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The one-boson exchange potential model for �cN is constructed and the possibility of �cN bound

states is examined. We consider an effective Lagrangian for the charmed baryons, �c, �c, and ��
c,

reflecting the heavy quark symmetry, chiral symmetry, and hidden local symmetry. We determine the

coupling constants using various methods. With the derived nonrelativistic potentials, we study the bound

state problem of the �cN system and relevant coupled channel effects. It is found that molecular bound

states of �cN are plausible, for which the channel couplings of �cN and ��
cN are essential.
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I. INTRODUCTION

Heavy quark hadrons attract great interest since the
observation of the exotic DsJð2317Þ and Xð3872Þ. One of
their prominent features is the proximity to one or several
thresholds. These mesons, followed by the observation of
other exotica [1–5], triggered lots of discussions about the
bound state problem of heavy quark hadrons. The case of
hidden charm mesons is a major concern because they are
relatively easy to produce in the experimental facilities.

There are several types of two-body hidden charm sys-
tems: ðc �qÞð �cqÞ, ð �c �q �qÞðcqqÞ, ð �cqÞðcqqÞ, ðc �cÞðq �qÞ, and
ðc �cÞðqqqÞ. For the first three types, the components are
heavy and may be treated nonrelativistically. Since the
interactions may be mediated by light meson exchanges,
each type had been proposed to have bound states [6–17].
For the last two types, the two-body attraction is not so
strong and the formation of a molecule may be difficult.
However, it is possible that the in-medium effects may
drive the formation of bound states because of the van
der Waals type force. Such quarkonia are called nuclear-
bound charmonium [18] or hadro-charmonium [19].

More exotic bound states are possible in the heavy quark
case due to the relatively small kinetic term. The charmed
meson-nucleus systems are interesting in that they are easy
to tag. One may find works about DN (or �DN) interaction
and the charmed mesic nuclei in various methods in
Refs. [20–29]. The calculations favor the existence of
such bound states.

The formation of the �c and �c hypernuclei was pre-
dicted more than 30 years ago [30]. There were further
studies about such hypernuclei [31–33]. The observation of
�c-nuclei had also been claimed [34]. Recently, this prob-
lem was revisited with the quark-meson coupling model
[35] and it was found that the charmed hypernuclei are still
probable. However, it is inconclusive whether the two-
body bound states in the �cN channel exist or not [30].
In Refs. [36,37], various heavy quark deuteronlike bound

states, N�c, N�0
c, N�cc,��cc, and so on, were discussed

by scaling the strengths of the nucleon-nucleon interaction
models. But the interactions between �c and N could
not be approximated by the rescaled NN interaction. As
�cN is the most fundamental charmed nucleon state, it is
worthwhile to give it a serious study with the modern
heavy quark effective theory and channel couplings to
�cN and ��

cN.
With the forthcoming facilities such as GSI-FAIR and

J-PARC [38], it would be possible to draw a conclusion
whether the charmed hypernuclei exist or not. To under-
stand further this problem theoretically, we revisit the two-
body bound states in the�cN channel at the hadron level in
this paper. Since the one-pion-exchange interaction is for-
bidden in the �cN channel, we consider scalar and vector
meson exchange contributions. We also include the
coupled channel effects due to the nearby �cN and ��

cN
thresholds. The coupled channel effects in the heavy quark
scenario probably have sizable contributions even though
the thresholds are not very close to each other, which may
be realized from the discussions about the resonance ef-
fects for the D �D production [39,40]. It is interesting to
investigate how important the coupled channel effects are
for the formation of the �cN bound states.
In the early studies of the �cN interaction [30], the

SU(4) symmetry was used to extend the one-boson-
exchange model for NN and YN interactions. At that
time, the heavy quark symmetry had not yet been explored.
With this symmetry, one does not need to consider the
largely broken SU(4) any more. As a result of the heavy
quark symmetry, parts of interacting terms are related and
the Lagrangian can be written in a compact form. Because
of the spontaneous symmetry breaking of QCD, it is natu-
ral to consider chiral symmetry for pions. To include the
light vector mesons, we turn to the hidden symmetry
approach where the vector mesons are treated as gauge
fields of a hidden local symmetry. This approach has
been successful in explaining the KSRF relation m2

� ¼
2f2�g���, the universality of � coupling, and � dominance

of the photon coupling to pions [41]. Here, when deriving
the one-boson-exchange potentials, we use effective
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Lagrangians satisfying the heavy quark symmetry for
heavy baryons, chiral symmetry for pions, and hidden local
symmetry for vector mesons. The Lagrangian is analogous
to the heavy meson version presented in Ref. [42]. As for
the unknown coupling constants, we turn to the quark
model, chiral multiplets, vector meson dominance, and
QCD sum rule.

Extension of the study to the bottom case is also inter-
esting, but we would not explore it here. Our paper is
organized as follows. After the introduction, we present
the effective Lagrangians in Sec. II. Then we determine the
coupling constants with various methods in Sec. III. In
Sec. IV, we present the derived potentials. The numerical
results for the S-wave spin-singlet and triplet �cN are
given in Secs. V and VI, respectively. Finally, we present
our discussions and conclusions in Sec. VII.

II. THE LAGRANGIAN

Here, we consider the S-wave �cN states and the chan-
nels which couple to them, i.e., the I ¼ 1

2 and JP ¼ 0þ or

1þ two-baryon states. We consider the contributions from

the �cN and ��
cN channels. It is a 3-channel problem for

JP ¼ 0þ and 7-channel problem for JP ¼ 1þ. The labels
are listed in Table I. Because of the higher mass, we
assume that the �ð1232Þ contributions are negligible.
In the heavy quark limit, the ground state heavy baryons

Qqq form SUð3Þ antitriplet with JP ¼ 1
2
þ and two degen-

erate sextets with JP ¼ ð12 ; 32Þþ. As in Ref. [43], we use B�3,

B6, and B�
6 to denote these multiplets. To write down the

compact form of the Lagrangians, we use the notation of
the superfield S�, which is defined by

S� ¼ B�
6� þ �

1ffiffiffi
3

p ð�� þ v�Þ�5B6; (1)

where v� is the 4-velocity of the heavy baryon and � is an

arbitrary phase factor. One finds that an appropriate choice
of � is �1 (see the Appendix), which is different from the
one often used in the literature. Actually, this phase does
not affect the final results because it appears only in the
transition potentials. In the multichannel case, it is easy to
prove that the binding energy does not change with the
following replacement for the Hermitian Hamiltonian:

H11 H12 H13 H14 H15 � � �
H22 H23 H24 H25 � � �

H33 H34 H35 � � �
H44 H45 � � �

H55 � � �
� � �

0
BBBBBBBB@

1
CCCCCCCCA
)

H11 �2H12 �3H13 �4H14 �5H15 � � �
H22 ð��

2�3ÞH23 ð��
2�4ÞH24 ð��

2�5ÞH25 � � �
H33 ð��

3�4ÞH34 ð��
3�5ÞH35 � � �

H44 ð��
4�5ÞH45 � � �
H55 � � �

� � �

0
BBBBBBBB@

1
CCCCCCCCA
; (2)

where the subscripts of H denote the channels and �i (i ¼
2; 3; . . . ) are arbitrary phases. Because of the same reason,
the convention of the relative phase between the sextet and
the antitriplet will also not matter.

One constructs the effective Lagrangian according to the
chiral symmetry, heavy quark symmetry, and hidden local
symmetry [41,42,44,45]. The coupling terms are con-
strained by the couplings at the quark level: 0þ � 0þ �
M, 1þ � 1þ �M, and 1þ � 0þ �M. Here, 0þ and 1þ
are the spin-parity quantum numbers of the light diquark
inside the baryons and M represents the pseudoscalar,
scalar, or vector meson. The constructed heavy quark
baryon Lagrangian is

LB ¼ LB�3
þLS þLint; (3)

LB�3
¼ 1

2
tr½ �B�3ðiv �DÞB�3� þ i�Btr½ �B�3v

�ð�� � V�ÞB�3�
þ ‘Btr½ �B�3�B�3� (4)

LS ¼ �tr½ �S�ðiv �D��BÞS��
þ 3

2
g1ðiv	Þ
���	tr½ �S�A�S��

þ i�Str½ �S�v�ð�� � V�ÞS��
þ �Str½ �S�F��S�� þ ‘Str½ �S��S�� (5)

L int ¼ g4tr½ �S�A�B�3� þ i�I

���	v�tr½ �S�F�	B�3� þ H:c:;

(6)

where we use the notations, Eqs. (7)–(10),�B ¼ M6 �M�3

is the mass difference between the sextet and the antitrip-
let, and � is the scalar singlet meson. Note that B6 ð12þÞ and
B�
6 ð32þÞ are degenerate because of the heavy quark spin

symmetry in this effective theory. In the coupled channel
calculation of the �cN � �cN � ��

cN system, we will use
the empirical values of the masses of �c, �c and ��

c and

TABLE I. The S-wave �cN states and the channels which couple to them.

Channels 1 2 3 4 5 6 7

JP ¼ 0þ �cNð1S0Þ �cNð1S0Þ ��
cNð5D0Þ

JP ¼ 1þ �cNð3S1Þ �cNð3S1Þ ��
cNð3S1Þ �cNð3D1Þ �cNð3D1Þ ��

cNð3D1Þ ��
cNð5D1Þ
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therefore the �c � ��
c splitting is properly included. The

coupling constants g1 and g4 are the same as those in
Ref. [43]. Other definitions are given below.

B�3 ¼
0 �þ

c �þ
c

��þ
c 0 �0

c

��þ
c ��0

c 0

0
BB@

1
CCA;

B6 ¼
�þþ

c
1ffiffi
2

p �þ
c

1ffiffi
2

p �0þ
c

1ffiffi
2

p �þ
c �0

c
1ffiffi
2

p �00
c

1ffiffi
2

p �0þ
c

1ffiffi
2

p �00
c �0

c

0
BBBB@

1
CCCCA;

B�
6 ¼

��þþ
c

1ffiffi
2

p ��þ
c

1ffiffi
2

p ��þ
c

1ffiffi
2

p ��þ
c ��0

c
1ffiffi
2

p ��0
c

1ffiffi
2

p ��þ
c

1ffiffi
2

p ��0
c ��0

c

0
BBBB@

1
CCCCA;

(7)

� ¼ ffiffiffi
2

p
�0ffiffi
2

p þ ffiffi
6

p �þ Kþ

�� � �0ffiffi
2

p þ ffiffi
6

p K0

K� �K0 � 2ffiffi
6

p 

0
BBBB@

1
CCCCA;

V� ¼ i
gVffiffiffi
2

p
�0ffiffi
2

p þ !ffiffi
2

p �þ K�þ

�� � �0ffiffi
2

p þ !ffiffi
2

p K�0

K�� �K�0 �

0
BBBB@

1
CCCCA

�

;

(8)

A� ¼ i

2
½�yð@��Þ þ ð@��Þ�y�;

�� ¼ 1

2
½�yð@��Þ � ð@��Þ�y�;

� ¼ exp

�
i�

2f

�
;

F�� ¼ @�V� � @�V� þ ½V�; V��;

(9)

D�B�3 ¼ @�B�3 þ ��B�3 þ B�3�
T
�;

D�S� ¼ @�S� þ ��S� þ S��
T
�:

(10)

We use f ¼ 92:3 MeV for the pion decay constant. The

constant gV ¼ m�=ð
ffiffiffi
2

p
f�Þ ¼ 5:8 is derived with the vec-

tor meson dominance (VMD) [41,42,44]. For the nucleon-
nucleon interaction part, we use the following SU(2)
Lagrangian:

LN ¼�gA
2f

�N���5@�ð�i�iÞN�h� �N�N

�hV �N��ð�i�i
�þ!�ÞN�hT �N���@�ð�i�i

�þ!�ÞN;

(11)

where �i is the Pauli matrix, representing the isospin.

III. THE POTENTIALS

The one-boson-exchange diagram in Fig. 1 is consid-
ered, where we use B1 and B2 to denote the charmed
baryons. When deriving the potentials, we use the heavy
quark limit for the charmed baryons, i.e. ignoring the
1=M�3;6 corrections but keeping up to 1=M2

N corrections

for the nucleon. At each interacting vertex, we introduce a
cutoff � through the monopole type form factor

FðqÞ ¼ �2 �m2

�2 � q2
; (12)

where m is the mass of the exchanged meson and q is its
4-momentum. Because the meson exchange occurs be-
tween light quarks, we use the same cutoff for B1B2� and
NN� vertices. The cutoffs are taken to be around 1 GeV,
while they may be different for the scalar and the vector
meson exchanges.
For convenience, we define some functions for the final

potentials after the Fourier transformation:

½FðqÞ�2
q2 �m2

! � 1

4�
mY1ðm;�; rÞ;

½FðqÞ�2
q2 �m2

~q2 ! 1

4�
m3Y3ðm;�; rÞ;

½FðqÞ�2
q2 �m2

½i ~O1 � ð ~k� ~qÞ� ! � ~L � ~O1

4�
m3Z3ðm;�; rÞ;

½FðqÞ�2
q2 �m2

½ð ~O1 � ~qÞð ~O2 � ~qÞ� !
~O1 � ~O2

12�
m3Y3ðm;�; rÞ

þOten

12�
m3H3ðm;�; rÞ; (13)

where ~k ¼ ~pþ ~p0 with the notation in Fig. 1, ~O1 is the

(transition) spin operator of the charmed baryon, ~O2 is the
spin operator of the nucleon, andOten is the tensor operator

defined by Oten ¼ 3ð ~O1�~rÞð ~O2�~rÞ
r2

� ð ~O1 � ~O2Þ. The other defi-
nitions are

N(-p
→/)

N(-p
→

)B1(p
→

)

B2(p
→/)

q
→

FIG. 1. The considered interaction in deriving the potentials.
B1 (B2) may be �c, �c, or ��

c. The dashed line denotes the
exchanged meson �, �, �, or !.
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YðxÞ ¼ e�x

x
; ZðxÞ ¼

�
1

x
þ 1

x2

�
YðxÞ; HðxÞ ¼

�
1þ 3

x
þ 3

x2

�
YðxÞ;

Y1ðm;�; rÞ ¼ YðmrÞ �
�
�

m

�
Yð�rÞ ��2 �m2

2m�
e��r; Y3ðm;�; rÞ ¼ YðmrÞ �

�
�

m

�
Yð�rÞ � ð�2 �m2Þ�

2m3
e��r;

Z3ðm;�; rÞ ¼ ZðmrÞ �
�
�

m

�
3
Zð�rÞ � ð�2 �m2Þ�

2m3
Yð�rÞ;

H3ðm;�; rÞ ¼ HðmrÞ �
�
�

m

�
3
Hð�rÞ � ð�2 �m2Þ�

2m3
Yð�rÞ � ð�2 �m2Þ�

2m3
e��r: (14)

When getting these formulas, we have adopted the ap-
proximation q0 ¼ 0. The lowest excited state of �cN is
the three-body �cN� state. But in this study we do not
consider the coupling of this channel because we need to
excite the system to L ¼ 1 in order to get the correct parity.
Such excitation will hinder the channel coupling.

In the multichannel case, we have transition potentials,
e.g. Vð�cN ! ��

cNÞ, and we need to define the transition
spin. Here, we define u� ¼ S�t 	, where u� is the Rarita-
Schwinger field, S�t is the transition spin matrix (2� 4),
and the spin wave functions of ��

c are

	ð3=2Þ ¼ ð1; 0; 0; 0ÞT; 	ð1=2Þ ¼ ð0; 1; 0; 0ÞT;
	ð�1=2Þ ¼ ð0; 0; 1; 0ÞT; 	ð�3=2Þ ¼ ð0; 0; 0; 1ÞT:

(15)

We also need the spin operator for ��
c, which is defined

through ~�rs � �Syt� ~�S
�
t , ~Srs � 3

2 ~�rs. One may check

~S2rs ¼ 3
2 ð32 þ 1Þ ¼ 15

4 .

Now we may write down the general form of the
potentials,

V�ði; jÞ ¼ C�ði; jÞ m3
�

24�f2�
f ~O1 � ~O2Y1ðm�;�; rÞ þOtenH3ðm�;�; rÞg;

V�ðiÞ ¼ C�ðiÞ m�

16�

�
4Y1ðm�;�; rÞ þ ~L � ~�2

�
m�

MN

�
2
Z3ðm�;�; rÞ

�
;

V�ði; jÞ ¼ C�1ði; jÞ
m�hV

32�

�
8Y1ðm�;�; rÞ þ

�
1þ 4MNhT

hV

�
m2

�

M2
N

½Y1ðm�;�; rÞ � 2 ~L � ~�2Z3ðm�;�; rÞ�
�

þ C�2ði; jÞ
m3

�hV

36�MN

��
1þ 2MNhT

hV

�
½2 ~O1 � ~O2Y1ðm�;�; rÞ �OtenH3ðm�;�; rÞ� � 6 ~L � ~O1Z3ðm�;�; rÞ

�
; (16)

where i and j are labels of the channels, Cði; jÞ and CðiÞ are
channel-dependent coefficients, the operator �2 or O2 is
the Pauli matrix of the nucleon spin, and O1 is the corre-
sponding spin matrix for the charmed baryon ~�1 ( ~�rs) or
the transition spin ~St or ~Syt . The ! exchange potential is
similarly defined as the � potential.

It should be noted that we omit the contact
(�-functional) part of the potential, which appears in
Y3 in our model. The main reason is that the interact-
ing two baryons should get small contributions from
such terms when they form a molecule-type bound
state, in which two baryons are well separated. The
difference between the defined functions Y3 and Y1 is
the contact part. So, the Y3 does not appear in our
model potentials.

For the calculation with the potentials, one may use any
consistent phase convention of the coefficients Cði; jÞ. The
correct result is ensured by Eq. (2). One should also note
the possible convention problem when calculating the

matrix elements h ~O1 � ~O2i, hOteni, and h ~L � ~Oi with the
Wigner-Eckart theorem. The conventions must also be
consistent.

IV. THE COUPLING CONSTANTS

The next task is to determine the coupling constants
in the Lagrangians. We use several methods to con-
strain the values: (1) the strong decay of the baryons,
(2) quark model estimation, (3) vector meson domi-
nance assumption, (4) chiral multiplet assumption, and
(5) QCD sum rule calculations. In Ref. [43], the co-
efficients of B6B6�, B6B�3�, B�

6B6�, B�
6B�3�, and

B�
6B

�
6� coupling terms are called g1, g2, g3, g4, and

g5, respectively. In the following parts, we also use
these notations.
The available strong decays are only �c ! �c� and

��
c ! �c� [46]. The coupling constants g2 and g4 may be

derived from the decay widths
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�ð�c ! ��Þ ¼ g22
4�f2�

M�c

M�c

j ~p3
�j;

�ð��
c ! ��Þ ¼ g24

12�f2�

M�c

M��
c

j ~p3
�j;

(17)

where j ~p�j ¼ 94ð180Þ MeV for �c ! �c� (��
c ! �c�)

is the c.m. momentum of the pion. In the numerical evalu-
ation, we will use the averaged values derived from differ-
ent decay modes: jg2j ¼ 0:598 and jg4j ¼ 0:999.

All the coupling constants may be estimated with the
quark model. The basic procedure is to calculate the aver-
age of the coupling vertex twice, at hadron level and at
quark level, and to equate them. The effective Lagrangian
for the light constitute u, d quark fields, c is

Lq ¼ � gqA
2f

�c���5@�ð�i�iÞc � gq� �c�c

� gq� �c��ð�i
��

i þ!�Þc
� fq� �c���@�ð�i

��
i þ!�Þc : (18)

We assume that the heavy quark does not couple to the
light mesons. For the pion coupling with heavy baryons,
we just need to estimate two independent coupling con-
stants, e.g. g1 and g2, and relate others to them with the

heavy quark symmetry relations g3 ¼
ffiffi
3

p
2 g1, g4 ¼ � ffiffiffi

3
p

g2,

and g5 ¼ � 3
2g1 [43]. The obtained values are g1 ¼ 4

3g
q
A

and g2 ¼ �
ffiffi
2
3

q
gqA. For the scalar meson coupling, we have

‘B ¼ �gq� and ‘S ¼ 2gq�. For the vector meson coupling,

one gets ð�BgVÞ ¼ �2gq�, ð�SgVÞ ¼ 4gq�, ð�SgVÞ ¼ 2gq�
mq

þ
4fq�, and ð�IgVÞ ¼ �

ffiffi
2

p
4 ð2gq�mq

þ 4fq�Þ, wheremq is the quark

mass. We have neglected the 1=MB�3;6
terms in deriving the

above relations. For the nucleon-nucleon sector, we have

gA ¼ 5
3g

q
A, h� ¼ 3gq�, hV ¼ gq�, and hT ¼ 5gq�

6MN
ðMN

mq
� 3

5Þ þ
5
3 f

q
�.

With gqA ¼ 0:75 in the chiral quark model [47], one
obtains g1 ¼ 1:00, g2 ¼ �0:61, g3 ¼ 0:87, g4 ¼ 1:06,
g5 ¼ �1:50, and gA ¼ 1:25. For the coupling constant
gq�, the value in a � model is 3.65 [48]. We have ‘B ¼
�3:65, ‘S ¼ 7:30, and h� ¼ 10:95. If we use the value
gq� ¼ 2:621 in a chiral quark model [49], we have ‘B ¼
�2:621, ‘S ¼ 5:242, and h� ¼ 7:863. For the vector
meson-baryon coupling constants, we use the quark mass
mq ¼ 313 MeV [49] for the discussions. In the Nijmegen

model D [50], the authors used hV ¼ 2:1 and hT ¼
9:1 GeV�1, which correspond to gq� ¼ 2:1 and fq� ¼
2:8 GeV�1 and gives ð�BgVÞ ¼ �4:2, ð�SgVÞ ¼ 8:4,
ð�SgVÞ ¼ 24:6 GeV�1 and ð�IgVÞ ¼ �8:7 GeV�1. In
Ref. [51], the values gq� ¼ 3:0 and fq� ¼ 0:0 were used,
which correspond to hV ¼ 3:0 and hT ¼ 6:4 GeV�1

and give ð�BgVÞ ¼ �6:0, ð�SgVÞ ¼ 12:0, ð�SgVÞ ¼
19:2 GeV�1, ð�IgVÞ ¼ �6:8 GeV�1.

In the heavy meson case, the relevant vector meson
coupling constants have been estimated with VMD [52].
One can also use this approach to estimate the coupling
constants �B and �S here. For the heavy quark hadrons,
VMD assumes that the coupling of the electromagnetic
current to the light quarks is dominated by the vector
mesons. One may find the electromagnetic interactions of
heavy hadrons in Ref. [53]. To avoid the confusion due to
the existence of the heavy quark spectator, one uses only
the isovector �meson dominance. The obtained values are

ð�BgVÞ ¼ �
ffiffi
2

p
m�

f�
¼ �5:04 and ð�SgVÞ ¼ 2

ffiffi
2

p
m�

f�
¼ 10:08,

where the decay constant f� ¼ 216 MeV. Comparing

these numbers with the quark model estimation, one finds
that they are roughly consistent.
In Ref. [54], the chiral partner of the ground charmed

meson multiplet was studied to interpretDsJð2317Þ. In that
method, one may obtain an estimation of the coupling
constant between the scalar meson and the charmed me-
sons. The authors also explored the doubly heavy baryons.
Recall that the parity partner of the nucleon has also been
explored [55]. One may extend the previous studies to the
charmed baryon case. Here, we derive the scalar meson
coupling constants ‘B and ‘S with the chiral multiplet
assumption.
For the antitriplet B�3, its interpolating current is

B�3 � ðqTC�5qÞQ ¼ ðqTLCqLÞQ� ðqTRCqRÞQ; (19)

which transforms as ð�3; 1Þ � ð1; �3Þ under SUð3ÞL�SUð3ÞR.
Here, we have used �5qL ¼ qL and �5qR ¼ �qR. Its
parity partner is

~B �3 � ðqTCqÞQ ¼ ðqTLCqLÞQþ ðqTRCqRÞQ: (20)

Therefore, one may define the left field B�3L¼ 1ffiffi
2

p ð ~B�3þB�3Þ
and the right field B�3R ¼ 1ffiffi

2
p ð ~B�3 � B�3Þ, which transform as

B�3L ! LB�3LL
T and B�3R ! RB�3RR

T . Then the lowest or-
der chirally invariant Lagrangian is

L�3
LH ¼ 1

2
tr½ �B�3Lði@�m�3ÞB�3L� þ

1

2
tr½ �B�3Rði@�m�3ÞB�3R�

þG�

4
½trð �B�3L�B�3R�

TÞ þ trð �B�3R�
yB�3L�

�Þ�; (21)

where � ¼ ���, �T is its transposition, and � transforms
as � ! L�Ry. � can actually be the scalar nonet [54]. In
the chiral symmetric phase, the left and right fields have the
degenerate mass m�3. To get the linear representation, one
redefines the fields B�3 and ~B�3,

B�3L ¼ 1ffiffiffi
2

p �ð ~B�3 þ B�3Þ�T; B�3R ¼ 1ffiffiffi
2

p �yð ~B�3 � B�3Þ��;

(22)

where the physical heavy field B�3 or ~B�3 transforms as
B ! UBUT . With the fact that h~�i 	 f� in the chiral
broken phase, we get
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L�3
LH¼1

2
tr½ �B�3i 6DB�3�m�3

�B�3B�3�þ
1

2
tr½ �~B�3i 6D ~B�3�m�3

�~B�3
~B�3�

þ tr½ �~B�3��A
�B�3þ �B�3��A

� ~B�3�

þG�f
2
�

4
trf �~B�3

~B�3� �B�3B�3g

þG�f�
2

trf �~B�3 ~�phy
~B�3� �B�3 ~�phyB�3gþ . . . (23)

Now the mass difference �M�3 between B�3 and ~B�3 appears.
Comparing with Eq. (3), one has

�M�3 ¼ G�f
2
�; ‘B ¼ ��M�3

2f�
¼ �G�f�

2
: (24)

To estimate the numerical value of ‘B, we adopt the masses

of the �c states. There are three P-wave fields: �c1,
~�c0

and ~�c1 [56]. The parity partner of the S-wave �c should

be ~�c0. Unfortunately, it has not been reported. We may
use the � baryons to estimate the mass splitting �M�3 	
�ð1670Þ ��ð1405Þ þ�cð2595Þþ ��þ

c 	 573 MeV,
which gives ‘B ¼ �3:1. This value and the sign are con-
sistent with the quark model.

The chiral multiplet ~S� ð12�; 32�Þ of S� ð12þ; 32þÞ has not
been identified. But we can still give a rough estimate of
the coupling constant ‘S. Here, we discuss only the J ¼ 1

2

parity partners B6 and ~B6. If we use the interpolating
current B6 � ðqTC��qÞ��

t �
5Q [57,58], its partner’s cur-

rent is ~B6 � ðqTC���
5qÞ��

t �
5Q, where ��

t ¼ �� � v� 6v.
We may define

B6RL � ðqTLC��qRÞ��
t �

5Q;

B6LR � ðqTRC��qLÞ��
t �

5Q:
(25)

In fact, ðqTRC��qLÞT ¼ ðqTL�T
�C

TqRÞ ¼ ðqTLC��qRÞ, so

that B6RL ¼ B6LR � ð3; 3Þ,

B6�ðqTC��qÞ��
t �

5Q

¼ðqTRC��qLÞ��
t �

5QþðqTLC��qRÞ��
t �

5Qþ0�ð3;3Þ;
(26)

~B6 � ðqTC���
5qÞ��

t �
5Q

¼ ðqTRC��qLÞ��
t �

5Q� ðqTLC��qRÞ��
t �

5Qþ 0� 0:

(27)

This means the defined current B6 with the transformation
(3, 3) does not have a parity partner. However, one may use
the following operators for the argument:

B6 � ðqTC���qÞ���Q

¼ ðqTLC���qLÞ�5�
��Q� ðqTRC���qRÞ�5�

��Q;

(28)

~B6 � ðqTC���qÞ�5���Q

¼ ðqTLC���qLÞ�5�
��Qþ ðqTRC���qRÞ�5�

��Q;

(29)

which transform as ð6; 1Þ � ð1; 6Þ. Then we may identify

B6L ¼ 1ffiffiffi
2

p ð ~B6 þ B6Þ; B6R ¼ 1ffiffiffi
2

p ð ~B6 � B6Þ: (30)

They transform as B6L ! LB6LL
T , B6R ! RB6RR

T . With

the similar procedure, we finally get ‘S ¼ �M6

f�
. The parity

partner of � is denoted as ~�c1 [56]. It has not been
measured, either. However, if we assume the mass differ-
ence comes mainly from the excitation of the light diquark,
one may estimate �M6 	 �M�3 	 573 MeV, and thus
‘S 	 2‘B 	 6:2.
Now we turn to some QCD sum rule calculations about

the coupling constants. For the NN� coupling constant,
there is a calculation h� ¼ 14:6 [59], which is a little larger
than the estimation in the quark model. From the pion
couplings ��

c�c� and ��
c�c� in Ref. [60], one gets g3 ¼

0:90
 0:17
 0:17, g4 ¼ 0:94
 0:06
 0:20, and there-
fore g1 	 1:04. From the values g��

c�c� ¼ 4:2

0:5 GeV�1 and g��

c�c� ¼ 7:8
 1:0 GeV�1 in Ref. [61],

one has g3 ¼ 0:78
 0:09 and g4 ¼ 1:02
 0:13. These
numbers are all consistent with the quark model results.
In Ref. [62], however, the authors use a different definition
of the coupling constant g�c�c� ¼ �8:0
 1:7. With the

help of the Goldberger-Treiman relation (GTR) [63], one
obtains a value g1 � 0:3, which is much smaller than the
quark model estimation. Ref. [58] presents a calculation of
the couplings of the light vector mesons and heavy bary-
ons. To compare their results with our quark model esti-
mation, we again use GTR and get ð�BgVÞ 	 �43:4 for

g�c�c! ¼ �1:85
 0:06, ð�SgVÞ 	 123:6 for gp0
��

c�
�
c�

¼
2:65
 0:20, and ð�SgVÞ 	 78:0 for gp0

��
c�

�
c!

¼ 1:51

0:18. These results are much larger than the quark model
estimation. But, for another coupling constant, we do not
need GTR and we have ð�SgVÞ 	 21:0 GeV�1 for

gp1
��

c�
�
c�

¼ 2:27
 0:20 and ð�SgVÞ 	 13:5 GeV�1 for

gp1
��

c�
�
c!

¼ 1:32
 0:18, which are not far from the quark

model estimation. It is an interesting problem for the QCD
sum rule calculation that we get inconsistent results when
comparing different definitions of the coupling constants
with the help of GTR in the heavy quark baryon case.
Because of this reason, we do not use these values. By
the way, one may conclude that the hidden local symmetry
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is supported by taking a glimpse at the small coupling

constants gp2
��

c�
�
c�

and gp2
��

c�
�
c!

in Ref. [58].

For comparison, we summarize in Table II the values of
the coupling constants given by different methods. There
we have taken our convention for the phases. In our nu-
merical evaluation, we will choose the following values
and relations:

g2 ¼ �0:598; g4 ¼ 0:999; g1 ¼
ffiffiffi
8

p
3

g4;

g3 ¼
ffiffiffi
2

3

s
g4; g5 ¼ � ffiffiffi

2
p

g4; gA ¼ 1:25;

‘B ¼ �3:1; ‘S ¼ �2‘B; h� ¼ 10:95;

ð�BgVÞ ¼ �6:0; ð�SgVÞ ¼ �2ð�BgVÞ;
ð�SgVÞ ¼ 19:2 GeV�1; ð�IgVÞ ¼ �ð�SgVÞ=

ffiffiffi
8

p
;

hV ¼ 3:0; hT ¼ 6:4 GeV�1: (31)

V. JP ¼ 0þ CASE

We adopt the variational method [64] to solve the
bound state problem. For the hadron masses, we use
m� ¼ 137:27 MeV, m� ¼ 775:49 MeV, m! ¼
782:65 MeV, mN ¼ 938:92 MeV, m�c

¼ 2286:46 MeV,

m�c
¼ 2453:56 MeV, and m��

c
¼ 2517:97 MeV [46].

The scalar � meson is a broad state with strong coupling

to �� S-wave scattering states and its mass has not
been accurately given. The recent investigations indicate
that the pole mass is around 400� 600 MeV [65–67].
In the following calculation, we just adopt a large value
m� ¼ 600 MeV. If we take a smaller value, then it will
enhance attraction and will result in deeper bound
states. Another parameter we cannot determine is the
cutoff. In fact, the results are sensitive to it. We treat it
as a free parameter and discuss the effects on the
binding energy. In this section, we investigate the
spin-singlet case.
It is useful to take a look at the potentials. We plot the

potentials of different channels in Fig. 2 with the cutoff
�� ¼ �� ¼ �vec ¼ 1 GeV. The pion potentials in the
channels 2 and 3 are both repulsive while the transition
potentials are strong. The central force of the � potential
dominates the transition process �cNð1S0Þ $ �cNð1S0Þ
while the tensor force of the � potential dominates the
processes �cNð1S0Þ $ ��

cNð5D0Þ and �cNð1S0Þ $
��

cNð5D0Þ. We study first whether only one-pion-exchange

interaction would lead to a bound state and then investigate
the scalar and vector meson contributions. We call the
corresponding potentials OPEP (one-pion-exchange poten-
tial) and OBEP (one-boson-exchange potential), respec-
tively. Certainly the portions of the contributions from
different mesons change if one uses other cutoffs �� �
�� � �vec. We will discuss the effects in the following
calculation.

TABLE II. The coupling constants in different methods. For the quark model estimation, we present the results with gqA ¼ 0:75,
gq� ¼ 3:65 [48], gq� ¼ 3:0, and fq� ¼ 0:0 [51]. We have used the phase convention of g2;4 from the decay being consistent with the

quark model.

Coupling Quark Model Chiral Multiplet VMD QSR Decay

g1
4
3g

q
A ¼ 1:00

g2 �
ffiffi
2
3

q
gqA ¼ �0:61 �0:598

g3
2ffiffi
3

p gqA ¼ 0:87 0:90
 0:17
 0:17 [60]

0:78
 0:09 [61]

g4
ffiffiffi
2

p
gqA ¼ 1:06 0:94
 0:06
 0:2 [60]

1:02
 0:13 [61]

0.999

g5 �2gqA ¼ �1:50

‘B �gq� ¼ �3:65 � �M
2f�

	 �3:1
‘S 2gq� ¼ 7:30 �M

f�
	 6:2

ð�BgVÞ �2gq� ¼ �6:0 � mV

fV
	 �5:04

ð�SgVÞ 4gq� ¼ 12:0 2mV

fV
	 10:08

ð�SgVÞ 2ðgq�mq
þ 2fq�Þ ¼ 19:2 GeV�1 21:0 GeV�1,

13:5 GeV�1 [58]

ð�IgVÞ � 1ffiffi
2

p ðgq�mq
þ 2fq�Þ ¼ �6:8 GeV�1

gA
5
3g

q
A ¼ 1:25

h� 3gq� ¼ 10:95 14.6 [59]

hV gq� ¼ 3:0
hT � gq�

2MN
þ 5

6 ðg
q
�

mq
þ 2fq�Þ ¼ 6:4 GeV�1 GeV� 1
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A. OPEP model

Let us first consider the case without channel coupling.
For the channel �cN, the direct one-pion-exchange is
forbidden. For the channels �cN and ��

cN, the potentials
are both repulsive, therefore one cannot get a bound state.

For the case with channel coupling, we have one free
parameter ��. It is interesting that a bound state is ob-
tained within the reasonable range of the cutoff. We present
the binding energies, the root-mean-square (RMS) radius,
and the probabilities of each channel in Table III. The
binding energy is given with relative to the �cN threshold.
As a deuteronlike molecule, the two baryons should not be
very close. Thus we only list the results with the RMS
radius larger than 0.7 fm. The values indicate that the
reasonable binding energy should be no more than tens

of MeValthough it depends on the poorly known cutoff. As
an example, we show the wave functions of different

channels for �� ¼ 1:3 GeV in Fig. 3(a). That the proba-
bility of the channel ��

cNð5D0Þ is larger than that of the

channel �cNð1S0Þ indicates the importance of the tensor

force in the model. As a check, we have calculated the two-
channel case, �cNð1S0Þ and �cNð1S0Þ, and we do not find

any binding solutions.
We have omitted the �-functional part in our potentials.

Once that part is included, deeper molecular bound states
are obtained. In that case, the S-wave �cN channel is
dominant over to D-wave ��

cN channel. For example, if
we use �� ¼ 0:8 GeV, a 3-channel calculation gives
the binding energy B:E: ¼ 19:18 MeV and a 2-channel
calculation (without the D-wave channel) gives

FIG. 2 (color online). The potentials of different channels for the JP ¼ 0þ case with �� ¼ �� ¼ �vec ¼ 1 GeV.
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B:E: ¼ 17:85 MeV. However, the binding energy is more
sensitive to the cutoff parameter. We get B:E: ¼
111:53 MeV in the 3-channel calculation with a little
larger cutoff �� ¼ 0:9 GeV.

B. OBEP model

After we consider the contributions from the scalar
meson � and the vector mesons � and !, the binding
energies will change accordingly. However, we have

TABLE III. Binding solutions for the JP ¼ 0þ case with channel coupling in the OPEP model. The binding energies (B.E.) are given
relative to the �cN threshold. The probabilities correspond to �cNð1S0Þ, �cNð1S0Þ, and ��

cNð5D0Þ, respectively.
�� (GeV) 1.2 1.3 1.4 1.5 1.6 1.7

B:E:ðJ ¼ 0Þ (MeV) 0.64 6.16 18.51 38.88 68.29 107.64ffiffiffiffiffiffiffiffihr2ip
(fm) 5.2 1.9 1.2 0.9 0.8 0.7

Prob. (%) (98:2=0:6=1:2) (94:0=2:3=3:7) (89:3=4:6=6:1) (84:5=7:2=8:3) (80:1=9:8=10:1) (76:1=12:2=11:7)

FIG. 3 (color online). Thewave functionsui (i ¼ 1; 2; . . . ; 7) of different channels. Thefirst three diagrams correspond to the results for
the spin-singlet state: (a) OPEP case with the cutoff �� ¼ 1:3 GeV; (b) OBEP case with the cutoff �� ¼ �� ¼ �vec ¼ 0:9 GeV;
(c) OBEP casewith the parameter� ¼ 1:4. The last three diagrams correspond to the results for the spin-triplet state: (d) OPEP casewith
the cutoff �� ¼ 1:3 GeV; (e) OBEP case with the cutoff �� ¼ �� ¼ �vec ¼ 0:9 GeV; (f) OBEP case with the parameter � ¼ 1:5.
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some freedoms to choose: the three cutoff parameters ��,
��, and �vec. In the nucleon-nucleon case, one may de-
termine the unknown model parameters by fitting the
abundant experimental data. Since there is no available
data, here we discuss the results with two approaches for
the parametrization of the cutoffs.

1. Common cutoff

The simplest assumption is that we use the same
cutoff for different mesons �� ¼ �� ¼ �vec ¼ �com.
This cutoff should be at least larger than the exchanged
meson masses. As in the former subsection, we first
consider the case without coupled channel effects. In

Table IV, we show the binding energy and the corre-
sponding RMS radius for individual channels relative to
each threshold, where solutions are found only in the
S-wave channels. Numerically, one may obtain binding
solutions for the D-wave channel with a larger cutoff,
but the solutions are not reasonable. For example, we get
B:E: ¼ 1:99 MeV and rRMS ¼ 0:6 fm with �com ¼
1:78 GeV. The radius is so small for a shallow
D-wave bound state. Because of the attractive � meson,
�cN can be bound now. The contribution from the
repulsive ! is not large in this parametrization of cut-
offs. For the �cN, the cancellation between the � and !
contributions is large and the attraction comes mainly
from the scalar potential.

TABLE IV. Binding solutions for the individual channels in the JP ¼ 0þ and common-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. ‘‘�’’ indicates that there is no binding solution. The units for the binding
energy and RMS radius are MeV and fm, respectively.

�com (GeV) 0.9 1.0 1.1 1.2 1.3 1.4

�cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffihr2ip

] [1.24, 3.8] [11.09, 1.5] [27.07, 1.1] [46.66, 0.9] [68.45, 0.8] [91.58, 0.7]

�cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffihr2ip

] � [2.22, 2.8] [14.22, 1.3] [31.56, 1.0] [52.08, 0.8] [74.62, 0.7]

TABLE V. Binding solutions for the JP ¼ 0þ and common-cutoff case with channel coupling
in the OBEP model. The binding energies (B.E.) are given relative to the �cN threshold. The
probabilities correspond to �cNð1S0Þ, �cNð1S0Þ, and ��

cNð5D0Þ, respectively.
�com (GeV) 0.8 0.9 1.0 1.1

B:E:ðJ ¼ 0Þ (MeV) 0.12 13.60 52.50 123.14ffiffiffiffiffiffiffiffihr2ip
(fm) 11.2 1.5 0.9 0.7

Prob. (%) (99:7=0:1=0:2) (96:0=2:0=2:0) (87:3=9:2=3:5) (75:8=19:7=4:5)

TABLE VI. Binding solutions for the individual channels in the JP ¼ 0þ and scaled-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. ‘‘�’’ indicates that there is no binding solution. The units for the binding
energy and RMS radius are MeV and fm, respectively.

� 1.5 2.0 2.5 3.0 3.5 4.0

�cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffihr2ip

] [0.12, 11.6] [6.54, 1.9] [20.30, 1.2] [38.86, 0.9] [60.56, 0.8] [84.29, 0.7]

�cNð1S0Þ [B.E.,
ffiffiffiffiffiffiffiffihr2ip

] � [2.33, 2.7] [14.07, 1.3] [31.64, 1.0] [52.96, 0.8] [74.75, 0.7]

TABLE VII. Binding solutions for the JP ¼ 0þ and scaled-cutoff case with channel coupling in the OBEP model. The binding
energies (B.E.) are given relative to the �cN threshold. The probabilities correspond to �cNð1S0Þ, �cNð1S0Þ, and ��

cNð5D0Þ,
respectively.

� 1.2 1.4 1.6 1.8 2.0

B:E:ðJ ¼ 0Þ (MeV) 0.11 5.26 19.37 43.05 75.65ffiffiffiffiffiffiffiffihr2ip
(fm) 11.7 2.0 1.2 0.9 0.7

Prob. (%) (99:6=0:4=0:0) (95:8=4:1=0:1) (89:7=10:1=0:2) (76:9=22:5=0:6) (77:0=22:5=0:5)

YAN-RUI LIU AND MAKOTO OKA PHYSICAL REVIEW D 85, 014015 (2012)

014015-10



Now we consider the coupled channel effects. Table V
lists the results. The binding energy and the radius are more
sensitive to the change of the cutoff than the OPEP case.
For the same binding energy as the OPEP case, the
necessary cutoff in OBEP is smaller. These features are
attributed to the more attractive potentials. In order to
have the molecular condition, rRMS > 0:7 fm, satisfied,
the binding energy should be no more than tens of
MeV, as in the OPEP model calculation. As an example,
we plot the wave functions of different channels with
�com ¼ 0:9 GeV in Fig. 3(b).

Let us go back to the single channel �cN and the
potentials. Because of the isospin conservation, direct �
and � exchanges are forbidden. The spin-dependent
! exchange interaction also vanishes. The resulting

spin-independent repulsive potential has been shown in
Fig. 2. If one includes the �-functional terms in the model
potentials, the! exchange interaction is strongly attractive
at short distance, which results in much deeper bound
states and enhances the sensitivity of the results to the
cutoff parameter. In addition, the coupled channel calcu-
lation with the �-functional terms results in unreasonable
molecular bound state solutions. Thus we omit the
�-functional terms in the present model construction.

2. Scaled cutoffs

Another possible choice of the cutoff parameters is to
choose different values for the pseudoscalar, scalar, and
vector mesons. To reduce the number of parameters, we

FIG. 4 (color online). The potentials of different channels for the JP ¼ 0þ case with � ¼ 1:4.
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adopt a parametrization used in Ref. [68], �ex ¼ mex þ
��QCD. Here mex is the mass of the exchanged meson,

�QCD ¼ 220 MeV is the scale of QCD, and � is a dimen-

sionless parameter whose value is not very far from 1. We
choose various values of � in the present investigation.

Table VI shows our results for the case without channel
coupling. For theD-wave channel��

cN, one gets a solution
with the binding energy 0.92 MeV and the RMS radius
0.7 fm by using � ¼ 3:54. A larger value � ¼ 3:6 gives a
solution with the binding energy 21.28 MeVand the radius
0.6 fm. Therefore, we concern only S-wave states in that
table, as in the case of common cutoff. By comparing these
values with those in Table IV, one finds that these two
parameterizations give similar results, especially for the
�cN channel.

For the case with channel coupling, we give the numeri-
cal results in Table VII. From this table and Table V,
although the binding energies and the radii in these two
parametrization methods are consistent and somehow
equivalent, while the probabilities of individual channels
are not. The probability depends on the contributions from
different exchanged mesons. It is helpful to understand this
feature from the wave functions and the potentials. We
show the wave functions of different channels with
� ¼ 1:4 in Fig. 3(c). There is a node in the wave function
of the third channel ��

cNð5D0Þ. The node does not disap-

pear for the other �. Actually, such a behavior results from
the transition potential between the first channel and the
third channel as well as that between the second channel
and the third channel. These potentials have different signs

FIG. 5 (color online). The potentials of different channels for the JP ¼ 1þ case with �� ¼ �� ¼ �vec ¼ 1 GeV.
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FIG. 6 (color online). The potentials of different channels for the JP ¼ 1þ case with �� ¼ �� ¼ �vec ¼ 1 GeV. (cont.)
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FIG. 7 (color online). The potentials of different channels for the JP ¼ 1þ case with �� ¼ �� ¼ �vec ¼ 1 GeV. (cont.)
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in the long-range part and the short-range part. As an
example, we plot the potentials of this parametrization in
Fig. 4 with � ¼ 1:4.

VI. JP ¼ 1þ CASE

The spin-triplet case is a little complicated because
there are four more channels than the spin-singlet case.
We carry out a similar analysis in this section. Before the
numerical evaluation, we plot the potentials with the

cutoffs �� ¼ �� ¼ �vec ¼ 1 GeV, which are shown in
Fig. 5–8. The potentials for the channel �cNð3S1Þ $
�cNð3S1Þ and the channel �cNð1S0Þ $ �cNð1S0Þ are

identical. There is no transition potential �cNð3S1Þ $
�cNð3D1Þ, which is omitted in Fig. 8.

A. OPEP model

Now we discuss possibilities of bound states without
channel coupling among�cN,�cN, and��

cN in the OPEP

TABLE VIII. Binding solutions for the individual channels in the JP ¼ 1þ case in the OPEP model. The binding energies (B.E.) are
given relative to their own thresholds. The probabilities correspond to 3S1 and

3D1 for the �cN system, and 3S1,
3D1, and

5D1 for the

��
cN system, respectively. We also present the total D-wave probability for ��

cN.

�� (GeV) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

B:E:ðJ ¼ 1Þ (MeV) 0.08 1.22 4.09 9.27 17.34 28.93 44.69 65.32 91.52

�cN
ffiffiffiffiffiffiffiffihr2ip

(fm) 13.8 4.0 2.4 1.7 1.4 1.1 1.0 0.8 0.7

Prob. (%) (98:7=1:3) (95:8=4:2) (93:5=6:5) (91:7=8:3) (90:2=9:8) (89:0=11:0) (88:0=12:0) (87:2=12:8) (86:4=13:6)

�� (GeV) 1.6 1.7 1.8 1.9 2.0 2.1

B:E:ðJ ¼ 1Þ (MeV) 0.47 3.83 10.27 20.08 33.66 51.50

��
cN

ffiffiffiffiffiffiffiffihr2ip
(fm) 5.6 2.2 1.5 1.1 0.9 0.8

Prob. (%) (96:3=0:1=3:6) (92:9=0:1=7:0) (91:0=0:2=8:8) (89:7=0:2=10:1) (88:8=0:1=11:1) (87:9=0:1=12:0)
D-wave prob. 3.7% 7.1% 9.0% 10.3% 11.2% 12.1%

FIG. 8 (color online). The potentials of different channels for the JP ¼ 1þ case with �� ¼ �� ¼ �vec ¼ 1 GeV. (cont.)
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model. For the�cN channel, there is no binding solution as
before. For the �cN and ��

cN channels, S-and D-wave
mixing is allowed. The former (latter) is a two-channel
(three-channel) problem: �cNð3S1Þ and �cNð3D1Þ
(��

cNð3S1Þ, ��
cNð3D1Þ, and ��

cNð5D1Þ). Numerical results

are given in Table VIII.
After including the coupled channel effects, we obtain

the results presented in Table IX. Our calculation indi-
cates again that the coupled channel effects are impor-
tant in the OPEP model. One finds that the binding
energies are slightly different between the singlet and
triplet cases. The 4-th channel, �cNð3D1Þ, has small

contribution. Actually, if one ignores this channel, the
resultant binding energy changes little. We show the

wave functions of different channels with the cutoff
�� ¼ 1:3 GeV in Fig. 3(d).

B. OBEP model

In the case of the OBEP model, we again explore two
cases for the parametrization of the cutoff parameters:
(1) common cutoffs �� ¼ �� ¼ �vec ¼ �com, and
(2) scaled cutoffs �ex ¼ mex þ ��QCD.

1. Common cutoff

We first discuss the case without the channel coupling.
For the �cN channel, the scalar meson and the vector
meson exchanges do not lead to S-and D-wave mixing

TABLE IX. Binding solutions for the JP ¼ 1þ case with channel coupling in the OPEP model. The binding energies (B.E.) are given
relative to the �cN threshold. The probabilities correspond to �cNð3S1Þ, �cNð3S1Þ, ��

cNð3S1Þ, �cNð3D1Þ, �cNð3D1Þ, ��
cNð3D1Þ, and

��
cNð5D1Þ, respectively. We also present the total D-wave probability.

�� (GeV) 1.2 1.3 1.4 1.5 1.6

B:E:ðJ ¼ 1Þ (MeV) 1.17 7.52 20.64 41.86 72.39ffiffiffiffiffiffiffiffihr2ip
(fm) 3.9 1.8 1.2 0.9 0.8

Prob. (%) (97:6=0:2=0:4=
0:0=1:0=0:1=0:7)

(93:7=0:6=1:3=
0:0=2:5=0:2=1:7)

(89:3=1:4=2:5=
0:0=3:9=0:3=2:6)

(84:6=2:7=3:7=
0:1=5:3=0:4=3:2)

(79:6=4:6=4:9=
0:1=6:8=0:4=3:6)

D-wave prob. 1.8% 4.4% 6.8% 9.0% 10.1%

TABLE X. Binding solutions for the individual channels in the JP ¼ 1þ and common-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. The probabilities correspond to 3S1 and

3D1 for the �cN system, and 3S1,
3D1, and

5D1 for the ��
cN system, respectively. We also present the total D-wave probability for ��

cN.

�com (GeV) 0.8 0.9 1.0

B:E:ðJ ¼ 1Þ (MeV) 2.84 26.20 78.51

�cN
ffiffiffiffiffiffiffiffihr2ip

(fm) 2.8 1.2 0.8

Prob. (%) (96:4=3:6) (95:0=5:0) (95:0=5:0)

�com (GeV) 0.9 1.1 1.3 1.5 1.7

B:E:ðJ ¼ 1Þ (MeV) 0.73 13.10 27.04 42.89 77.36

��
cN

ffiffiffiffiffiffiffiffihr2ip
(fm) 4.7 1.4 1.1 0.9 0.8

Prob. (%) (97:7=0:1=2:2) (94:4=0:1=5:5) (91:3=0:1=8:6) (85:1=0:0=14:9) (63:5=0:5=36:0)
D-wave prob. 2.3% 5.6% 8.7% 14.9% 36.5%

TABLE XI. Binding solutions for the JP ¼ 1þ and common-cutoff case with channel coupling in the OBEP model. The binding
energies (B.E.) are given relative to the �cN threshold. The probabilities correspond to �cNð3S1Þ, �cNð3S1Þ, ��

cNð3S1Þ, �cNð3D1Þ,
�cNð3D1Þ, ��

cNð3D1Þ, and ��
cNð5D1Þ, respectively. We also present the total D-wave probability.

�com (GeV) 0.8 0.9 1.0 1.1

B:E:ðJ ¼ 1Þ (MeV) 0.22 13.49 47.50 106.16ffiffiffiffiffiffiffiffihr2ip
(fm) 8.7 1.5 0.9 0.7

Prob. (%) (99:6=0:0=0:1=
0:0=0:2=0:0=0:1)

(96:6=0:3=0:9=
0:0=1:2=0:1=0:9)

(90:6=2:2=3:7=
0:0=2:1=0:1=1:3)

(79:1=9:9=6:4=
0:1=3:2=0:1=1:2)

D-wave prob. 0.3% 2.2% 3.5% 4.6%
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and thus one again gets the binding solutions in Table IV,
i.e. the binding solution for the single channel�cN is spin-
independent. For the �cN and ��

cN channels, we present
their results in Table X.

After considering the coupled channel effects, we get the
results in Table XI, which are consistent with the OPEP
model calculation. An example of the resulting wave func-
tions with �com ¼ 0:9 GeV is given in Fig. 3(e).

2. Scaled cutoffs

We present the results without channel coupling in
Table XII and those with channel coupling in Table XIII.
If one compares Table XIII with Table XI, it is easy to see

that the two parameterizations of the cutoffs may give
consistent binding energies and radii. The wave functions
for � ¼ 1:5 in the coupled channel case are given in
Fig. 3(f). As in the corresponding spin-singlet case, the
wave functions also have nodes, which are due to the
transition potentials. In fact, the nodes have appeared in
the D wave of the ��

cN channel (without the channel
coupling to the �cN and �cN).

VII. SUMMARYAND CONCLUSIONS

In studying the possible molecular bound states contain-
ing �cN, we have constructed a potential model based
on the effective Lagrangian reflecting the heavy quark

TABLE XII. Binding solutions for the individual channels in the JP ¼ 1þ and scaled-cutoff case in the OBEP model. The binding
energies (B.E.) are given relative to their own thresholds. The probabilities correspond to 3S1 and

3D1 for the �cN system, and 3S1,
3D1, and

5D1 for the ��
cN system, respectively. We also present the total D-wave probability for ��

cN.

� 0.9 1.1 1.3 1.5 1.7 1.9

B:E:ðJ ¼ 1Þ (MeV) 0.39 6.37 19.52 39.26 64.90 95.77

�cN
ffiffiffiffiffiffiffiffihr2ip

(fm) 6.6 2.0 1.3 1.0 0.8 0.7

Prob. (%) (99:8=0:2) (99:7=0:3) (99:8=0:2) (99:8=0:2) (99:9=0:1) (99:9=0:1)

� 3.2 3.3 3.4 3.5 3.6 3.7

B:E:ðJ ¼ 1Þ (MeV) 1.39 3.13 6.39 12.41 22.74 38.38

��
cN

ffiffiffiffiffiffiffiffihr2ip
(fm) 3.4 2.4 1.7 1.3 0.9 0.7

Prob. (%) (98:0=0:1=1:9) (96:4=0:1=3:5) (92:8=0:2=7:0) (85:3=0:2=14:5) (73:7=0:2=26:1) (61:1=0:3=38:7)
D-wave prob. 2.0% 3.6% 7.2% 14.7% 26.3% 39.0%

TABLE XIII. Binding solutions for the JP ¼ 1þ and scaled-cutoff case with channel coupling in the OBEP model. The binding
energies (B.E.) are given relative to the �cN threshold. The probabilities correspond to �cNð3S1Þ, �cNð3S1Þ, ��

cNð3S1Þ, �cNð3D1Þ,
�cNð3D1Þ, ��

cNð3D1Þ, and ��
cNð5D1Þ, respectively. We also present the total D-wave probability.

� 1.3 1.5 1.7 1.9 2.1

B:E:ðJ ¼ 1Þ (MeV) 0.66 6.63 19.82 40.98 70.27ffiffiffiffiffiffiffiffihr2ip
(fm) 5.1 1.9 1.2 0.9 0.7

Prob. (%) (99:3=0:2=0:5=
0:0=0:0=0:0=0:0)

(96:7=1:0=2:2=
0:0=0:0=0:0=0:1)

(92:5=2:8=4:5=
0:0=0:1=0:0=0:1)

(86:9=5:8=6:8=
0:0=0:2=0:0=0:3)

(80:5=10:2=8:6=
0:0=0:3=0:0=0:4)

D-wave prob. 0.0 0.1% 0.2% 0.5% 0.7%

TABLE XIV. Comparison between different cases. The meaning of the numbers are [cutoff �
in GeV or dimensionless �: binding energy in MeV, RMS radius in fm].

JP �cN (S-wave) �cN ��cN ���
cN

0þ OPEP (�) � [1.367: 13.60, 1.38]

OBEP (�) [0.900: 1.24, 3.86] [0.900: 13.60, 1.46]

OBEP (�) [1.533: 0.25, 8.13] [1.533: 13.57, 1.37]

1þ OPEP (�) � [1.353: 13.54, 1.40]

OBEP (�) [0.900: 1.24, 3.86] [0.900: 13.49, 1.47]

OBEP (�) [1.618: 0.80, 4.72] [1.618: 13.47, 1.39]
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symmetry, chiral symmetry, and hidden local symmetry.
Solving the Schrödinger equation for the coupled �cN �
�cN ���

cN systems for J ¼ 0 and J ¼ 1 states, we obtain
molecular bound states in both channels with appropriate
cutoffs. By analyzing all the binding energies and the
corresponding RMS radii, one observes several features:
(1) the spin-singlet state and the spin-triplet state have
slightly different binding energies for a given radius and
the reasonable binding energy is at most tens of MeV;
(2) the OPEP model and the OBEP model are somehow
equivalent in getting the consistent binding energy and the
corresponding RMS radius; (3) the coupled channel effects
are important both in the OPEP model and in the OBEP
model. To see these features, we make a comparison,
which is presented in Table XIV.

The deuteron, the well-known pn bound state with the
binding energy of 2.2 MeV, is also a spin-triplet state. The
D-wave contribution is very important and the correspond-
ing probability of the state at D-wave is around 4� 6%. If
the D-wave probability of �cN were in this range, the
binding energy would be around l0 MeV in the OPEP
model from Table IX.

For the �cN single channel, only � and ! exchanges
are allowed. There are no tensor force nor spin-dependent
parts in the potentials. As a result, the coupling between
the 3S1 and 3D1 states vanishes and one has V1S0

¼ V3S1

for the potentials. That is, the possible JP ¼ 0þ and

JP ¼ 1þ molecular states are degenerate in the heavy
quark limit. After considering the contributions from the
channels �cN and ��

cN, the tensor force and the spin-
dependent interactions enter. However, full coupled chan-
nel calculation does not give significantly different results
for the two spin states. That is, the two spin states are still
qualitatively degenerate. Maybe this feature indicates that
the coupled channel effects do not change the degeneracy
in the dominant channel. If this is the case, one expects
that the states with different angular momenta of a two-
body system like �c�c, �c�, �c�, or �c� would have
similar binding solutions. They may be tested in the
future investigations of bound state problems and scatter-
ing problems.
The results are sensitive to the phenomenological cutoff

parameter, which is a general feature for the molecule
study in the meson exchange models at the hadron level.
In effect, this parameter encodes the size effects of the
hadrons and the information of the short-range interaction.
This feature indicates that the binding energy is sensitive to
the short-range interaction. At this moment, we cannot
determine the values of the cutoff. So we treat it as a free
parameter and discuss the results for a reasonable range of
the cutoff. If the cutoff parameter around 1:2� 1:4 GeV in
the OPEP model, 0:8� 1:0 GeV in the OBEP model
(common cutoff case), or 1:2� 1:7 in the OBEP model
(scaled cutoff case) is reasonable, then one obtains

JP= 0+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.2 1.3 1.4 1.5 1.6 1.7

Λπ (GeV)

ΛcN
1S0

ΣcN
1S0

Σc
*N

5D0

 0.64  6.16
18.51

38.88

68.29

107.64
(w/)

JP= 1+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.0 1.2 1.4 1.6 1.8 2.0

Λπ (GeV)

ΛcN
3S1, (3D1)

ΣcN
3S1, 3D1  0.08  4.09

17.34

44.69

91.52 (w/o)

Σc
*N

3S1,3D1,5D1  0.47
10.27

33.66
(w/o)

 1.17

20.64

72.39 (w/)

FIG. 9 (color online). The sensitivity of the binding energy (B.E.) to the cutoff �� in the OPEP model for the JP ¼ 0þ and JP ¼ 1þ
cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no S�D mixing when one

considers only the �cN channel.
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JP= 0+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

0.8 0.9 1.0 1.1 1.2 1.3 1.4

Λcom (GeV)

ΛcN
1S0

 1.24

11.09
27.07

46.66

68.45

91.58
(w/o)

ΣcN
1S0  2.22

14.22
31.56

52.08

74.62
(w/o)

Σc
*N

5D0

 0.12
13.60

52.50

123.14 (w/)

JP= 1+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Λcom (GeV)

ΛcN
3S1, (3D1)

1.24

11.09
27.07

46.66

68.45

91.58 (w/o)

ΣcN
3S1, 3D1  2.84

26.20

78.51

157.59 (w/o)

Σc
*N

3S1,3D1,5D1  0.73  6.21 13.10 20.09 27.04 34.33
42.89 55.02

77.36
(w/o)

 0.22
13.49

47.50

106.16 (w/)

FIG. 10 (color online). The sensitivity of the binding energy (B.E.) to the cutoff �� ¼ �� ¼ �vec ¼ �com in the OBEP model for
the JP ¼ 0þ and JP ¼ 1þ cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no

S�D mixing when one considers only the �cN channel.

JP= 0+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9

α

ΛcN
1S0

 0.12
 2.91  8.80

17.09
27.25

38.86
51.59

65.18
79.43
(w/o)

ΣcN
1S0

 0.17  4.06 11.17
20.54

31.64
44.08

57.56 71.84
(w/o)

Σc
*N

5D0 21.28

146.97
(w/o)

 0.11
11.12

43.05

94.98 (w/)

JP= 1+ GeV (B.E. in MeV)

3.1

3.2

3.3

3.4

1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7

α

ΛcN
3S1, (3D1)

 0.65

 4.57 11.33
20.30

30.98
42.99

56.03
69.86
(w/o)

ΣcN
3S1, 3D1  2.46

19.52

51.39

95.77

150.55 (w/o)

Σc
*N

3S1,3D1,5D1  0.48  6.39

38.38
(w/o)

 0.66
12.26

40.98

87.88 (w/)

FIG. 11 (color online). The sensitivity of the binding energy (B.E.) to the parameter � in the OBEP model for the JP ¼ 0þ and
JP ¼ 1þ cases. The cases without (w/o) and with (w/) channel coupling are both shown. (3D1) means there is no S�D mixing when

one considers only the �cN channel.
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moleculelike bound states. Larger parameters may be be-
yond present models while smaller ones would result in
unbound states.

To see the sensitivity of the binding energy to the cutoff
parameter � or �, we show the results in a diagrammatic
form. In Fig. 9, we present the dependence of the binding
energy on �� for the JP ¼ 0þ and JP ¼ 1þ cases in the
OPEP model. The dependence of the binding energy on
the common cutoff �com is illustrated in Fig. 10. That on
the parameter � is shown in Fig. 11. The binding energies
in these figures are not all given in the former tables. Here,
we have included some additional binding energies whose
corresponding RMS radii are smaller than 0.7 fm. From
these figures, it is obvious that the coupling among the
channels �cN, �cN, and ��

cN may result in bound states
even if there are no binding solutions within individual
channels.

In the OPEP model, the attraction for the formation of
the �cN bound states comes only through the �cN and
��

cN channels indirectly. So the coupled channel effects
are essential. The same observation is made in the �c�c

case [69]. In the OBEP model, the single channel �cN
itself may have binding solutions. Then the effects of the
channel coupling make the binding energy larger with a
significant value.

In the above discussions, we do not consider the uncer-
tainty of the coupling constants in Eq. (31). To investigate
the sensitivity of the results to them, we vary separately g2,
g4, ‘B, ð�BgVÞ, ð�SgVÞ, ð�SgVÞ, h�, hV , and hT and
compare the binding energies. As a well-known value, gA
is not varied. We still adopt the relations in Eqs. (31) in
determining other coupling constants. Table XV illustrates
the sensitivity when we use the common cutoff parameter
�com ¼ 0:9 GeV. Larger values of the coupling constants
(except ð�BgVÞ and hV) may result in deeper bound
states. From the numerical results, one finds that the results
are sensitive to g4, ‘B, and h�. If one uses the set of

coupling constants g2 ¼ �0:5, g4 ¼ 0:7, ‘B ¼ �2:0,
ð�BgVÞ ¼ �7:0, ð�SgVÞ ¼ 13:0, h� ¼ 8:0, hV ¼ 4:0, and
hT ¼ 5:0, one may also get binding solutions with a
slightly larger cutoff �com ¼ 1:1 GeV. Since this set is
not helpful to the formation of bound states, the main
conclusion that the molecular bound states are possible
does not change.
Theoretically, the formation of these JP ¼ 0þ; 1þ �cN

bound states occurs after the production of �c and through
the coalescence mechanism, similar to that of Xð3872Þ in
the molecular picture [70]. Once the molecules are formed,
they would be rather stable because they do not decay
through strong interactions. Possible places to search for
them are GSI-FAIR, J-PARC, and RHIC. It is also possible
to look for them at BELLE.
In summary, we have obtained effective Lagrangians

describing the charmed baryon interactions with light
mesons according to the heavy quark symmetry, chiral
symmetry, and hidden local symmetry. We estimate the
coupling constants with various methods and get con-
sistent results. Based on these interaction Lagrangians,
one-boson exchange potentials for the �cN � �cN �
��

cN systems are derived. With the cutoffs around
1 GeV, it is possible to get binding solutions by solving
the bound state problem with the variational method.
One finds that the channel coupling has very important
effects for the possible molecular bound states. These
effects do not significantly change the feature that the
binding solutions are spin-independent. If these states
exist, the reasonable binding energies should be at most
tens of MeV.
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TABLE XV. J ¼ 0 and J ¼ 1 binding energies (MeV) corresponding to the variation of only one coupling constant. The
unchanged coupling constants are the same as in Eq. (31). The units of ð�SgV Þ and hT are GeV�1. The common cutoff �com ¼
0:9 GeV is used.

g2 B.E. g4 B.E. ‘B B.E. ð�BgVÞ B.E.

�0:50 13.17, 11.36 0.7 6.93, 9.54 �2:0 2.09, 4.15 �3:0 14.75, 14.67

�0:55 13.38, 12.38 0.8 8.77, 10.67 �2:5 6.24, 9.15 �4:0 14.36, 14.27

�0:60 13.61, 13.54 0.9 10.99, 11.99 �3:0 12.21, 15.75 �5:0 13.98, 13.88

�0:65 13.83, 14.84 1.0 13.62, 13.51 �3:5 19.75, 23.76 �6:0 13.60, 13.49

�0:70 14.07, 16.29 1.1 16.68, 15.26 �4:0 28.68, 33.03 �7:0 13.22, 13.11

ð�SgVÞ B.E. h� B.E. hV B.E. hT B.E.

13.0 13.03, 13.21 8.0 4.04, 4.10 2.0 13.92, 13.89 5.0 13.48, 13.53

15.0 13.20, 13.29 10.0 10.00, 9.96 2.5 13.76, 13.69 6.0 13.56, 13.50

17.0 13.39, 13.39 12.0 18.08, 17.90 3.0 13.60, 13.49 7.0 13.66, 13.48

19.0 13.58, 13.48 14.0 27.98, 27.63 3.5 13.44, 13.30 8.0 13.77, 13.47

21.0 13.78, 13.59 16.0 39.46, 38.93 4.0 13.28, 13.10 9.0 13.89, 13.47
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APPENDIX: PHASE CONVENTION IN THE
SUPERFIELD S�

If one reduces Eq. (3.12) in Ref. [43] to the relevant
terms in Eq. (3) in this paper with the superfield S� defined

in Eq. (1), one gets

g3 ¼ �
ffiffiffi
3

p
2

�g1; g5 ¼ � 3

2
g1;

g4 ¼
ffiffiffi
3

p
�g2; g6 ¼ 0:

(A1)

To determine the phase �, we resort to the quark model and
the heavy quark symmetry. The spin wave functions of �c

and ��
c (Sz ¼ 1

2 ) are

��ð"Þ �
ffiffiffi
1

3

s
ð11Þ # þ

ffiffiffi
2

3

s
ð10Þ ";

�ð"Þ � 


2
4

ffiffiffi
2

3

s
ð11Þ # �

ffiffiffi
1

3

s
ð10Þ "

3
5;

(A2)

where 
 is an arbitrary relative phase, # or " is the heavy
quark spin, and (11) or (10) represents the diquark spin and
its z component. Let �z

h denotes the spin operator acting

only on the heavy quark, and

�z
h�

�ð"Þ ¼ a��ð"Þ þ b�ð"Þ;
�z

h�ð"Þ ¼ c��ð"Þ þ d�ð"Þ:
(A3)

One gets a ¼ 1
3 , b ¼ � 4

3
ffiffi
2

p 
�, c ¼ � 4
3
ffiffi
2

p 
, and d ¼ � 1
3 .

Now we demand the superfield S� does not change under

the heavy quark transformation. In the static limit, the
superfield S� (� ¼ 3) is

S� ¼ St�	þ �
1ffiffiffi
3

p ð�� þ v�Þ�5St�

! St3	þ �
1ffiffiffi
3

p �3St� ! 1ffiffiffi
3

p ð ffiffiffi
2

p þ �Þ 1
0

� �
; (A4)

where St� and St are transition spin operators of

Rarita-Schwinger field and Dirac field, respectively, 	 ¼
ð0; 1; 0; 0ÞT is the wave function of��

c, and � ¼ ð0; 1; 0; 0ÞT
is the wave function of �c. With �z

hS3 ¼ S3, one may get

ð�
Þ ¼ �1. A natural choice is 
 ¼ 1 and then � ¼ �1.
Therefore, we have

S� ¼ B�
6� � 1ffiffiffi

3
p ð�� þ v�Þ�5B6; (A5)

g3 ¼
ffiffiffi
3

p
2

g1; g5 ¼ � 3

2
g1;

g4 ¼ � ffiffiffi
3

p
g2; g6 ¼ 0:

(A6)

The relations among the coupling constants have been
presented in Ref. [43].
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