; v20 are relegated to
Appendix A.

IV. BREMSSTRAHLUNG CORRECTIONS

We now turn to the calculation of the bremsstrahlung
QCD corrections, i.e. to the contributions of order �s with
four particles in the final state. Before going into detail, we
mention that the kinematical range of the variables s1 and
s2 defined in Eq. (2.1) is given in this case by 0 � s1 � 1
and 0 � s2 � 1. Nevertheless, we consider in this paper
only the range which is also accessible to the three-body
decay b ! s��, i.e., 0 � s1 � 1 and 0 � s2 � 1� s1 or,
more precisely, by its restricted version specified in
Eq. (2.2).
The diagrams defining the bremsstrahlung corrections at

the amplitude level are shown in the first line of Fig. 5. The
amplitude squared, needed to get the (double differential)
decay width, can be written as a sum of interferences of the
different diagrams on the first line in Fig. 5. One such
interference is shown on the second line of the same figure.
The four particle final state is described by five indepen-
dent kinematical variables. In the first attempt we worked
out the decay width by keeping s1 and s2 differential and
integrating over the three remaining variables. Proceeding
in this way, we found that the infrared and collinear singu-
larities in the bremsstrahlung spectrum do not cancel when
adding the virtual corrections. The sum still contains
1=� poles, but no 1=�2 poles. While, as already mentioned
in Sec. III, the only sources of the singularities in the
virtual corrections in our restricted range of s1 and s2 are
due to soft gluon emission and/or collinear emission of

b sO
7

q
1 q

2

b

b b b b sO
7

q
2 q

1

b

b b b

FIG. 4. Counterterm diagrams with a 	mb insertion; see text.
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gluons from the s quark; we found after analyzing the
bremsstrahlung kinematics more carefully that there are
situations where one of the photons can become collinear
with the s quark. This is the reason why there is no
cancellation of singularities when combining virtual and
bremsstrahlung corrections. Realizing that for (formally)
zero hadronic mass of the ðs; gÞ system collinear photon
emission is kinematically impossible led us to the idea that
we should first look at the triple differential decay width
d�77=ðds1ds2ds3Þ, where s3 ¼ ðps þ pgÞ2=m2

b is the nor-

malized hadronic mass squared. Our conjecture was that
the double differential decay width, based on the triple
differential decay width in which only the leading power
terms with respect to s3 are retained, should lead to a finite
result when combined with the virtual corrections.

We therefore worked out the leading power of this

quantity with respect to s3, denoting it by d�
leading power
77 =

ðds1ds2ds3Þ. The leading power, which is of order 1=s3
(modified by epsilontic dimensional regulators), is sup-
posed to be a good approximation for low values of the
hadronic mass. An approximation to the double differential

decay width d�ð1Þ;brems
77 =ðds1ds2Þ due to gluon bremsstrah-

lung corrections is then obtained by integrating

d�leading power
77 =ðds1ds2ds3Þ over s3, which runs in the range

s3 2 ½0; s1 	 s2�. The approximation is obviously accurate
for small values of s1 	 s2. As s1 	 s2 is at most 1=4, the
approximation is expected not to be bad in the full region
of s1 and s2 considered in this paper. The technical details
of the calculation of the leading power with respect to s3 in
the triple differential decay width are illustrated in

Sec. VII B for the interference of diagram 1with diagram 6,
as shown in the second line of Fig. 5.
Indeed, we find that the infrared and collinear singular-

ities cancel when combining the approximated version

of d�ð1Þ;brems
77 =ðds1ds2Þ with the virtual corrections

d�ð1Þ;virt
77 =ðds1ds2Þ.
When going beyond this approximation other concepts,

which go beyond perturbation theory, such as parton frag-
mentation functions of a quark or a gluon into a photon, are
needed [11]. We do not address this issue in this paper.
The result of combined virtual and bremsstrahlung cor-

rections is explicitly presented in the next section.

V. FINAL RESULT FOR THE DECAY
WIDTH AT ORDER �s

The complete order �s correction to the double differ-
ential decay width d�77=ðds1ds2Þ is obtained by adding
the renormalized virtual corrections from Sec. III and the
bremsstrahlung corrections discussed in Sec. IV. Explicitly
we get

d�ð1Þ
77

ds1ds2
¼ �2 �m2

bð�Þm3
bjC7;effð�Þj2G2

FjVtbV
�
tsj2Q2

d

1024�5

� �s

4�
CF

� �4r0ð1� s1 � s2Þ
ð1� s1Þ2s1ð1� s2Þ2s2

log
�

mb

þ f

�
;

(5.1)

where f is decomposed as

f ¼ ð1� s1 � s2Þðf1 þ f2 þ f3 þ f4 þ f5 þ f6 þ f7 þ f8 þ f9 þ f15 þ f16 þ f17Þ
3ð1� s1Þ3s1ð1� s2Þ3s2

þ f10 þ f11 þ f12 þ f13 þ f14
3ð1� s1Þ3s1ð1� s2Þ3s2

:

(5.2)

b s
O

7

q
1

q
2

1 2 3
b s

O
7

q
2

q
1

4 5 6

b s
O

7

q
1

q
2

7 8 9
b s

O
7

q
2

q
1

10 11 12

b bs
O

7
O

7

q
1

q
2

s

q
1

q
2

4P

FIG. 5. On the first line the diagrams defining the gluon bremsstrahlung corrections to b ! s�� are shown at the amplitude level.
The crosses in the graphs stand for the possible emission places of the gluon. On the second line the contribution to the decay width
corresponding to the interference of diagram 1 with diagram 6 is illustrated.
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The individual quantities f1; . . . ; f17 read

f1 ¼ �16�2s32s
5
1 � 16�2s52s

3
1 þ 48�2s22s

5
1 þ 48�2s52s

2
1 � 48�2s2s

5
1 � 48�2s52s1 þ 16�2s51 þ 16�2s52 � 168s31 � 168s32

þ ð1104þ 160�2Þs42s41 þ ð�3360� 400�2Þs32s41 þ ð3432þ 304�2Þs22s41 þ ð�1296� 64�2Þs2s41 þ ð120� 16�2Þs41
þ ð�3360� 400�2Þs42s31 þ ð10416þ 1152�2Þs32s31 þ ð�10872� 1056�2Þs22s31 þ ð3984þ 368�2Þs2s31
þ ð3432þ 304�2Þs42s21 þ ð�10872� 1056�2Þs32s21 þ ð12096þ 1088�2Þs22s21 þ ð�4872� 448�2Þs2s21
þ ð216þ 16�2Þs21 þ ð�1296� 64�2Þs42s1 þ ð3984þ 368�2Þs32s1 þ ð�4872� 448�2Þs22s1
þ ð2352þ 224�2Þs2s1 þ ð�168� 16�2Þs1 þ ð120� 16�2Þs42 þ ð216þ 16�2Þs22 þ ð�168� 16�2Þs2;

f2 ¼ 48s2ð1� s1Þð1� s2Þ2ð6s2s31 � 6s31 � 11s2s
2
1 þ 15s21 þ 3s2s1 � 9s1 þ 2Þ logð1� s1Þ;

f3 ¼ 24ð1� s1Þð1� s2Þð30s32s31 � 64s22s
3
1 þ 41s2s

3
1 � 7s31 � 60s32s

2
1 þ 128s22s

2
1

� 82s2s
2
1 þ 37s32s1 � 78s22s1 þ 76s2s1 � 7s1 � 7s32 � 7s2Þ logðs1Þ;

f4 ¼ �48ð1� s1Þð1� s2Þðs22s41 � s2s
4
1 � 5s32s

3
1 þ 9s22s

3
1 � 5s2s

3
1 þ s31 þ 9s32s

2
1

� 20s22s
2
1 þ 13s2s

2
1 � 5s32s1 þ 12s22s1 � 12s2s1 þ s1 þ s32 þ s2Þlog2ðs1Þ;

f7 ¼ 96ð1� s1Þð1� s2Þð6s32s31 � 12s22s
3
1 þ 7s2s

3
1 � s31 � 12s32s

2
1 þ 24s22s

2
1 � 14s2s

2
1 þ 7s32s1

� 14s22s1 þ 12s2s1 � s1 � s32 � s2Þ logðs1Þ logðs2Þ;

f9 ¼ �96ð1� s1Þð1� s2Þð6s32s31 � 12s22s
3
1 þ 7s2s

3
1 � s31 � 12s32s

2
1 þ 24s22s

2
1 � 14s2s

2
1

þ 7s32s1 � 14s22s1 þ 12s2s1 � s1 � s32 � s2Þ logðs1 þ s2Þ;

f10 ¼ 96ð1� s1Þð1� s2Þ2ðs2s51 � s51 þ 2s22s
4
1 � 5s2s

4
1 þ 3s41 þ s32s

3
1 � 5s22s

3
1 þ 8s2s

3
1

� 2s31 � s32s
2
1 þ 4s22s

2
1 � 4s2s

2
1 þ s21 � 4s22s1 þ 3s2s1 � s1 � s22 þ s2Þ logð1� s1Þ logðs1 þ s2Þ;

f11 ¼ �96ð1� s1Þð1� s2Þðs22s51 � s2s
5
1 � 10s32s

4
1 þ 19s22s

4
1 � 11s2s

4
1 þ 2s41 � 11s42s

3
1 þ 53s32s

3
1 � 77s22s

3
1 þ 41s2s

3
1

� 2s31 þ 21s42s
2
1 � 76s32s

2
1 þ 94s22s

2
1 � 49s2s

2
1 þ 2s21 � 11s42s1 þ 38s32s1 � 46s22s1

þ 25s2s1 � 2s1 þ s42 � s32 þ s22 � s2Þ logðs1Þ logðs1 þ s2Þ;

f14 ¼ 48ð1� s1Þð1� s2Þðs22s51 � s2s
5
1 � 21s32s

4
1 þ 40s22s

4
1 � 22s2s

4
1 þ 3s41 � 21s42s

3
1 þ 106s32s

3
1 � 153s22s

3
1 þ 79s2s

3
1

� 3s31 þ s52s
2
1 þ 40s42s

2
1 � 153s32s

2
1 þ 188s22s

2
1 � 95s2s

2
1 þ 3s21 � s52s1 � 22s42s1 þ 79s32s1 � 95s22s1 þ 50s2s1

� 3s1 þ 3s42 � 3s32 þ 3s22 � 3s2Þlog2ðs1 þ s2Þ;

f15 ¼ 96s1ð1� s2Þ2ðs2s41 � s41 þ s22s
3
1 � 4s2s

3
1 þ 3s31 � 5s22s

2
1 þ 8s2s

2
1 � 2s21

þ 7s22s1 � 11s2s1 þ s1 � 2s22 þ 5s2 � 1ÞLi2ðs1Þ;

f16 ¼ 96ð1� s1Þð1� s2Þðs22s41 � 2s2s
4
1 þ s41 þ 8s32s

3
1 � 17s22s

3
1 þ 12s2s

3
1 � 3s31 þ s42s

2
1 � 17s32s

2
1 þ 32s22s

2
1 � 20s2s

2
1

� 2s42s1 þ 12s32s1 � 20s22s1 þ 20s2s1 � 2s1 þ s42 � 3s32 � 2s2ÞLi2ð1� s1 � s2Þ;

f5 ¼ f2ðs1 $ s2Þ; f6 ¼ f3ðs1 $ s2Þ; f8 ¼ f4ðs1 $ s2Þ;
f12 ¼ f10ðs1 $ s2Þ; f13 ¼ f11ðs1 $ s2Þ; f17 ¼ f15ðs1 $ s2Þ:

The order �s correction d�
ð1Þ
77 =ðds1ds2Þ in Eq. (5.1) to the double differential decay width for b ! Xs�� is the main result

of our paper.
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VI. SOME NUMERICAL ILLUSTRATIONS

In the previous sections we calculated the virtual and
bremsstrahlung QCD corrections which were the missing
ingredient in order to obtain the ðO7;O7Þ contribution to
the double differential decay width for �B ! Xs�� at NLL
precision. The Wilson coefficient C7;effð�Þ at the low scale

ð��mbÞ which is needed up to order �s, i.e.,

C7;effð�Þ ¼ C0
7;effð�Þ þ �sð�Þ

4�
C1
7;effð�Þ; (6.1)

has been known for a long time (see Ref. [8] and references
therein). Numerical values for the input parameters and for
this Wilson coefficient at various values for the scale �,

together with the numerical values of �sð�Þ, are given in
Tables I and II, respectively. The NLL prediction reads

d�77

ds1ds2
¼ d�ð0Þ

77

ds1ds2
þ d�ð1Þ

77

ds1ds2
; (6.2)

where the first and second terms of the right-hand side (rhs)
are given in Eqs. (2.5) and (5.1), respectively.

To illustrate our results, we first rewrite the MS mass
�mbð�Þ in Eq. (6.2) in terms of the pole mass mb, using the
one-loop relation

�mbð�Þ ¼ mb

�
1� �sð�Þ

4�

�
8 log

�

mb

þ 16

3

��
:

We then insert C7;effð�Þ in the expanded form (6.1) and

expand the resulting expression for d�77=ðds1ds2Þ with
respect to �s, discarding terms of order �2

s . This defines

TABLE II. �sð�Þ and the Wilson coefficient C7;effð�Þ at dif-
ferent values of the scale �.

�sð�Þ C0
7;effð�Þ C1

7;effð�Þ
� ¼ mW 0.1213 �0:1957 �2:3835
� ¼ 2mb 0.1818 �0:2796 �0:1788
� ¼ mb 0.2175 �0:3142 0.4728

� ¼ mb=2 0.2714 �0:3556 1.0794

TABLE I. Values of the relevant input parameters

Parameter Value

mb 4.8 GeV

mt 175 GeV

mW 80.4 GeV

mZ 91.19 GeV

GF 1:166 37� 10�5 GeV�2

VtbV
�
ts 0.04

��1 137

�sðMZÞ 0.119

FIG. 6. Double differential decay width d�77=ðds1ds2Þ as a function of s1 for s2 fixed at s2 ¼ 0:2. The dash-dotted, the short-dashed,
and the solid lines show the result when neglecting QCD effects, the LL result, and the NLL result, respectively. The long-dashed lines
represent the (partial) NLL result in which the virtual and bremsstrahlung corrections worked out in this paper are switched off (see
text for more details). In frames (1), (2), and (3) the renormalization scale is chosen to be � ¼ mb=2, � ¼ mb, and � ¼ 2mb,
respectively.
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the NLL result. The corresponding LL result is obtained by
also discarding the order �1

s term. In Fig. 6 the LL and the
NLL results are shown by the short-dashed and the solid
lines, respectively.

In our procedure the NLL corrections have three
sources: (a) �s corrections to the Wilson coefficient
C7;effð�Þ, (b) expressing �mbð�Þ in terms of the pole mass

mb, and (c) virtual- and real-order �s corrections to the
matrix elements. To illustrate the effect of source (c),
which is worked out for the first time in this paper, we
show in Fig. 6 (by the long-dashed line) the (partial) NLL
result in which source (c) is switched off. We conclude that
effect (c) is roughly of equal importance as the combined
effects of (a) and (b).

For completeness we show in this figure (by the dash-
dotted line) also the result when QCD is completely
switched off, which amounts to putting � ¼ mW in the
LL result.

From Fig. 6 we see that the NLL results are substantially
smaller (typically by 50% or slightly more) than those at
LL precision, which is also the case when choosing other
values for s2.

In the numerical discussion above, we have system-
atically converted the running b-quark mass �mbð�Þ in
terms of the pole mass mb. As perturbative expansions
often behave better when expressed in terms of the
running mass, we also studied the results obtained
when systematically converting mb in terms of �mbð�Þ.
After also doing this version, we observe the following:
Generally speaking, NLL corrections are not small for
both cases, when taking into account the full range of

�, i.e., mb=2<�< 2mb. More precisely, in the MS
version they are large for � ¼ mb=2 and smaller for
larger values of �, while in the pole mass version they
are large for all values of �.

We stress that the numerically important contributions
involving the operator O2 are not discussed in our paper.
Therefore, the issue concerning the reduction of the �
dependence at NLL precision cannot be addressed at this
level. Our main point in this section was to illustrate that
the NLL corrections to the process �B ! Xs�� are expected
to be rather large.

VII. TECHNICAL DETAILS ABOUT OUR
CALCULATIONS

We first describe the general setup of our calculations
and then discuss in Secs. VII A and VII B the calculation of
the virtual and the bremsstrahlung corrections for the
interference diagrams shown in the last lines of Figs. 3
and 5, respectively.

The starting point is the general expression for the total
decay width of the massive b quark with momentum pb

decaying into 3 � n � 4massless final-state particles with
momenta ki,

�1!n¼ 1

2mb

�Yn
i¼1

Z dd�1ki
ð2�Þd�12Ei

�
ð2�Þd	ðdÞ

�
pb�

Xn
i¼1

ki

�
jMnj2

¼ 1

2mb

ð2�Þn
�Yn�1

i¼1

Z ddki
ð2�Þd	ðk

2
i Þ
ðk0i Þ

�

�	

��
pb�

Xn�1

i¼1

ki

�
2
�



�
p0
b�

Xn�1

i¼1

k0i

�
jMnj2; (7.1)

where the squared Feynman amplitude jMnj2 is always
understood to be summed over final spin, polarization,
and color states, and averaged over the spin directions
and colors of the decaying b quark. It also includes a factor
of 1=2 for the two identical particles in the final state, i.e.
the photons. Furthermore, d ¼ 4� 2� denotes the space-
time dimension that we use to regulate the ultraviolet,
infrared, and collinear singularities.
The double differential decay rate d�77=ðds1ds2Þ is

obtained from Eq. (7.1) by multiplying the integrand on
the rhs with the delta functions 	ðs1 � ðpb � q1Þ2=m2

bÞ and
	ðs2 � ðpb � q2Þ2=m2

bÞ [32], where pb and q1, q2 denote

the four momenta of the b quark and the photons, respec-
tively. For the bremsstrahlung corrections, as mentioned in
Sec. IV, we need to consider also the triple differential
decay width d�77=ðds1ds2ds3Þ, where s3 ¼ ðpb � q1 �
q2Þ2=m2

b is the normalized hadronic mass squared. The

triple differential decay width is obtained by multiplying
the integrand with the additional delta function 	ðs3 �
ðpb � q1 � q2Þ2=m2

bÞ. Finally, the delta functions just

mentioned and all of the delta functions present in
Eq. (7.1) can be rewritten as differences of propagators
as follows [33,34]:

	ðq2 �m2Þ ¼ 1

2�i

�
1

q2 �m2 � i0
� 1

q2 �m2 þ i0

�
:

(7.2)

In this step the phase-space integrations are converted into
loop integrations (which can be combined with possible
loop integrations already present in jMnj2). By subse-
quently doing tensor reductions, the (differential) decay
width can be written as a linear combination of scalar
integrals. The systematic Laporta algorithm [35], based
on integration-by-part techniques first proposed in
[36,37], can then be applied to reduce the scalar integrals
to a small number of simpler integrals, usually referred to
as the master integrals (MIs). For this reduction we used
the AIR and FIRE implementations [38,39] of the Laporta
algorithm. After the reduction process, it usually happens
that some MIs contain propagators which were introduced
via (7.2) with zero or negative power. In this case the 
i0
prescription becomes irrelevant and as a consequence these
MIs are zero. In the remaining MIs we convert the propa-
gators introduced via (7.2) back to delta functions. Thus,
we are left with phase-space MIs (which can contain loop
integrations as well). The final task is then to calculate
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these MIs, i.e. to perform possible loop integrations to-
gether with the phase-space integrations.

Very often we had to deal with MIs which we were not
able to evaluate by direct integration of their integral
representation in terms of Feynman parameters and/or
phase-space parameters. A powerful tool to be used in
these cases is the differential equation method
[33,34,40,41]. The goal of this method is to employ the
output of the reduction procedure for a given topology to
build differential equations which are satisfied by the MIs
of that topology. In our case, we consider differential
equations with respect to s1 and s2 and also with respect
to s3 for the case of bremsstrahlung corrections. With these
methods we were able to obtain analytic expressions for all
master integrals appearing in the calculation of the various
diagrams.

A. Details about the calculation of virtual corrections

To illustrate our methods for the virtual corrections, we
take as an example the interference diagram shown on the
last line of Fig. 3. In this case we have five MIs. Four of
them can be solved by means of direct integration on
Feynman parameters. To calculate the last one (called
P1111), we solve the differential equations with respect to
s1 and s2 and get the solution which we denote asQ1111. At
this level Q1111 contains integration constants (which are
not fixed by the differential equations). To get the integra-
tion constants, we proceed in the following way. Using
Feynman parametrization for the loop integral, we write
the MI P1111 as

P1111 ¼ s��
1 s��

2 ð1� s1 � s2Þ��

�
Z 1

0
g0ðs1; s2; �; u; v; yÞdudvdy; (7.3)

where u, v, and y are Feynman parameters (all of them
running from 0 to 1). The factor s��

1 s��
2 ð1� s1 � s2Þ�� is

coming from the phase space [see Eq. (B2) in Appendix B
1]. One then can put s2 ¼ 0 in g0ðs1; s2; �; u; v; yÞ and
integrate on the Feynman parameters, which defines the
new function

g1ðs1; �Þ ¼
Z 1

0
g0ðs1; 0; �; u; v; yÞdudvdy: (7.4)

We managed to work out the leading term of the expansion
of g1ðs1; �Þ on s1 around zero, which is proportional to s�2

1 .
From this, we immediately get the leading term of the
expansion of P1111 on s2 and s1 (which is proportional to
s02=s

2
1). Comparing the result of this calculation with the

corresponding expansion of the solution Q1111 of the dif-
ferential equations, we could determine all integration
constants.

B. Details about the calculation
of bremsstrahlung corrections

To illustrate our methods for the bremsstrahlung correc-
tions, we take as an example the interference diagram
shown on the last line of Fig. 5. In this case we obtain
three MIs, denoted by P00, P10, and P11. Writing the
diagram as a linear combination of the MIs, we see that
the leading power (with respect to s3) of all three coef-
ficients (in front of theMIs) is of the order 1=s3. Keeping in
mind that we are taking into account only terms propor-
tional to the leading power in s3 at the level of the triple
differential decay width (as extensively discussed in
Sec. IV), it is sufficient to work out the MIs to zeroth
power in s3, including the epsilontic regulator, i.e., s0�n�

3

(in our case only n ¼ 1 and n ¼ 2 occur).
The simplest MI, P00, which corresponds to the pure

phase space [see Eq. (B4) in Appendix B 2], can be easily
solved by means of direct integration. For P10 the solution
of the differential equation with respect to s3 can be
represented in the limit s3 ! 0 in the form

P10 ¼ a1ðs1; s2; �Þs��
3 þ a2ðs1; s2; �Þs�2�

3 ; (7.5)

where the function a1ðs1; s2; �Þ is fully determined. To find
the function a2ðs1; s2; �Þ, we use differential equations with
respect to s1 and s2. In this way, we could find a2ðs1; s2; �Þ
up to integration constants. To determine these constants,
we managed to calculate the MI for specific values of s1,
s2, and s3 ! 0. In the same way we also calculated the
MI P11.

VIII. SUMMARY

In the present work we calculated the set of the Oð�sÞ
corrections to the decay process �B ! Xs�� originating
from diagrams involving the electromagnetic dipole opera-
tor O7. To perform this calculation it is necessary to work
out diagrams with three particles (s quark and two photons)
and four particles (s quark, two photons, and a gluon) in the
final state. From the technical point of view, the calculation
was made possible by the use of the Laporta algorithm to
identify the needed master integrals and by applying the
differential equation method to solve the master integrals.
When calculating the bremsstrahlung corrections, we take
into account only terms proportional to the leading power
of the hadronic mass. We find that the infrared and col-
linear singularities cancel when combining the above men-
tioned approximated version of bremsstrahlung corrections
with the virtual corrections. The numerical impact of the
NLL corrections is not small: for d�77=ðds1ds2Þ the NLL
results are approximately 50% smaller than those at LL
precision.
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APPENDIX A: EXPLICIT RESULTS FOR THE FUNCTIONS vi DEFINING THE VIRTUAL CORRECTIONS

The functions vi appearing in Eq. (3.5) read

v1 ¼ ð1� s1 � s2Þð�16�2s32s
5
1 � 16�2s52s

3
1 þ 48�2s22s

5
1 þ 48�2s52s

2
1 � 48�2s2s

5
1 � 48�2s52s1 þ 16�2s51 þ 16�2s52

þ ð2112� 104�2Þs42s41 þ ð392�2 � 6384Þs32s41 þ ð6672� 532�2Þs22s41 þ ð288�2 � 2736Þs2s41 þ ð336� 60�2Þs41
þ ð392�2 � 6384Þs42s31 þ ð19584� 1224�2Þs32s31 þ ð1452�2 � 20784Þs22s31 þ ð7872� 600�2Þs2s31
þ ð44�2 � 288Þs31 þ ð6672� 532�2Þs42s21 þ ð1452�2 � 20784Þs32s21 þ ð23904� 1728�2Þs22s21
þ ð740�2 � 10128Þs2s21 þ ð336� 28�2Þs21 þ ð288�2 � 2736Þs42s1 þ ð7872� 600�2Þs32s1
þ ð740�2 � 10128Þs22s1 þ ð5376� 392�2Þs2s1 þ ð28�2 � 384Þs1 þ ð336� 60�2Þs42
þ ð44�2 � 288Þs32 þ ð336� 28�2Þs22 þ ð28�2 � 384Þs2Þ;

v2 ¼ �96ð1� s1Þð1� s2Þð1� s1 � s2Þð3s32s31 � 4s22s
3
1 þ s2s

3
1 � 5s32s

2
1 þ 7s22s

2
1 � 2s2s

2
1

� s21 þ 2s32s1 � 3s22s1 þ 3s2s1 � s22Þ logðs1Þ;

v3 ¼ �24ð1� s1Þð1� s2Þð1� s1 � s2Þð2s22s41 � 2s2s
4
1 � 4s32s

3
1 þ 6s22s

3
1 � 3s2s

3
1

þ s31 þ 6s32s
2
1 � 16s22s

2
1 þ 12s2s

2
1 � 3s32s1 þ 10s22s1 � 12s2s1 þ s1 þ s32 þ s2Þlog2ðs1Þ;

v4 ¼ 48ð1� s1Þð1� s2Þð1� s1 � s2Þð6s32s31 � 12s22s
3
1 þ 7s2s

3
1 � s31 � 12s32s

2
1 þ 24s22s

2
1

� 14s2s
2
1 þ 7s32s1 � 14s22s1 þ 12s2s1 � s1 � s32 � s2Þ logðs1Þ logðs2Þ;

v5 ¼ 48ð1� s1Þð1� s2Þð1� s1 � s2Þð6s32s31 � 12s22s
3
1 þ 7s2s

3
1 � s31 � 12s32s

2
1 þ 24s22s

2
1

� 14s2s
2
1 þ 7s32s1 � 14s22s1 þ 12s2s1 � s1 � s32 � s2Þ logðs1Þ logð1� s1 � s2Þ;

v6 ¼ �96ð1� s1Þ2ð1� s2Þ2s2ðs41 þ 2s2s
3
1 � 2s31 þ s22s

2
1 � 4s2s

2
1 þ s21 � 2s22s1

þ 3s2s1 � 2s1 þ s22 þ 1Þ logðs1Þ logðs1 þ s2Þ;

v7 ¼ 48ð1� s1Þðs2 � 1Þ2s2ð1� s1 � s2Þð6s2s31 � 6s31 � 11s2s
2
1 þ 15s21 þ 3s2s1 � 9s1 þ 2Þ logð1� s1Þ;

v8 ¼ 96ð1� s1Þðs2 � 1Þ2ðs2s51 � s51 þ 2s22s
4
1 � 5s2s

4
1 þ 3s41 þ s32s

3
1 � 5s22s

3
1 þ 8s2s

3
1 � 2s31

� s32s
2
1 þ 4s22s

2
1 � 4s2s

2
1 þ s21 � 4s22s1 þ 3s2s1 � s1 � s22 þ s2Þ logð1� s1Þ logðs1 þ s2Þ;

v9 ¼ 48ð1� s1Þð1� s2Þðs22s51 � s2s
5
1 � 9s32s

4
1 þ 16s22s

4
1 � 8s2s

4
1 þ s41 � 9s42s

3
1 þ 46s32s

3
1 � 67s22s

3
1

þ 35s2s
3
1 � s31 þ s52s

2
1 þ 16s42s

2
1 � 67s32s

2
1 þ 84s22s

2
1 � 43s2s

2
1 þ s21 � s52s1 � 8s42s1 þ 35s32s1

� 43s22s1 þ 22s2s1 � s1 þ s42 � s32 þ s22 � s2Þlog2ðs1 þ s2Þ;

v10 ¼ �96ð1� s1Þð1� s2Þð1� s1 � s2Þðs22s31 � s2s
3
1 þ s32s

2
1 � 3s22s

2
1 þ 2s2s

2
1

� s21 � s32s1 þ 2s22s1 þ s2s1 � s22Þ logð1� s1 � s2Þ;
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v11 ¼ 24ð1� s1Þð1� s2Þð1� s1 � s2Þð6s32s31 � 12s22s
3
1 þ 7s2s

3
1 � s31 � 12s32s

2
1 þ 24s22s

2
1

� 14s2s
2
1 þ 7s32s1 � 14s22s1 þ 12s2s1 � s1 � s32 � s2Þlog2ð1� s1 � s2Þ;

v12 ¼ 96s1ð1� s2Þ2ð1� s1 � s2Þðs2s41 � s41 þ s22s
3
1 � 4s2s

3
1 þ 3s31 � 5s22s

2
1 þ 8s2s

2
1

� 2s21 þ 7s22s1 � 11s2s1 þ s1 � 2s22 þ 5s2 � 1ÞLi2ðs1Þ;
v13 ¼ 96ð1� s1Þð1� s2Þð1� s1 � s2Þðs22s41 � 2s2s

4
1 þ s41 þ 8s32s

3
1 � 17s22s

3
1 þ 12s2s

3
1 � 3s31 þ s42s

2
1 � 17s32s

2
1 þ 32s22s

2
1

� 20s2s
2
1 � 2s42s1 þ 12s32s1 � 20s22s1 þ 20s2s1 � 2s1 þ s42 � 3s32 � 2s2ÞLi2ð1� s1 � s2Þ;

v14 ¼ v2ðs1 $ s2Þ; v15 ¼ v3ðs1 $ s2Þ; v16 ¼ v5ðs1 $ s2Þ; v17 ¼ v6ðs1 $ s2Þ;
v18 ¼ v7ðs1 $ s2Þ; v19 ¼ v8ðs1 $ s2Þ; v20 ¼ v12ðs1 $ s2Þ:

APPENDIX B: RELEVANT
PHASE-SPACE FORMULAS

1. Double differential phase-space for the
3-particle final state

The kinematical variables s1 and s2 are defined as

s1 ¼ ðpb � q1Þ2
m2

b

; s2 ¼ ðpb � q2Þ2
m2

b

; (B1)

where pb and qi denote the four-momenta of the b quark
and the photons, respectively. The kinematics of the pro-
cess b ! s�� is fully described by s1 and s2. The formula
for the double differential decay width is therefore free of
additional phase-space integration variables. It reads

d�1!3

ds1ds2
¼ 1

4

ð4�Þ�3þ2�

�½2� 2��m
1�4�
b s��

1 s��
2

� ð1� s1 � s2Þ��jM3j2: (B2)

The variables s1 and s2 vary in the range

0 � s1 � 1; 0 � s2 � 1� s1:

2. Triple differential phase space for the 4-particle
final state

The kinematical variables s1, s2, and s3 are defined as

s1 ¼ ðpb � q1Þ2
m2

b

; s2 ¼ ðpb � q2Þ2
m2

b

;

s3 ¼ ðps þ kÞ2
m2

b

;

(B3)

where pb, ps, k, and qi denote the four-momenta of the
b quark, the s quark, the gluon, and the photons, respec-
tively. The kinematics is fully described in terms of five
phase-space variables x1, x2, x3, x4, and x5 as given ex-
plicitly in Eqs. (3.6), (3.9), and (3.10) in Ref. [42]. By
identifying k1, k2, k3, and k4 given there with the four-
momenta of the two photons, the s quark and the gluon,
respectively, we easily derive from the information in [42]

the formula for the triple differential decay width. We
remind the reader that in this paper we consider only the
range in s1 and s2 with

0 � s1 � 1; 0 � s2 � 1� s1;

which is also accessible to the three-body decay b ! s��.
For this case we obtain

d�1!4

ds1ds2ds3

¼ ð4�Þ�6þ3�2�4��½1� ��
ð1� 2�Þ�2½1� 2�� m3�6�

b s��
3

� ðs1s2 � s3Þ��ð1� s1 � s2 þ s3Þ��

�
Z

dx4dx5½x4ð1� x4Þ���½x5ð1� x5Þ��1=2��jM4j2;
(B4)

where x1, x2, and x3 (appearing in jM4j2) are understood to
be expressed in terms of s1, s2, and s3 according to

x1 ¼ s1; x2 ¼ s3
s1

; x3 ¼ s1s2 � s3
ð1� s1Þðs1 � s3Þ :

(B5)

x4 and x5 vary between zero and 1, while s3 2 ½0; s1s2�.

APPENDIX C: RENORMALIZATION CONSTANTS

In this Appendix, we collect the explicit expressions of
the renormalization constants needed for the ultraviolet
renormalization in our calculation (see Sec. III).
The operator O7, as well as the b-quark mass

contained in this operator, is renormalized in the MS
scheme [43]:
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ZMS
77 ¼ 1þ 4CF

�

�sð�Þ
4�

þOð�2
sÞ;

ZMS
mb

¼ 1� 3CF

�

�sð�Þ
4�

þOð�2
sÞ:

(C1)

All the remaining fields and parameters are renormalized
in the on-shell scheme. The on-shell renormalization con-
stant for the b-quark mass is given by

ZOS
mb

¼ 1� CF�ð�Þe�� 3� 2�

1� 2�

�
�

mb

�
2� �sð�Þ

4�
þOð�2

sÞ;
(C2)

while the renormalization constants for the s- and b-quark
fields are

ZOS
2s ¼ 1þOð�2

sÞ;

ZOS
2b ¼ 1� CF�ð�Þe�� 3� 2�

1� 2�

�
�

mb

�
2� �sð�Þ

4�
þOð�2

sÞ:
(C3)

The various quantities 	Z appearing in Sec. III are defined
to be 	Z ¼ Z� 1.
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