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A.C. Aguilar,1 D. Ibáñez,2 V. Mathieu,2 and J. Papavassiliou2

1Federal University of ABC, CCNH, Rua Santa Adélia 166, CEP 09210-170, Santo André, Brazil
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The gauge-invariant generation of an effective gluon mass proceeds through the well-known Schwinger

mechanism, whose key dynamical ingredient is the nonperturbative formation of longitudinally coupled

massless bound-state excitations. These excitations introduce poles in the vertices of the theory, in such a

way as to maintain the Slavnov-Taylor identities intact in the presence of massive gluon propagators. In

the present work we first focus on the modifications induced to the nonperturbative three-gluon vertex by

the inclusion of massless two-gluon bound states into the kernels appearing in its skeleton expansion.

Certain general relations between the basic building blocks of these bound states and the gluon mass are

then obtained from the Slavnov-Taylor identities and the Schwinger-Dyson equation governing the gluon

propagator. The homogeneous Bethe-Salpeter equation determining the wave function of the aforemen-

tioned bound state is then derived, under certain simplifying assumptions. It is then shown, through

a detailed analytical and numerical study, that this equation admits nontrivial solutions, indicating that the

QCD dynamics support indeed the formation of such massless bound states. These solutions are

subsequently used, in conjunction with the aforementioned relations, to determine the momentum-

dependence of the dynamical gluon mass. Finally, further possibilities and open questions are briefly

discussed.
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I. INTRODUCTION

The numerous large-volume lattice simulations carried
out in recent years have firmly established that, in the
Landau gauge, the gluon propagator and the ghost dressing
function of pure Yang-Mills theories are infrared-finite,
both in SUð2Þ [1–5] and in SUð3Þ [6–9]. Perhaps the
most physical way of explaining the observed finiteness
of these quantities is the generation of a nonperturbative,
momentum-dependent gluon mass [10–15], which acts
as a natural infrared cutoff. In this picture the funda-
mental Lagrangian of the Yang-Mills theory (or that of
QCD) remains unaltered, and the generation of the gluon
mass takes place dynamically, through the well-known
Schwinger mechanism [16–22] without violating any of
the underlying symmetries (for further studies and alter-
native approaches, see, e.g., [23–29]).

The way in which the Schwinger mechanism generates
a mass for the gauge boson (gluon) can be seen most directly
at the level of its inverse propagator, ��1ðq2Þ¼q2½1þ
i�ðq2Þ�, where�ðqÞ is the dimensionless vacuum polariza-
tion. According to Schwinger’s fundamental observation, if
�ðq2Þ develops a pole at zero momentum transfer (q2 ¼ 0),
then the vector meson acquires a mass, even if the gauge
symmetry forbids amass term at the level of the fundamental
Lagrangian. Indeed, if �ðq2Þ ¼ m2=q2, then (in Euclidean
space) ��1ðq2Þ ¼ q2 þm2, and so the vector meson be-
comes massive, ��1ð0Þ¼m2, even though it is massless in
the absence of interactions (g ¼ 0,�¼0) [18,19].

The key assumption when invoking the Schwinger
mechanism in Yang-Mills theories, such as QCD, is that

the required poles may be produced due to purely dynami-
cal reasons; specifically, one assumes that, for sufficiently
strong binding, the mass of the appropriate bound state
may be reduced to zero [18–22]. In addition to triggering
the Schwinger mechanism, these massless composite ex-
citations are crucial for preserving gauge invariance.
Specifically, the presence of massless poles in the off shell
interaction vertices guarantees that the Ward identities
(WIs) and Slavnov-Taylor identities (STIs) of the theory
maintain exactly the same form before and after mass
generation (i.e., when the massless propagators appearing
in them are replaced by massive ones) [10,15,21,22]. Thus,
these excitations act like dynamical Nambu-Goldstone
scalars, displaying, in fact, all their typical characteristics,
such as masslessness, compositeness, and longitudinal
coupling; note, however, that they differ from Nambu-
Goldstone bosons as far as their origin is concerned, since
they are not associated with the spontaneous breaking of
any global symmetry [10]. Finally, every such Goldstone-
like scalar, ‘‘absorbed’’ by a gluon in order to acquire a
mass, is expected to actually cancel out of the S-matrix
against other massless poles or due to current conservation
[18–22].
The main purpose of the present article is to scrutinize

the central assumption of the dynamical scenario outlined
above, namely, the possibility of actual formation of such
massless excitations. The question we want to address is
whether the nonperturbative Yang-Mills dynamics are in-
deed compatible with the generation of such a special
bound state. In particular, as has already been explained
in previous works, the entire mechanism of gluon mass
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generation hinges on the appearance of massless poles
inside the nonperturbative three-gluon vertex, which enters
in the Schwinger-Dyson equation (SDE) governing the
gluon propagator. These poles correspond to the propaga-
tor of the scalar massless excitation, and interact with a pair
of gluons through a very characteristic proper vertex,
which, of course, must be nonvanishing, or else the entire
construction collapses. The way to establish the existence
of this latter vertex is through the study of the homoge-
neous Bethe-Salpeter equation (BSE) that it satisfies, and
look for nontrivial solutions, subject to the numerous strin-
gent constraints imposed by gauge invariance.

This particular methodology has been adopted in various
early contributions on this subject [18–22]; however, only
asymptotic solutions to the corresponding equations have
been considered. The detailed numerical study presented
here demonstrates that, under certain simplifying assump-
tions for the structure of its kernel, the aforementioned
integral equation has indeed nontrivial solutions, valid for
the entire range of physical momenta. This result, although
approximate and not fully conclusive, furnishes additional
support in favor of the concrete mass generation mecha-
nism described earlier.

The article is organized as follows. In Sec. II we set up
the general theoretical framework related to the gauge-
invariant generation of a gluon mass; in particular, we
outline how the vertices of the theory must be modified,
through the inclusion of longitudinally coupled massless
poles, in order to maintain the WIs and STIs of the theory
intact. In Sec. III we take a detailed look into the structure
of the nonperturbative vertex that contains the required
massless poles, and study its main dynamical building
blocks, and, in particular, the transition amplitude between
a gluon and a massless excitation and the proper vertex
function (bound-state wave function), controlling the in-
teraction of the massless excitation with two gluons. In
addition, we derive an exact relation between these two
quantities and the first derivative of the (momentum-
dependent) gluon mass. Then, we derive a simple formula
that, at zero momentum transfer, relates the aforemen-
tioned transition amplitude to the gluon mass. In the next
two sections we turn to the central question of this work,
namely, the dynamical realization of the massless excita-
tion within the Yang-Mills theory. Specifically, in Sec. IV
we derive the BSE that the proper vertex function satisfies,
and implement a number of simplifying assumptions.
Then, in Sec. V we demonstrate through a detailed numeri-
cal study that the resulting homogeneous integral equation
indeed admits nontrivial solutions, thus corroborating the
existence of the required bound-state excitations. In
Sec. VI we demonstrate with a specific example the general
mechanism that leads to the decoupling of all massless
poles from the physical (on shell) amplitude. Finally, in
Sec. VII we discuss our results and present our
conclusions.

II. GENERAL CONSIDERATIONS

In this section, after establishing the necessary notation,
we briefly review why the dynamical generation of a mass
is inextricably connected to the presence of a special
vertex, which exactly compensates for the appearance of
massive instead of massless propagators in the correspond-
ing WIs and STIs.
The full gluon propagator �ab

��ðqÞ ¼ �ab���ðqÞ in the

Landau gauge is defined as

���ðqÞ ¼ �iP��ðqÞ�ðq2Þ; (2.1)

where

P��ðqÞ ¼ g�� �
q�q�

q2
(2.2)

is the usual transverse projector, and the scalar cofactor
�ðq2Þ is related to the (all-order) gluon self-energy
���ðqÞ ¼ P��ðqÞ�ðq2Þ through

��1ðq2Þ ¼ q2 þ i�ðq2Þ: (2.3)

One may define the dimensionless vacuum polarization
�ðq2Þ by setting �ðq2Þ ¼ q2�ðq2Þ so that (2.3) becomes

��1ðq2Þ ¼ q2½1þ i�ðq2Þ�: (2.4)

As explained in the Introduction, if�ðq2Þ develops at zero
momentum transfer a pole with positive residue m2, then
��1ð0Þ ¼ m2, and the gluon is endowed with an effective
mass.
Alternatively, one may define the gluon dressing func-

tion Jðq2Þ as
��1ðq2Þ ¼ q2Jðq2Þ: (2.5)

In the presence of a dynamically generated mass, the
natural form of ��1ðq2Þ is given by (Euclidean space)

��1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ; (2.6)

where the first term corresponds to the ‘‘kinetic term,’’ or
‘‘wave function’’ contribution, whereas the second is the
(positive-definite) momentum-dependent mass. If one in-
sists on maintaining the form of (2.5) by explicitly factor-
ing out a q2, then

��1ðq2Þ ¼ q2
�
Jðq2Þ þm2ðq2Þ

q2

�
; (2.7)

and the presence of the pole, with residue given by m2ð0Þ,
becomes manifest.
Of course, in order to obtain the full dynamics, such as,

for example, the momentum dependence of the dynamical
mass, one must turn eventually to the SDE that governs the
corresponding gauge-boson self-energy (see Fig. 1). In
what follows we will work within the specific framework
provided by the synthesis of the pinch technique (PT)
[10,30–34] with the background field method (BFM)
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[35]. One of the main advantages of the ‘‘PT-BFM’’ for-
malism is that the crucial transversality property of the
gluon self-energy ���ðqÞ, namely q����ðqÞ ¼ 0, is

maintained at the level of the truncated SDEs [12,36].
The Schwinger mechanism is integrated into the SDE of

the gluon propagator through the form of the three-gluon
vertex. In particular, as has been emphasized in some of
the literature cited above (e.g., [15]), a crucial condition for
the realization of the gluon mass generation scenario is the
existence of a special vertex, to be denoted by V���ðq; r; pÞ
which must be completely longitudinally coupled, i.e.,
must satisfy

P�0�ðqÞP�0�ðrÞP�0�ðpÞV���ðq; r; pÞ ¼ 0: (2.8)

We will refer to this special vertex as the ‘‘pole vertex’’ or
simply ‘‘the vertex V’’.

The role of the vertex V���ðq; r; pÞ is indispensable for
maintaining gauge invariance, given that the massless poles
that it must contain in order to trigger the Schwinger
mechanism, act, at the same time, as composite, longitudi-
nally coupled Nambu-Goldstone bosons. Specifically, in
order to preserve the gauge invariance of the theory in the
presence of masses, the vertex V���ðq; r; pÞmust be added

to the conventional (fully dressed) three-gluon vertex
ℾ���ðq; r; pÞ, giving rise to the new full vertex,

ℾ 0
���ðq; r; pÞ, defined as

ℾ 0
���ðq; r; pÞ ¼ ℾ���ðq; r; pÞ þ V���ðq; r; pÞ: (2.9)

Gauge invariance remains intact because ℾ 0 satisfies the
same STIs as ℾ before, but now replacing the gluon propa-
gators appearing on their right-hand side (rhs) by massive
ones; schematically,��1 ! ��1

m , where the former denotes
the propagator given in (2.5), while the latter denotes that of
(2.6). In particular, in the PT-BFM framework that we
employ, the vertex ℾ connects a background gluon (B)
with two quantum gluons (Q), and is often referred to as
the ‘‘BQQ’’ vertex. This vertex satisfies a (ghost-free) WI
when contracted with the momentum q� of the background
gluon, whereas it satisfies a STI when contracted with the
momentum r� or p� of the quantum gluons. In particular,

q�ℾ���ðq; r; pÞ ¼ p2Jðp2ÞP��ðpÞ � r2Jðr2ÞP��ðrÞ;
r�ℾ���ðq; r; pÞ ¼ Fðr2Þ½q2 ~Jðq2ÞP�

� ðqÞH��ðq; r; pÞ
� p2Jðp2ÞP�

� ðpÞ ~H��ðp; r; qÞ�;
p�ℾ���ðq; r; pÞ ¼ Fðp2Þ½r2Jðr2ÞP�

�ðrÞ ~H��ðr; p; qÞ
� q2 ~Jðq2ÞP�

�ðqÞH��ðq; p; rÞ�;
(2.10)

where Fðq2Þ is the ‘‘ghost dressing function,’’ defined as
Fðq2Þ ¼ q2Dðq2Þ, H�� is the standard gluon-ghost kernel,
and ~H is the same asH but with the external quantum gluon
replaced by a background gluon. Similarly, ~J is the dressing
function of the self-energy connecting a background with a
quantum gluon; ~J is related to Jðq2Þ through the identity
[37,38]

~Jðq2Þ ¼ ½1þGðq2Þ�Jðq2Þ: (2.11)

The function Gðq2Þ is the scalar cofactor of the g�� com-

ponent of the special two-point function���ðqÞ, defined as

���ðqÞ ¼ �ig2CA

Z
k
��

�ðkÞDðq� kÞH��ð�q; q� k; kÞ

¼ g��Gðq2Þ þ
q�q�

q2
Lðq2Þ: (2.12)

Note finally that, in the Landau gauge,Gðq2Þ and Lðq2Þ are
linked to Fðq2Þ by the exact (all-order) relation [39–42]

F�1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ; (2.13)

to be employed in Sec. III B.
Returning to the nonperturbative vertex V, gauge invari-

ance requires that it must satisfy the WI and STI of (2.10),
with the replacement k2JðkÞ ! �m2ðkÞ, e.g.,

q�V���ðq; r; pÞ ¼ m2ðr2ÞP��ðrÞ �m2ðp2ÞP��ðpÞ;
(2.14)

exactly analogous expressions will hold for the STIs sat-
isfied when contracting with the momenta r or p. Indeed,
under this assumption, the full vertex ℾ 0 will satisfy the
same WI and STIs as the vertex ℾ before the introduction
of any masses, but now with the replacement q2Jðq2Þ !
q2Jðq2Þ þm2ðq2Þ. Specifically, combining the first relation
in (2.10) with (2.14), one obtains for the WI of ℾ 0,

q�ℾ 0
���ðq; r; pÞ ¼ q�½ℾ ðq; r; pÞ þ Vðq; r; pÞ����

¼ ½p2Jðp2Þ �m2ðp2Þ�P��ðpÞ � ½r2Jðr2Þ
�m2ðr2Þ�P��ðrÞ

¼ ��1
m ðp2ÞP��ðpÞ � ��1

m ðr2ÞP��ðrÞ;
(2.15)

which is indeed the first identity in Eq. (2.10), with
the aforementioned replacement ��1 ! ��1

m enforced.

FIG. 1. The ‘‘one-loop dressed’’ gluon contribution to the PT-
BFM gluon self-energy. White (black) circles denote fully
dressed propagators (vertices); a gray circle attached to the
external legs indicates that they are background gluons. Within
the PT-BFM framework these two diagrams constitute a trans-
verse subset of the full gluon SDE.
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The remaining two STIs are realized in exactly the same
fashion.

It must be clear at this point that the longitudinal nature
of V���, combined with the WI and STIs that it must

satisfy, lead inevitably to the appearance of a massless
pole, as required by the Schwinger mechanism. For ex-
ample, focusing only on the q-channel, the simplest toy
Ansatz for the vertex is

V���ðq; r; pÞ ¼ q�
q2

½m2ðr2ÞP��ðrÞ �m2ðp2ÞP��ðpÞ�;
(2.16)

which has a pole in q2 and satisfies (2.14). Of course, poles
associated to the other channels (r and p) will also appear,
given that V���ðq; r; pÞmust also satisfy the corresponding

STIs with respect to r� and p�.

III. THE POLE VERTEX: STRUCTURE
AND PROPERTIES

In this section we have a detailed look at the structure of
the special vertex V. In particular, we identify the diagram-
matic origin and field-theoretic nature of the various quan-
tities contributing to it, and specify the way it enters into
the SDE of the full vertex ℾ 0, defined in Eq. (2.9). In
addition, we will derive an exact relation between the
most important component of this vertex and the derivative
of the momentum-dependent gluon mass.

A. General structure of the vertex V

The main characteristic of the vertex V, which sharply
differentiates it from ordinary vertex contributions, is that
it contains massless poles, originating from the contribu-
tions of bound-state excitations. Specifically, all terms of
the vertex V are proportional to 1=q2, 1=r2, 1=p2, and
products thereof. Such dynamically generated poles are
to be clearly distinguished from poles related to ordinary
massless propagators, associated with elementary fields in
the original Lagrangian.

In general, when setting up the usual SDE for any vertex
(see, for example, Fig. 2), a particular field (leg) is singled
out, and is connected to the various multiparticle kernels
through all elementary vertices of the theory involving this
field (leg). The remaining legs enter into the various dia-
grams through the aforementioned multiparticle kernels

(black circles in graphs a2 � a5 in Fig. 2), or, in terms of
the standard skeleton expansion, through fully dressed
vertices (instead of tree-level ones). For the case of the
BQQ vertex that we consider here (shown in Fig. 2), it is
convenient (but not obligatory) to identify as the special leg
the background gluon, carrying momentum q. Now, with
the Schwinger mechanism turned off, the various multi-
particle kernels appearing in the SDE for the BQQ vertex
have a complicated skeleton expansion (not shown here),
but their common characteristic is that they are one-
particle-irreducible with respect to cuts in the direction of
the momentum q; thus, a diagram such as the (a) of Fig. 3
is explicitly excluded from the (gray) four-gluon kernel,
and the same is true for all other kernels.
When the Schwinger mechanism is turned on, the struc-

ture of the kernels is modified by the presence of composite
massless excitation, described by a propagator of the type
i=q2, as shown in Fig. 3. The sum of such dynamical terms,
coming from all multiparticle kernels, shown in Fig. 4
constitutes a characteristic part of the vertex V, to be de-
noted by U in Eq. (3.4), namely, the part that contains at
least a massless propagator i=q2. The remaining parts of the
vertex V, to be denoted by R in Eq. (3.5), contain massless
excitations in the other two channels, namely 1=r2 and 1=p2

(but no 1=q2), and originate from graphs such as (c2) of
Fig. 3. Indeed, note that the kernel (b2) is composed of an
infinite number of diagrams, such as (c1), containing the full
vertex I�0; these graphs, in turn, will furnish terms propor-
tional to 1=r2 and 1=p2 [e.g., graph (c2)].
In order to study further the structure and properties of

the vertex V, let us first define the full vertex
V amn

���ðq; r; pÞ, given by

V amn
���ðq; r; pÞ ¼ gfamnV���ðq; r; pÞ; (3.1)

with V���ðq; r; pÞ satisfying Eq. (2.8). Using a general

Lorentz basis, we have the following expansion for
V���ðq; r; pÞ in terms of scalar form factors,

V���ðq; r; pÞ ¼ V1q�g�� þ V2q�q�q� þ V3q�p�p�

þ V4q�r�q� þ V5q�r�p� þ V6r�g��

þ V7r�r�r� þ V8r�r�p� þ V9p�g��

þ V10p�p�p�: (3.2)

FIG. 2. The SDE for the BQQ vertex which connects a background gluon (B) with two quantum gluons (Q).
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FIG. 4. (A) The vertex U��� is composed of three main ingredients: the transition amplitude, I�, which mixes the gluon with a
massless excitation, the propagator of the massless excitation, and the (massless excitation)–(gluon)–(gluon) vertex. (B) The Feynman
rules (with color factors included) for (i) the propagator of the massless excitation and (ii) the ‘‘proper vertex function,’’ or, ‘‘bound-
state wave function,’’ B��. (C) The various Bf...g appearing in Eq. (3.14).

FIG. 3. (A) A diagram that does not belong to the standard kernel. (B) The gray kernel (regular part with respect to q), and the
composite massless excitation in the q-channel. (C) The R part of the vertex.
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According to the arguments presented above,
V���ðq; r; pÞ may be decomposed into

V���ðq; r; pÞ ¼ U���ðq; r; pÞ þ R���ðq; r; pÞ; (3.3)

with

U���ðq; r; pÞ ¼ q�ðV1g�� þ V2q�q� þ V3p�p�

þ V4r�q� þ V5r�p�Þ; (3.4)

and

R���ðq; r; pÞ ¼ ðV6g�� þ V7r�r� þ V8

2
r�p�Þr�

þ ðV8

2
r�r� þ V9g�� þ V10p�p�Þp�:

(3.5)

All form factors of U (namely V1 � V5) must contain a
pole 1=q2, while some of them may contain, in addition,
1=r2 and 1=p2 poles. On the other hand, none of the form
factors of R (namely V6 � V10) contains 1=q2 poles, but
only 1=r2 and 1=p2 poles.

In what follows we will focus on U���ðq; r; pÞ, which
contains the explicit q-channel massless excitation, since
this is the relevant channel in the SDE of the gluon propa-
gator, where V���ðq; r; pÞ will be eventually inserted

[graph ða1Þ in Fig. 1]. In fact, with the two internal gluons
of diagram (a1) in the Landau gauge, we have that

P�0�ðrÞP�0�ðpÞV���ðq; r; pÞ
¼ P�0�ðrÞP�0�ðpÞU���ðq; r; pÞ
¼ P�0�ðrÞP�0�ðpÞq�½V1ðq; r; pÞg�� þ V2ðq; r; pÞq�q��;

(3.6)

so that the only relevant form factors are V1 and V2.
At this point we can make the nonperturbative pole

manifest, and cast U���ðq; r; pÞ in the form of Fig. 4, by

setting

U���ðq; r; pÞ ¼ I�ðqÞ
�
i

q2

�
B��ðq; r; pÞ; (3.7)

where the nonperturbative quantity

B��ðq; r; pÞ ¼ B1g�� þ B2q�q� þ B3p�p�

þ B4r�q� þ B5r�p�; (3.8)

is the effective vertex (or ‘‘proper vertex function’’ [19])
describing the interaction between the massless excitation
and two gluons. In the standard language used in bound-
state physics, B��ðq; r; pÞ represents the ‘‘bound-state

wave function’’ (or ‘‘BS wave function’’) of the two-gluon
bound state shown in ðb3Þ of Fig. 3; indeed, as can be seen
in the latter figure, B�� enters quadratically in the ampli-

tude mediated by the massless excitation. As we will see in
Sec. IV, B�� satisfies a (homogeneous) BSE. In addition,

i=q2 is the propagator of the scalar massless excitation.
Finally, I�ðqÞ is the (nonperturbative) transition amplitude
introduced in Fig. 4, allowing the mixing between a gluon
and the massless excitation; note that the imaginary factor
‘‘i’’ from the Feynman rule in Fig. 3 is absorbed into the
definition of I�ðqÞ. It is important to recognize that the
function I�ðqÞ is universal, in the sense that it enters not
only in the pole part V associated with the three-gluon
vertex, but rather in all possible such pole parts associated
with all other vertices, such as the four-gluon vertex, the
gluon-ghost-ghost vertex, etc. (see panel C in Fig. 4)).
Evidently, by Lorentz invariance,

I�ðqÞ ¼ q�IðqÞ; (3.9)

and the scalar cofactor, to be referred to as the ‘‘transition
function,’’ is simply given by

IðqÞ ¼ q�I�ðqÞ
q2

; (3.10)

so that

Vjðq; r; pÞ ¼ IðqÞ
�
i

q2

�
Bjðq; r; pÞ; j ¼ 1; . . . ; 5:

(3.11)

Note that, due to Bose symmetry (already at the level of
V) with respect to the interchange � $ � and p $ r, we
must have

B1;2ðq; r; pÞ ¼ �B1;2ðq; p; rÞ; (3.12)

which implies that

B1;2ð0;�p; pÞ ¼ 0: (3.13)

Finally, in principle, all other elementary vertices of the
theory may also develop pole parts, which will play a role
completely analogous to that of V��� in maintaining the

corresponding STIs in the presence of a gluon mass.
Specifically, in the absence of quarks, the remaining verti-
ces are the gluon-ghost-ghost vertex, ℾ�, the four-gluon
vertex ℾ����, and the gluon-gluon-ghost-ghost vertex ℾ��,

which is particular to the PT-BFM formulation. The parts
of their pole vertices containing the 1=q2, denoted by U�,
U����, andU��, respectively, will all assume the common

form

U�f...g ¼ I�

�
i

q2

�
Bf...g; (3.14)

where the various Bf...g are shown in panel C of Fig. 4.

B. Further considerations

At this point one may wonder if all the aforementioned
pole parts, appearing in the various vertices, could not
cancel against each other, through some type of all-order
mechanism enforced by the underlying symmetries, thus
invalidating the entire construction. Clearly, a conclusive
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answer to this question would require a detailed analysis
beyond the ‘‘one-loop dressed’’ level considered here. A
possible (but cumbersome) dynamical approach for ad-
dressing this important question would be to study the
system of coupled integral equations produced when all
such poles are considered; as explained in more detail in
Sec. IV, such a system would involve all the possible BS
wave functions Bf...g, combined in a rather intricate way. It

could certainly happen that the full system does not admit a
solution other than the trivial one, i.e., Bf...g ¼ 0; in fact, the

nontrivial solutions found in Sec. Voriginate from a single
integral equation, involving only the quantity B��.

From the point of view of dynamical mass generation, as
exemplified in the works mentioned earlier [18–22], the
appearance of such poles in off shell Green’s functions is
required, once the generation of a gauge-boson mass is
energetically favored. In such a case (and in the absence of
fundamental scalars), these poles will assume the role of
the Nambu-Goldstone bosons, and their presence is neces-
sary for maintaining all the original STIs intact. Un-
fortunately, to the best of our knowledge, no such proof
exists for pure Yang-Mills. A proof along these lines would
entail the minimization of an appropriate functional, such
as the Cornwall-Jackiw-Tomboulis effective potential [43],
showing that the generation of a mass, or the formation
of the related condensate, lowers the vacuum energy. Note
that this is indeed true in d ¼ 3 [44], where it was shown
that the formation of a gluon condensate, which is inter-
connected with the gluon mass, minimizes the action (see
also [45]). Evidently, all these issues deserve further de-
tailed study (see also the corresponding discussion in
Sec. VII).

Let us now outline briefly how the BQQ vertex ℾ 0, and
especially its pole part V, are related to the conventional
QQQ vertex, appearing in the standard Yang-Mills formu-
lation in terms of the linear gauges, and the corresponding
pole part; let us denote these latter quantities by ℾ 0

C and VC,

respectively. The most relevant properties of these two
types of vertices may be summarized as follows:

(i) VC���ðq; r; pÞ is also completely longitudinally

coupled, i.e., it satisfies Eq. (2.8).
(ii) ℾ 0

C���ðq; r; pÞ and VC���ðq; r; pÞ are Bose-

symmetric with respect to all three of their legs,
whereas ℾ 0

���ðq; r; pÞ and V���ðq; r; pÞ only with

respect to the two quantum legs, ðm;�; rÞ and
ðn; �; pÞ.

(iii) ℾ 0 and V satisfy a WI when contracted by the
momentum q� carried by the background leg,
and an STI when contracted with the corresponding
momenta of the quantum legs, as shown in
Eq. (2.10) and (2.14). Instead ℾ 0

C and VC satisfy a

cyclic permutation of a single STI [46], namely,
the second or third of Eq. (2.10), with ~H ! H and
~J ! J. In particular, instead of Eq. (2.14), VC

satisfies

q�VC���ðq; r; pÞ ¼ FðqÞ½m2ðrÞP�
�ðrÞH��ðr; q; pÞ

�m2ðpÞP�
� ðpÞH��ðp; q; rÞ�:

(3.15)

(iv) There exists a formal all-order relation, derived
within the Batalin-Vilkovisky formalism (see [34]
and references therein), which connects ℾ 0 and ℾ 0

C,

or V and VC; it is given by

ℾ 0
���ðq; r; pÞ ¼ ½g�� þ��

�ðqÞ�ℾ 0
C���ðq; r; pÞ

þ i��1
m ðrÞP�

�ðrÞT���ðq; p; rÞ
� i��1

m ðpÞP�
�ðpÞT���ðq; r; pÞ;

(3.16)

where ��
�ðqÞ is given in Eq. (2.12), and

T���ðq; p; rÞ is a special three-point function asso-
ciated to the various ‘‘sources,’’ introduced within
the aforementioned formalism. It is precisely the
presence of these auxiliary functions, ��

�ðqÞ and
T���ðq; p; rÞ, that distorts (or restores, depending
on the direction) the full Bose symmetry of the two
vertices.

In order to provide a level of intuitive understanding on
how to switch back and forth between V and VC by means
of Eq. (3.16), let us focus on the part U��� of V���, de-

fined in Eq. (3.4); the corresponding UC��� will have the

same tensorial structure as U���, but its form factors,

VC1 � VC5, will be in general different from the V1 � V5.
Now, since U��� is proportional to q�, using Eqs. (2.12)

and (2.13) we have that

½g�� þ��
�ðqÞ�q� ¼ ½1þGðq2Þ þ Lðq2Þ�q� ¼ F�1ðqÞq�;

(3.17)

and so, from Eq. (3.16),

U���ðq; r; pÞ ¼ F�1ðqÞUC���ðq; r; pÞ þ . . . ; (3.18)

where the ellipses denote possible contributions from the
terms proportional to T���ðq; p; rÞ. To be sure, these latter
contributions must be included in a full treatment, but are
not conceptually important for the qualitative discussion
presented here.

C. An exact relation

TheWI of Eq. (2.14) furnishes an exact relation between
the dynamical gluon mass, the transition amplitude at zero
momentum transfer, and the form factor B1. Specifically,
contracting both sides of the WI with two transverse pro-
jectors, one obtains,

P�0�ðrÞP�0�ðpÞq�V���ðq; r; pÞ
¼ ½m2ðrÞ �m2ðpÞ�P�0

� ðrÞP��0 ðpÞ: (3.19)
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On the other hand, contracting the full expansion of the
vertex (3.2) by these transverse projectors and then con-
tracting the result with the momentum of the background
leg, we get

q�P�0�ðrÞP�0�ðpÞV���ðq; r; pÞ
¼ iIðqÞ½B1g�� þ B2q�q��P�0�ðrÞP�0�ðpÞ; (3.20)

where the relation of Eq. (3.11) has been used. Thus,
equating both results, one arrives at

iIðqÞB1ðq; r; pÞ ¼ m2ðrÞ �m2ðpÞ; B2ðq; r; pÞ ¼ 0:

(3.21)

The above relations, together with those of Eq. (3.11),
determine exactly the form factors V1 and V2 of the vertex
V���, namely

V1ðq; r; pÞ ¼ m2ðrÞ �m2ðpÞ
q2

; V2ðq; r; pÞ ¼ 0:

(3.22)

Wewill now carry out the Taylor expansion of both sides
of Eq. (3.21) in the limit q ! 0. To that end, let consider
the Taylor expansion of a function fðq; r; pÞ around q ¼ 0
(and r ¼ �p). In general we have

fðq;�p� q; pÞ ¼ fð�p; pÞ þ ½2ðq � pÞ þ q2�f0ð�p; pÞ
þ 2ðq � pÞ2f00ð�p; pÞ þOðq3Þ;

(3.23)

where the prime denotes differentiation with respect to
ðpþ qÞ2 and subsequently taking the limit q ! 0, i.e.,

f0ð�p; pÞ � lim
q!0

�
@fðq;�p� q; pÞ

@ðpþ qÞ2
�
: (3.24)

Now, if the function is antisymmetric under p $ r, as
happens with the form factors B1;2, then fð�p; pÞ ¼ 0;
thus, for the case of the form factors in question, the Taylor
expansion is (i ¼ 1, 2)

Biðq;�p�q;pÞ¼ ½2ðq �pÞþq2�B0
ið�p;pÞ

þ2ðq �pÞ2B00
i ð�p;pÞþOðq3Þ: (3.25)

Using Eq. (3.25), and the corresponding expansion for
the rhs,

m2ðrÞ �m2ðpÞ ¼ m2ðqþ pÞ �m2ðpÞ
¼ 2ðq � pÞ½m2ðpÞ�0 þOðq2Þ; (3.26)

assuming that the Ið0Þ is finite, and equating the coeffi-
cients in front of ðq � pÞ, we arrive at (Minkowski space)

½m2ðpÞ�0 ¼ iIð0ÞB0
1ðpÞ: (3.27)

We emphasize that this is an exact relation, whose deriva-
tion relies only on the WI and Bose symmetry that
V���ðq; r; pÞ satisfies, as captured by Eq. (2.14) and

(3.13), respectively. The Euclidean version of Eq. (3.27)
is given in Eq. (5.1).

D. ‘‘One-loop dressed’’ approximation
for the transition function

Wewill next approximate the transition amplitude I�ðqÞ,
connecting the gluon with the massless excitation, by con-
sidering only the diagram ðd1Þ in Fig. 4, corresponding to
the gluonic ‘‘one-loop dressed’’ approximation; we will
denote the resulting expression by �I�ðqÞ.
In the Landau gauge, �I�ðqÞ is given by

�I�ðqÞ ¼ � 1

2
CA

Z
k
�ðkÞ�ðkþ qÞ����P

��ðkÞP��ðkþ qÞ
� B��ð�q;�k; kþ qÞ; (3.28)

where the origin of the factor 1=2 is combinatoric, the
minus sign is due to the combined factor i2 from the
Feynman rule for B��, and ���� is the standard three-

gluon vertex at tree level,

����ðq;r;pÞ¼g��ðr�pÞ�þg��ðp�qÞ�þg��ðq�rÞ�:
(3.29)

To determine the corresponding transition function from
Eq. (3.10), we use

q�����ðq;�k� q; kÞ ¼ ½k2 � ðkþ qÞ2�g��
þ ½ðkþ qÞ�ðkþ qÞ� � k�k��

(3.30)

to write

�IðqÞ ¼ CA

2q2

Z
k
½k2 � ðkþ qÞ2��ðkÞ�ðqþ kÞ

� P�
�ðkÞP��ðkþ qÞB��ð�q; kþ q;�kÞ: (3.31)

In the last step we have used the property of Eq. (3.12) in
order to interchange the arguments of B��, so that the

Taylor expansion of Eq. (3.25) may be applied directly;
this accounts for the additional minus sign. Then, after the
shift kþ q ! k, and further use of Eq. (3.12), �IðqÞ
becomes

�IðqÞ ¼ CA

q2

Z
k
k2�ðkÞ�ðkþ qÞP�

�ðkÞP��ðkþ qÞ

� ½B1g�� þ B2q�q��: (3.32)

To obtain the limit of �IðqÞ as q2 ! 0, we will employ
Eq. (3.25) for B1 and B2, as well as

�ðkþ qÞ ¼ �ðkÞ þ ½2ðq � kÞ þ q2��0ðkÞ
þ 2ðq � kÞ2�00ðkÞ þOðq3Þ: (3.33)

Observe that only the zeroth order term of P��ðkþ qÞ,
namely P��ðkÞ, contributes in this expansion. Then, using
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spherical coordinates to write ðq � kÞ2 ¼ q2k2cos2	, and
the integral

Z
k
fðkÞcos2	 ¼ 1

d

Z
k
fðkÞ; (3.34)

the �IðqÞ in Eq. (3.32) becomes in the limit q2 ! 0 (in
d ¼ 4)

�Ið0Þ ¼ 3CA

�Z
k
k2�2ðkÞB0

1ðkÞþ
1

2

Z
k
k4

@

@k2
½�2ðkÞB0

1ðkÞ�
�
:

(3.35)

Then, partial integration yields

Z
k
k4

@

@k2
½�2ðkÞB0

1ðkÞ� ¼ �3
Z
k
k2�2ðkÞB0

1ðkÞ; (3.36)

and finally one arrives at (Minkowski space)

�Ið0Þ ¼ � 3

2
CA

Z
k
k2�2ðkÞB0

1ðkÞ: (3.37)

The Euclidean version of this equation, Eq. (5.3), will be
used in Sec. V.

We end this subsection with a comment on the dimen-
sionality of the various form factors. The vertex V��� has

dimension ½m�, and so V1, V2 and V3 are dimensionless,
while the remaining form factors have dimension ½m��2.
The integral �IðqÞ has the same dimension as B1, and as a
result, in order to keep V1 dimensionless, B1 must have
dimensions of ½m�.

E. Relating the gluon mass to the transition function

In this subsection we show how the vertex V gives rise to
a gluon mass when inserted into the corresponding SDE.
We will restrict ourselves to the two diagrams shown in
Fig. 1, and will finally express m2ð0Þ exclusively in terms
of �Ið0Þ, which, in turn, depends on the existence of B��

through Eq. (3.37).
In the PT-BFM scheme, the SDE of the gluon propagator

in the Landau gauge assumes the form

��1ðq2ÞP��ðqÞ ¼
q2P��ðqÞ þ i���ðqÞ

½1þGðq2Þ�2 : (3.38)

The most straightforward way to relate the gluon mass to
the transition function �I is to identify, on both sides of
(3.38), the cofactors of the tensorial structure q�q�=q

2

which survive the limit q2 ! 0, and then set them equal
to each other. Making the usual identification (in
Minkowski space) ��1ð0Þ ¼ �m2ð0Þ, it is clear that the
left-hand side (lhs) of (3.38) furnishes simply

lhs jq�q�=q2 ¼ m2ð0Þ: (3.39)

It is relatively straightforward to recognize that the
analogous contribution from the rhs comes from the

standard ‘‘squared’’ diagram, shown in Fig. 5.
Specifically, the starting expression is

���ðqÞ ¼ 1

2
g2CA

Z
k
��
��P

��ðkÞP��ðkþ qÞ½ℾ
þ V�����ðkÞ�ðkþ qÞ þ . . . ; (3.40)

where, as explained earlier, the (all-order) vertex ℾ has
been replaced by ℾ þ V, and the ellipses denote terms that,
in the kinematic limit considered, do not contribute to the
specific structure of interest.
The relevant contribution originates from the part con-

taining the vertex V, to be denoted by ���ðqÞjV ; it is
represented by the diagram in Fig. 5. In particular, by virtue
of Eq. (3.6), we have

���ðqÞjV ¼ 1

2
g2CA

Z
k
�ðqþ kÞ�ðkÞ��

��

� P��ðkÞP��ðkþ qÞU�
��

¼ �g2
�
1

2
CA

Z
k
�ðqþ kÞ�ðkÞ��

��

� P��ðkÞP��ðkþ qÞB��

��
i

q2

�
�I�ð�qÞ

¼ i
q�q�

q2
g2 �I2ðqÞ; (3.41)

where in the second line we have used Eq. (3.7) [with
I�ðqÞ ! �I�ðqÞ], together with �I�ð�qÞ ¼ � �I�ðqÞ, and
Eq. (3.28) in the third line.
Thus, using the fact that, since Lð0Þ ¼ 0 [42], from the

identity of Eq. (2.13) we have that 1þGð0Þ ¼ F�1ð0Þ,
then the rhs of (3.38) becomes

rhs jq�q�=q2 ¼ �g2F2ð0Þ �I2ð0Þ: (3.42)

We next go to Euclidean space, following the usual rules,
and noticing that, due to the change

R
k ¼ i

R
kE

we have
�I2ð0Þ ! � �I2Eð0Þ; so, equating (3.39) and (3.42) we obtain
(suppressing the index ‘‘E’’)

m2ð0Þ ¼ g2F2ð0Þ �I2ð0Þ: (3.43)

Note that the m2ð0Þ so obtained is positive-definite. We
emphasize that the relation of Eq. (3.43) constitutes the
(gluonic) ‘‘one-loop dressed’’ approximation of the com-
plete relation; indeed, both the SDE used as starting
point as well as the expression for �I are precisely the

FIG. 5. The squared diagram.
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corresponding ‘‘one-loop dressed’’ contributions, contain-
ing gluons (but not ghosts).

Finally, let us consider the exact relation [15]

m̂ 2ðq2Þ ¼ ½1þGðq2Þ�2m2ðq2Þ; (3.44)

expressing the dynamical massmðq2Þ of the standard gluon
propagator �ðq2Þ in terms of the corresponding mass,
m̂ðq2Þ, of the PT-BFM gluon propagator [usually denoted

by �̂ðq2Þ] in the same gauge (in this case, in the Landau
gauge). At q2 ¼ 0 this relation reduces to

m2ð0Þ ¼ m̂2ð0ÞF2ð0Þ; (3.45)

so that Eq. (3.43) may be alternatively written as

m̂ 2ð0Þ ¼ g2 �I2ð0Þ: (3.46)

Interestingly enough, when written in this form, the mass
formula derived from our SDE analysis coincides with the
one obtained for the photon mass in the Abelian model of
Jackiw and Johnson (Eq. (2.12) in [18]). In addition, this
last form facilitates the demonstration of the decoupling of
the massless excitation from the on shell four-gluon am-
plitude (see Sec. VI).

In principle, the analysis presented above may be ex-
tended to include the rest of the graphs contributing to the
gluon SDE, invoking the corresponding pole parts of the
remaining vertices; however, this lies beyond the scope of
the present work.

IV. BS EQUATION FOR THE BOUND-STATE
WAVE FUNCTION

As has become clear in the previous section, the gauge-
boson (gluon) mass is inextricably connected to the exis-
tence of the quantity B0

1. Indeed, if B
0
1 were to vanish, then,

by virtue of (3.37) so would �Ið0Þ, and therefore, through
(3.43) we would obtain a vanishing m2ð0Þ. Thus, the ex-
istence of B0

1 is of paramount importance for the mass
generation mechanism envisaged here; essentially, the

question boils down to whether or not the dynamical for-
mation of a massless bound-state excitation of the type
postulated above is possible. As is well-known, in order to
establish the existence of such a bound state one must
(i) derive the appropriate BSE for the corresponding
bound-state wave function, B��, (or, in this case, its de-

rivative), and (ii) find nontrivial solutions for this integral
equation.
To be sure, this dynamical equation will be derived

under certain simplifying assumptions, which will be fur-
ther refined in order to obtain numerical solutions. We
emphasize, therefore, that the analysis presented here is
meant to provide preliminary quantitative evidence for the
realization of the dynamical scenario considered, but can-
not be regarded as a conclusive demonstration.
The starting point is the BSE for the vertex ℾ 0

���ðq; r; pÞ,
shown in Fig. 6. Note that, unlike the corresponding SDE
of Fig. 2, the vertices where the background gluon is
entering (carrying momentum q) are now fully dressed.
As a consequence, the corresponding multiparticle kernels
appearing in Fig. 6 are different from those of the SDE, as
shown in Fig. 7.
The general methodology of how to isolate from the

BSE shown in Fig. 6 the corresponding dynamical equa-
tion for the quantity B�� has been explained in [19,22].

Specifically, one separates on both sides of the BSE equa-
tion each vertex (black circle) into two parts, a ‘‘regular’’
part and another containing a pole 1=q2; this separation
is shown schematically in Fig. 8. Then, the BSE for
B��ðq; r; pÞ is obtained simply by equating the pole parts

on both sides. Of course, for the case we consider the full
implementation of this general procedure would lead to a
very complicated structure, because, in principle, all fully
dressed vertices appearing on the rhs of Fig. 6 may contain
pole parts [i.e., not just the three-gluon vertex of (a) but
also those in (b), (c), and (d)]. Thus, one would be led to an
equation, whose lhs would consist of B��, but whose rhs

would contain the B�� together with all other similar

vertices, denoted by Bf...g in Eq. (3.14). Therefore, this

equation must be supplemented by a set of analogous

FIG. 6. The complete BSE for the full three-gluon vertex ℾ 0
���ðq; r; pÞ.
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equations, obtained from the BSEs of all other vertices
appearing on the rhs of Fig. 6 [i.e., those in (b), (c), (d)].
So, if all vertices involved contain a pole part, one would
arrive at a system of several coupled integral equations,
containing complicated combinations of the numerous
form factors composing these vertices (see, for example,
Fig. 11 in [22]).

It is clear that for practical purposes the above procedure
must be simplified to something more manageable. To that
end, we will only consider graph (a) on the rhs of Fig. 6,

thus reducing the problem to the treatment of a single
integral equation.
Specifically, the BSE for B�� is given by [see Fig. 6]

Bamn
�� ¼

Z
k
Babc
���

��
br ðkþ qÞ���

cs ðkÞKsnmr
����: (4.1)

In addition, we will approximate the four-gluon BS
kernel K by the lowest-order set of diagrams shown in
Fig. 9, where the vertices are bare, while the internal gluon
propagators are fully dressed.
To proceed further, observe that the diagram ða1Þ does

not contribute to the BSE, because the color structure of the
tree-level four-gluon vertex vanishes when contracted with
the color factor fabc of the B��. Diagrams ða2Þ and ða3Þ are
equal, and are multiplied by a Bose-symmetry factor of
1=2. So, in this approximation, the BS kernel is given by

K snmr
����ð�k; p;�p� q; kþ qÞ
¼ �ig2fsnefemr�ð0Þ

�
��
�ðk� pÞ�ð0Þ
���; (4.2)

where �ð0Þ is the tree-level value of the three-gluon vertex.
So, using this kernel and setting the gluon propagators in
the Landau gauge, the BSE becomes

FIG. 7. (A) Schematic relation between the SDE and BSE
kernels. (B) Example of a diagram not contained in the corre-
sponding BSE kernel, in order to avoid overcounting.

FIG. 8. (A) The separation of the vertex in regular and pole parts. (B) The BSE for the bound-state wave function B��.

FIG. 9. The Feynman diagrams considered for the BS kernel. The interaction vertices are approximated by their tree-level values,
while the internal gluon propagators are fully dressed.
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B�� ¼ �2�i�sCA

Z
k
B���ðkþ qÞ�ðkÞ�ðk� pÞ

� P��ðkþ qÞP��ðkÞP
�ðk� pÞ�ð0Þ
�
��

ð0Þ
���; (4.3)

where we have cancelled out a color factor fabc from both
sides.

Let us focus on the lhs of Eq. (4.3). Using the
Taylor expansion in Eq. (3.25), the fact that B2 ¼ 0 [see
Eq. (3.21)], and multiplying by a transverse projector we
obtain

P��ðpÞB�� ¼ 6ðq � pÞB0
1ðpÞ þOðq2Þ: (4.4)

Next, let us denote by ½rhs��� the rhs of Eq. (4.3). Inserting

the bare value for the three-gluon vertices, multiplying by
the transverse projector, and using the Taylor expansions in
Eq. (3.25) and (3.33), after standard manipulations one
obtains the result

P��ðpÞ½rhs��� ¼�4�i�sCAðq �pÞ
Z
k
B0
1ðkÞ�2ðkÞ�ðk�pÞ

�N ðp;kÞþOðq2Þ; (4.5)

where we have defined the kernel

N ðp;kÞ¼4ðp �kÞ½p2k2�ðp �kÞ2�
p4k2ðk�pÞ2 ½8p2k2�6ðpkÞðp2þk2Þ

þ3ðp4þk4ÞþðpkÞ2�: (4.6)

Thus, equating the lhs with the rhs, we derive the following
BSE for the derivative of the form factor that appears in the
mass relation Eq. (3.27)

B0
1ðpÞ ¼ � 2�i

3
�sCA

Z
k
B0
1ðkÞ�2ðkÞ�ðk� pÞN ðp; kÞ:

(4.7)

Going to Euclidean space, we define

x � p2; y � k2; z � ðpþ kÞ2; (4.8)

and write the Euclidean integration measure in spherical
coordinates,

Z d4kE
ð2�Þ4 ¼

1

ð2�Þ3
Z 1

0
dyy

Z �

0
d	sin2	; (4.9)

so that the BSE becomes

B0
1ðxÞ ¼ ��sCA

12�2

Z 1

0
dyyB0

1ðyÞ�2ðyÞ
ffiffiffi
y

x

r Z �

0
d	sin4	 cos	

�
�
zþ 10ðxþ yÞ þ 1

z
ðx2 þ y2 þ 10xyÞ

�
�ðzÞ:
(4.10)

In spherical coordinates we have z¼xþyþ2
ffiffiffiffiffi
xy

p
cos	.

So, around x ¼ 0,

1

z
¼ 1

xþ y

�
1� 2

ffiffiffiffiffi
xy

p
xþ y

cos	

�
; (4.11)

and using the Taylor expansion for the gluon propagator
�ðzÞ, the limit x ! 0 can be taken in the BSE, giving the
value

B0
1ð0Þ ¼ lim

x!0
B0
1ðxÞ ¼ ��sCA

8�

Z 1

0
dyy3B0

1ðyÞ�2ðyÞ�0ðyÞ:
(4.12)

Let us finally implement an additional simplification to
Eq. (4.10), which will allow us to carry out the angular
integration exactly, thus reducing the problem to the solu-
tion of a one-dimensional integral equation. Specifically,
the simplification consists in approximating the gluon
propagator �ðzÞ appearing in the BSE of (4.10) [but not
the�2ðyÞ] by its tree-level value, that is,�ðzÞ ¼ 1=z. Then,
with the aid of the angular integrals,ffiffiffi
y

x

r Z �

0
d	

sin4	 cos	

z

¼ �

16x

�
y

x2
ðy� 2xÞ�ðx� yÞ þ x

y2
ðx� 2yÞ�ðy� xÞ

�
;

ffiffiffi
y

x

r Z �

0
d	

sin4	 cos	

z2

¼ � �

4x

�
y

x2
�ðx� yÞ þ x

y2
�ðy� xÞ

�
; (4.13)

one brings Eq. (4.10) into the form

B0
1ðxÞ ¼

�sCA

24�

�Z x

0
dyB0

1ðyÞ�2ðyÞ y
2

x

�
3þ 25

4

y

x
� 3

4

y2

x2

�

þ
Z 1

x
dyB0

1ðyÞ�2ðyÞy
�
3þ 25

4

x

y
� 3

4

x2

y2

��
:

(4.14)

The limit x ! 0 of this equation is given by (the change
of variable y ¼ tx may be found useful)

B0
1ð0Þ ¼

�sCA

8�

Z 1

0
dyyB0

1ðyÞ�2ðyÞ: (4.15)

Note that this result coincides, as it should, with that
obtained from Eq. (4.12) after setting �0ðyÞ ¼ �1=y2,
namely, the derivative of the tree-level propagator.

V. NUMERICAL SOLUTIONS AND
EXISTENCE OFA BOUND STATE

In this section we will carry out a detailed numerical
analysis of the integral equation obtained in the previous
section, namely, Eq. (4.14).
First of all, let us point out that, despite appearances, the

integral Eq. (4.14) is not linear in the unknown function
B0
1ðxÞ. The nonlinearity enters through the propagator

�ðyÞ, which depends on the dynamical massm2ðyÞ through
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Eq. (2.6); as a result, and by virtue of Eq. (3.27), which, in
Euclidean space reads

½m2ðyÞ�0 ¼ �Ið0ÞB0
1ðyÞ; (5.1)

it is clear that�ðyÞ depends on B0
1ðxÞ in a complicated way.

Specifically, from the two aforementioned equations we
have

��1ðyÞ ¼ yJðyÞ þm2ðyÞ;
m2ðyÞ ¼ m2ð0Þ � Ið0Þ

Z y

0
dzB0

1ðzÞ;
(5.2)

where Ið0Þ may be approximated by its ‘‘one-loop
dressed’’ version �Ið0Þ given in (3.37), which in Euclidean
space becomes

�Ið0Þ ¼ 3CA

32�2

Z 1

0
dyy2�2ðyÞB0

1ðyÞ: (5.3)

Then, Eq. (4.14) must be solved together with the two
additional relations given in Eq. (5.2), as a nonlinear
system. In addition, one may use Eq. (3.43), in order to
obtain an (approximate) constraint for Ið0Þ. Note also that
Eq. (4.14), again due to Eq. (5.1), may be recast entirely in
terms of m2ðyÞ and its derivative.

For the purposes of the present work we will simplify
somewhat the procedure described above. Specifically, we
will present two different approaches, each one particularly
suited for probing distinct features of Eq. (4.14) and the
accompanying Eqs. (5.2). In particular, we will first study
Eq. (4.14) in isolation, using simple Ansätze for �ðyÞ. The
purpose of this study is to establish the existence of non-
trivial solutions for B0

1, study their dependence on the value
of the strong coupling �s, and verify the asymptotic be-
havior predicted by Eq. (5.4). Of course, since �ðyÞ at this
level is treated as an ‘‘external’’ object, the homogeneous
Eq. (4.14) becomes linear in B0

1; as a result, given one
solution we obtain a family of such solutions, through
multiplication by any real constant. Then, as a second
step, we will use the available lattice data for the gluon
propagator �ðyÞ, in order to obtain the corresponding
solution for B0

1. Now, the linearity induced by treating
�ðyÞ as an external input will be resolved by resorting to
Eq. (5.2) and (3.43); thus, out of the infinite family of
solutions only one will be dynamically selected. These
two approaches will be presented in Secs. VB and
VCwhile Sec. VA deals with the asymptotic behavior of
the solutions.

A. Asymptotic behavior

Before turning to the numerical treatment of Eq. (4.14),
it is useful to study the behavior of the solutions for
asymptotically large values of x. Setting �ðyÞ ¼ 1=y, it is
relatively straightforward to establish that the equation
admits a power-law solution of the form B0

1ðxÞ ¼ Axb.
Specifically, substituting this Ansatz into the first integral

of Eq. (4.14), which is the dominant part for large x, and
carrying out the integrations, one arrives at the following
algebraic equation for b,

24�

�sCA

¼ 3

bþ 1
þ 25

4ðbþ 2Þ �
3

4ðbþ 3Þ ; (5.4)

together with the restriction b >�1, imposed in order to
assure convergence in the lower (y ¼ 0) limit of integra-
tion. Setting � � 24�=�sCA, one arrives at the third-order
equation

4�b3 � ð34� 24�Þb2 � ð151� 44�Þb
� 141þ 24� ¼ 0; (5.5)

that may be easily solved; the solution that satisfies
b >�1 is shown in Fig. 10 as a function of �s.

B. The linearized case: solutions
for various gluon propagators

Next we discuss the numerical solutions for Eq. (4.14)
for arbitrary values of x. Evidently, the main ingredient
entering into its kernel is the nonperturbative gluon propa-
gator, �ðqÞ. In order to explore the sensitivity of the
solutions on the details of �ðqÞ, we will employ three
infrared-finite forms, to be denoted by �1ðqÞ, �2ðqÞ, and
�3ðqÞ, focusing on their differences in the intermediate and
asymptotic regions of momenta.
Let us start with the simplest such propagator, namely,

a tree-level massive propagator of the form

��1
1 ðq2Þ ¼ q2 þm2

0; (5.6)

where m2
0 is a hard mass, that will be treated as a free

parameter. On the left panel of Fig. 11, the (blue) dotted
curve represents �1ðq2Þ for m0 ¼ 376 MeV.

FIG. 10 (color online). The physically relevant solution of
Eq. (5.5).

MASSLESS BOUND-STATE EXCITATIONS AND THE . . . PHYSICAL REVIEW D 85, 014018 (2012)

014018-13



The second model is an improved version of the first,
where we introduce the renormalization-group logarithm
next to the momentum q2, more specifically

��1
2 ðq2Þ¼q2

�
1þ13CAg

2

96�2
ln

�
q2þ�m2

0

�2

��
þm2

0; (5.7)

where � is an adjustable parameter varying in the range of
� 2 ½2; 10�. Notice that the hard mass m2

0 appearing in the

argument of the perturbative logarithm acts as an infrared
cutoff; so, instead of the logarithm diverging at the Landau
pole, it saturates at a finite value. The (black) dashed line
represents the Eq. (5.7) when � ¼ 16, m0 ¼ 376 MeV,
and � ¼ 4:3 GeV.

The third model is simply a physically motivated fit for
the gluon propagator determined by the large-volume lat-
tice simulations of Ref. [6], and shown on the left panel of
Fig. 11. The lattice data presented there correspond to a
SUð3Þ quenched lattice simulation, where �ðqÞ is renor-
malized at � ¼ 4:3 GeV. This gluon propagator can be
accurately fitted by the expression (e.g., [15])

��1
3 ðq2Þ¼m2

gðq2Þþq2
�
1þ13CAg

2
1

96�2
ln

�
q2þ�1m

2
gðq2Þ

�2

��
;

(5.8)

where m2
gðq2Þ is a running mass given by

m2
gðq2Þ ¼ m4

q2 þ �2m
2
; (5.9)

and the values of the fitting parameters are m ¼ 520 MeV,
g21 ¼ 5:68, �1 ¼ 8:55 and, �2 ¼ 1:91. On the left panel
of Fig. 11, the (red) continuous line represents the fit
for the lattice gluon propagator given by Eq. (5.8). Notice

that, in all three cases, we have fixed the value of��1ð0Þ ¼
m2

0 � 0:14.
Our main findings may be summarized as follows.

(i) In Fig. 11, right panel, we show the solutions of
Eq. (4.14) obtained using as input the three propa-
gators shown on the left panel. For the simple mas-
sive propagator of Eq. (5.6), a solution for B0

1ðqÞ is

FIG. 11 (color online). Left panel: The three models for the gluon propagator as function of the momentum q2. The (red) continuous
line is the fit for the lattice gluon propagator given by Eq. (5.8) when m ¼ 520 MeV, g21 ¼ 5:68, �1 ¼ 8:55, �2 ¼ 1:91, and � ¼
4:3 GeV; the (black) dashed line is the model of Eq. (5.7) with � ¼ 16, �s ¼ 0:667 and m0 ¼ 376 MeV, while the (blue) dotted line
represents the massive propagator of Eq. (5.6) when m0 ¼ 376 MeV. Right panel: The corresponding solutions of Eq. (4.14) obtained
with the gluon propagators shown on the left panel. The solutions for B0

1ðqÞ are obtained when we fix the value of �s ¼ 1:48, �s ¼
0:667, and �s ¼ 0:492 for �1ðqÞ, �2ðqÞ, and �3ðqÞ, respectively.

FIG. 12 (color online). The (black) continuous curve repre-
sents the solution obtained from Eq. (4.14) using the propagator
�1ðqÞ of Eq. (5.6), with �s ¼ 1:48 and m0 ¼ 376 MeV. The
(red) dotted line is the best fit obtained for the asymptotic
behavior of B0

1ðxÞ given by B0
1ðqÞ ¼ Aq2b with A1 ¼ 14:80 and

b ¼ �0:756. Notice that this value is in excellent agreement
with the power found by the analytical determination, shown in
Fig. 10.
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found for �s ¼ 1:48; in the case of �2ðqÞ given by
Eq. (5.7), a solution is obtained when �s ¼ 0:667,
while for the lattice propagator �3ðqÞ of Eq. (5.8) a
nontrivial solution is found when �s ¼ 0:492.

(ii) Note that, due to the fact that Eq. (4.14) is homoge-
neous and (effectively) linear, if B0

1ðqÞ is a solution
then the function cB0

1ðqÞ is also a solution, for any

real constant c. Therefore, the solutions shown on
the right panel of Fig. 11 correspond to a represen-
tative case of a family of possible solutions, where
the constant c was chosen such that B0

1ð0Þ ¼ 1.
(iii) Another interesting feature of the solutions of

Eq. (4.14) is the dependence of the observed peak
on the support of the gluon propagator in the inter-
mediate region of momenta. Specifically, an in-
crease of the support of the gluon propagator in
the approximate range (0.3–1) GeV results in a
more pronounced peak in B0

1ðqÞ.
(iv) In addition, observe that due to the presence of the

perturbative logarithm in the expression for �2ðqÞ
and �3ðqÞ, the corresponding solutions B0

1ðqÞ
fall off in the ultraviolet region much faster than
those obtained using the simple �1ðqÞ of Eq. (5.6).
In order to check whether the power-law asymp-
totic behavior, B0

1ðqÞ ¼ Aq2b, determined in our

previous analysis, is in agreement with our numeri-
cal solution, we isolate in Fig. 12 the solution of
B0
1ðqÞ obtained with �1ðqÞ and �s ¼ 1:48 (black

continuous curve) and compare it with the best fit
obtained for large values of q2 (red dotted curve).
Indeed, the asymptotic tail of B0

1ðqÞ falls off as

a power law of the type B0
1ðqÞ ¼ Aq2b with A ¼

14:80 and b ¼ �0:756. Notice that the value of b
obtained from the fit is in perfect agreement with
values obtained from Eq. (5.5), shown in Fig. 10.

(v) On the left panel of Fig. 13 we plot �1ðqÞ, given by
Eq. (5.6), for different values of m0 in the range of
300–800 MeV. In order to determine how the solu-
tions are modified when one varies the value of m0,
we show on the right panel of Fig. 13 the various
B0
1ðqÞ, all of them normalized at B0

1ð0Þ ¼ 1. As we
can see, the solutions display the same qualitative
behavior; however, for each m0, the nontrivial solu-
tion is obtained for a different value of �s. In fact, as
the values of m0 increase, so do the values of �s

needed for obtaining a solution; the exact depen-
dence of �s on m2

0 is shown in Fig. 14.

(vi) Next, we study how size variations in the inter-
mediate region of the gluon propagator change
the values of �s needed in order to obtain nontrivial

FIG. 13 (color online). Left panel: The behavior of the gluon propagator �1ðqÞ, given by Eq. (5.6), for various values of m0 in the
range of 300–800 MeV. Right panel: The corresponding solutions for B0

1ðqÞ, obtained using the gluon propagators shown on the left

panel. For each value of m0, we found that the solution for B0
1ðqÞ is obtained for a particular value of �s.

FIG. 14 (color online). The values of �s furnishing nontrivial
solutions to Eq. (4.14) as we vary m0 in the �1ðqÞ of Eq. (5.6).
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solutions from Eq. (4.14). To address this point
systematically, we employ the gluon propagator
�2ðqÞ of Eq. (5.7), varying the parameter � in
the range of � 2 ½2; 16�, keeping fixed m0 ¼
367 MeV, as shown on the left panel of Fig. 15;
the corresponding B0

1ðqÞ for each value of � are

plotted on the right panel. Evidently, decreasing �
increases the support of the gluon propagator in the
intermediate region, and, as a result, one needs
smaller value of �s in order to obtain solutions
for B0

1ðqÞ. This last property is better seen in

Fig. 16, where we present the values of �s needed
to solve Eq. (4.14) as one varies � in �2ðqÞ.

C. Nonlinear treatment: uniqueness of B0
1ðxÞ andm2ðxÞ

In the previous subsection we have practically solved
Eq. (4.14) in isolation, in the sense that we have not
used the supplementary conditions of Eq. (5.2), and have
treated �ðqÞ as an external independent quantity. As a
result, the homogeneous Eq. (4.14) was effectively linear-
ized, giving rise to families of solutions cB0

1ðxÞ, parame-
trized by the value of c. In this subsection we will restore
the nonlinearity of Eq. (4.14); as a result, the arbitrariness
in the value of c is completely eliminated, and one obtains
a single expression for B0

1ðxÞ and m2ðxÞ, for a unique value
of �s.
The way a unique solution for B0

1ðxÞ is singled out
(i.e., a value for c is dynamically chosen) is by combining
Eq. (3.43) and (5.3); specifically, we will require that the
value for �Ið0Þ obtained from the former equation coincides
with that obtained from the latter, namely, that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1ð0Þ=4��sF

2ð0Þ
q

¼ 3CA

32�2

Z 1

0
dyy2�2ðyÞB0

1ðyÞ:
(5.10)

Now, the lhs of (5.10) is fixed, because, as mentioned in
the previous subsection, we must have �s ¼ 0:492 in
order for Eq. (4.14) to have solutions for this particular
(lattice) propagator as input, while ��1ð0Þ and Fð0Þ are
fixed from the lattice. Specifically, the SUð3Þ large-volume
lattice simulations of Ref. [6] yield ��1 � 0:141 (see
Fig. 11) and Fð0Þ � 2:76 (see Fig. 17). Then, the integral
on the rhs (5.10) must match the value of the lhs, and this
can only happen for one particular member of the family
cB0

1ðxÞ.

FIG. 15 (color online). Left panel: The behavior of the gluon propagator, �2ðqÞ, given by Eq. (5.7), when the value of m0 ¼
367 MeV is fixed, and � varies in the range 2–16. Right panel: The corresponding solutions for B0

1ðqÞ obtained with the gluon

propagators shown on the left panel. To each value of � corresponds a specific value of �s that yields a solution B0
1ðqÞ.

FIG. 16 (color online). The values of �s for which we obtain
nontrivial solutions to Eq. (4.14) as we vary � in �2ðqÞ of
Eq. (5.7).
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In Fig. 18, we show the solution for B0
1ðxÞ, which sat-

isfies the constraints imposed on the value of Ið0Þ, obtained
when �s ¼ 0:492 and B0

1ð0Þ ¼ 0:086.
Once the unique solution B0

1ðqÞ has been determined,

one may use Eq. (5.2) to determine the behavior of the
squared gluon mass m2ðxÞ. Integrating numerically B0

1ðqÞ
and fixing mð0Þ ¼ 0:14, we obtain the result shown in
Fig. 19.

Evidently, the function m2ðq2Þ displays a plateau in the
deep infrared, and then decreases sufficiently fast in the
ultraviolet region, as expected on general grounds
[10,14,15].

VI. DECOUPLING OF THE MASSLESS
EXCITATION: AN EXAMPLE

In this section we give an explicit example of how the
massless excitation decouples from an on shell ampli-
tude. Specifically, we will show how this is indeed what
happens in the case of the four-gluon amplitude. To be
sure, a complete proof of the decoupling of the massless
excitation from all Yang-Mills amplitudes requires the
treatment of kernels with an arbitrary number of incoming
gluons, which is beyond our powers at present. However,
the example considered here captures the essence of the
underlying decoupling mechanism.
The demonstration followed here is similar to that given

in [19] for the case of an Abelian model. One starts by
considering the complete four-gluon amplitude, [graph (a)
in Fig. 20], which consists of three distinct pieces: (i) the
amplitude represented by the diagram (b), which is regular
as q2 ! 0, (ii) the graph (c), which contains the massless
excitation, coupled to the external gluons through the
proper vertex function B, and (iii) the one-particle reduc-
ible term, denoted by (d), which is excluded from the SDE
kernel in the usual skeleton expansion. Of course, the
above amplitudes are none other than ðb2Þ, ðb3Þ, and (a)
in Fig. 3, respectively. Since the amplitude (b) is regular by
construction, one must only demonstrate that, as q2 ! 0,
the divergent part of (c), whose origin is the massless
excitation, cancels exactly against an analogous contribu-
tion contained in (d), leaving finally a regular result.
We start by considering the term (d). Within the PT-

BFM framework that we use, the off shell gluon (carrying
momentum q) is effectively converted into a background
gluon; thus, the gluon propagator appearing inside (d) is

given by �̂ðqÞ, while the two three-gluon vertices are the ℾ 0
defined in Eq. (2.9). So

FIG. 17 (color online). Lattice results [6] for the ghost dressing
function, FðqÞ, renormalized at � ¼ 4:3 GeV. Notice that
Fð0Þ � 2:76.

FIG. 18 (color online). The numerical solution B0
1ðqÞ obtained

from Eq. (4.14), under the constraints imposed by Eqs. (3.43) and
(3.37), and with �s ¼ 0:492.

FIG. 19 (color online). The square of the dynamical gluon
mass, obtained from Eq. (3.27), after plugging into it the B0

1ðxÞ
shown in Fig. 18.
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ðdÞ ¼ �ig2ℾ 0
���ðq; p1; p2ÞP��ðqÞ�̂ðqÞℾ 0

���ðq; p3; p4Þ
¼ �ig2ℾ 0

���ðq; p1; p2Þ�̂ðqÞℾ 0�
��ðq; p3; p4Þ;

(6.1)

where the factor ð�iÞ comes from the definition of the
gluon propagator, Eq. (2.1). In the second line we have
eliminated the longitudinal term q�q�=q2 inside P��ðqÞ
using the ‘‘on-shellness’’ condition

q�ℾ 0
���ðq; r; pÞjo:s: ¼ ½��1ðp2ÞP��ðpÞ

� ��1ðr2ÞP��ðrÞ�o:s:
¼ 0; (6.2)

valid for both three-gluon vertices. We emphasize that the
full ℾ 0 is needed (with the V included) for the on-shellness
condition of Eq. (6.2) to be fulfilled. Note also that, if one
had chosen a nonvanishing gauge-fixing parameter � for
the gluon propagator (instead of the � ¼ 0 of the Landau
gauge), then the condition of Eq. (6.2) is instrumental for
the cancellation of the unphysical parameter � from the
physical amplitude.

Next, it is clear that from the vertex V contained in ℾ 0
only the part U survives, [see Eq. (3.3)], because all
longitudinal momenta contained in R are annihilated on
shell, i.e., when contracted with the appropriate polariza-
tion vectors e�ðpÞ, due to the validity of the relation

p�e�ðpÞ ¼ 0. Then, we have that (suppressing indices)

ℾ 0�̂ℾ 0 ¼ ðℾ þUÞ�̂ðℾ þUÞ
¼ ℾ�̂ℾ þ ℾ 0�̂UþU�̂ℾ 0 �U�̂U: (6.3)

Given that the first term in (6.3) is regular, while the
second and third term vanish on shell by virtue of (6.2)
[which is triggered becauseU��� is proportional to q�, see

Eq. (3.4)], we are led to the following expression for the
pole part of (d)

ðdÞpole ¼ ig2U����̂ðqÞU�
��: (6.4)

Then, using Eqs. (3.7) and (3.9), we obtain

ðdÞpole ¼ �
�
B

�
i

q2

�
B

�
½g2I2ðqÞ�̂ðqÞ�: (6.5)

Now, in the limit q2 ! 0, the quantity in square brackets
goes to 1, precisely by virtue of Eq. (3.46) [remember,

�̂�1ð0Þ ¼ m̂2ð0Þ]. Therefore,

lim
q2!0

ðdÞpole ¼ � lim
q2!0

�
B

�
i

q2

�
B

�
; (6.6)

which is precisely the contribution of the term (c) in the
same kinematic limit, but with the opposite sign.
Therefore, the on shell four-gluon amplitude is free from
poles at q2 ¼ 0, as announced.
Note that, as an alternative, one might opt for eliminat-

ing completely any reference to V in the amplitude (d)
from the very beginning, namely, the first step in Eq. (6.1);
this is of course possible, given that some parts of the
fully longitudinal vertex V vanish on shell, while the rest
vanishes when contracted with the transverse projector
P��ðqÞ. In such a case, however, one may not dispose of

the longitudinal part of P��ðqÞ any longer, because now

the on-shellness condition of Eq. (6.2) is distorted, pre-
cisely due to the absence of V. It is a straightforward
exercise to demonstrate that if one were to take the pro-
duced mismatch into account, one would recover exactly
the same result found above.
Finally, let us briefly make contact with the discussion

presented in Sec. III B, and, in particular, the relations
given in Eqs. (3.16) and (3.18), and ask how the previous
cancellation would proceed in the conventional linear

gauges, i.e., if instead of ℾ 0, V, and �̂ one had used ℾ 0
C,

VC, and �.
Returning to Eq. (3.16), observe that the second line on

its rhs vanishes when the gluons with momenta p and r are
‘‘on shell’’; therefore, in that limit, Eq. (3.18) is exact (no
ellipses). In addition, the term B, introduced in Eq. (3.4),
must be common to both gauges, since it describes the
interaction of two quantum gluons with a composite exci-
tation, and there is no distinction between ‘‘background’’
and ‘‘quantum’’ bound state. Therefore, from Eq. (3.18) we
conclude that, under the kinematic conditions described,

FIG. 20. The complete four-gluon amplitude and the various terms composing it.
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IðqÞ ¼ F�1ðqÞICðqÞ: (6.7)

Then, since graph (c) is the same in both gauges, given that
B is common, all one needs to demonstrate is that one can
still arrive at the result of Eq. (6.5) using ℾ 0

C, VC, and �.
This is equivalent to demonstrating that

lim
q2!0

½I2CðqÞ�ðqÞ� ¼ lim
q2!0

½I2ðqÞ�̂ðqÞ�: (6.8)

But this is immediately true, as can be seen by combining
Eqs. (6.7) and (3.45), and noticing how the term Fð0Þ
cancels out.

VII. DISCUSSION AND CONCLUSIONS

The gauge-invariant generation of a gluon mass relies on
the existence of massless bound-state excitations, which
trigger the Schwinger mechanism. The presence of these
excitations in the skeleton expansion of the full three-gluon
vertex ℾ 0

��� induces longitudinally coupled pole struc-

tures, giving rise to a purely nonperturbative component,
the pole vertex V���.

In this article we have studied in detail the dynamical
ingredients associated with the vertex V; in particular, the
poles in V are identified with the propagator of the mass-
less scalar excitation, while the tensorial structure is de-
termined by two basic purely nonperturbative quantities:
the transition amplitude, denoted by I�, which at the
diagrammatic level connects the gluon propagator with
the massless scalar propagator, and the effective vertex,
denoted by B��, connecting the massless excitation to two

outgoing gluons.
The powerful requirement of maintaining the gauge

invariance of the theory intact restricts the form of the
various form factors composing B��, and establishes a

nontrivial connection between the transition function and
the first derivative of the momentum-dependent gluon
mass. The insertion of the vertex V��� (or, effectively, its

surviving component U���) into the SDE of the gluon

propagator (in the Landau gauge) allows one to express,
at zero momentum transfer, the gluon mass in terms of the
transition function, by means of a rather simple formula. In
fact, it turns out that, the relevant dynamical quantity is the
derivative of the form factor B1, denoted by B0

1.
As we have demonstrated, in the aforementioned kine-

matic limit, the homogeneous BSE obeyed by the B��

reduces in a natural way to an analogous integral equation
for B0

1. The detailed numerical study of an approximate
version of this latter equation reveals the existence of
nontrivial solutions for B0

1, which, when inserted into the
corresponding formulas, furnish the momentum depen-
dence of the gluon mass. The existence of these solutions
adds weight to the hypothesis that the nonperturbative
Yang-Mills dynamics lead indeed to the formation of the
required massless bound states.

It is clear that some of the dynamical aspects of this
problem merit a further detailed study, due to their
relevance in the ongoing scrutiny of the infrared properties
of the Yang-Mills Green’s functions. Particularly important
is to consider the effects of bound-state poles in the SD
kernels of not only the three-gluon vertex, as we did in this
article, but of all other fundamental vertices of the theory.
Such an investigation would involve some or all of the
vertices appearing in Eq. (3.14), which would form a
coupled system of homogeneous integral equations.
Given the recent lattice results on the ghost propagator,
especially interesting in this context is the dynamical in-
formation that one might be able to obtain about the
quantity B, corresponding to the wave function of the
ghost-ghost channel [(vertex a1 in Fig. (4)]. Specifically,
while the ghost dressing function F is found to be finite in
the infrared, a fact that can be explained by the presence of
the gluon mass that saturates the corresponding perturba-
tive logarithm, there is no dynamical mass associated with
the ghost field. One would expect, therefore, that the
solution of the corresponding system should give rise to
a nonvanishing B0

1, as before, but to a vanishing ghost-

ghost wave function B.
As has been explained in detail in Sec. II, the incorpo-

ration of the massless excitations modify the three-gluon
vertex ℾ , giving rise to the new vertex ℾ 0, defined in
Eq. (2.9). It would certainly be particularly interesting to
compare the characteristic features of ℾ 0 with results ob-
tained on the lattice for the three-gluon vertex [47]. In
particular, one might in principle be able to relate the
presence of the massless poles to possible divergences of
some of the form factors, in the appropriate kinematic
limit. To that end, one must first determine the closed ex-
pression for the entire vertex V from Eq. (2.8) and the WI
and STIs it satisfies. Then the answer should be written
in a standard basis, such that of Ball and Chiu [46,48],
and the final result projected on the particular kinematic
configurations usually employed in the lattice calculations.
We hope to be able to carry out this project in the near
future.
The PT-BFM framework in general, and some of the

technical developments presented in the present work, in
particular, may serve as a starting point towards a consis-
tent first-principle treatment of glueballs as bound states of
gluons, at nonvanishing momenta. Specifically, one may
envisage a combined BS and SDE analysis, in the spirit of
similar approaches in the case of color-singlet q �q bound
states, employed in the literature for the dynamical de-
scription of mesons [49,50].
Such a task is particularly challenging, from the field-

theoretic point of view, especially given the richness of
glueball states observed on the lattice, and the detailed
study of their quantum numbers and properties (for a recent
review, see [51]). As is well-known, a similar treatment is
technically very subtle already at the level of the quarks,
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and requires a high degree of sophistication in order
to implement consistently the expressions obtained from
the SDE, (such as the momentum dependence of the
constituent quark mass furnished by the gap equation),
used as input in the BS, and the structure of the corre-
sponding kernel, intrinsic to the BS equation [52]. If one
were to consider the purely gluonic sector these problems
would undoubtedly resurface, most likely in an even more
acute fashion, given the additional complications due to the
spin structure. In particular, the running of the gluon mass
obtained from the corresponding dynamical equation must
be fed into the appropriate BS equations in such a way as to
not distort the various subtle properties enforced by gauge
invariance. The main advantage of the PT-BFM framework
in this respect is the firmer control on gauge invariance
achieved at a nonperturbative diagrammatic level (i.e.,
when dealing with fully dressed Green’s functions). In
addition, the systematic construction of purely gluonic
renormalization-group invariant combinations, such as

effective charges [42], usually employed when building
up the BS kernels [53,54], is one of the strongest points
of this formalism, and can certainly provide useful insights.
Of course, the complete treatment, even so, is very likely to
be compounded by the usual difficulties encountered when
attempting to extend the relevant dynamical equations
from Euclidean to Minkowski space (see, e.g., [55]). It
would clearly be most interesting to incorporate the field-
theoretic possibilities described above into a phenomeno-
logically relevant framework.
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