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We calculate the branching ratios of the yet unmeasured �0 decays into four pions, based on a

combination of chiral perturbation theory and vector-meson dominance. The decays �0 ! 2ð�þ��Þ and
�0 ! �þ��2�0 are P-wave dominated and can largely be thought to proceed via two � resonances; we

predict branching fractions of ð1:0� 0:3Þ � 10�4 and ð2:4� 0:7Þ � 10�4, respectively, not much lower

than the current experimental upper limits. The decays �0 ! 4�0 and �! 4�0, in contrast, are D-wave

driven as long as conservation of CP symmetry is assumed, and are significantly further suppressed; any

experimental evidence for the decay �! 4�0 could almost certainly be interpreted as a signal of CP

violation. We also calculate the CP-violating amplitudes for �0 ! 4�0 and �! 4�0 induced by the QCD

�-term.
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I. INTRODUCTION

Processes in low-energy QCD that involve an odd
number of (pseudo-)Goldstone bosons (and possibly pho-
tons), which are, therefore, of odd intrinsic parity, are
thought to be governed by the Wess-Zumino-Witten
(WZW) term [1] via chiral anomalies. While the so-called
triangle anomaly is well tested in processes such as �0,
�! ��, and the box anomaly contributes e.g. to ��!
�� and �! ���, the pentagon anomaly remains more
elusive; the simplest possible process that is usually cited
is KþK� ! �þ���0, which however has not been ex-
perimentally tested yet, and is likely to be subject to large
corrections to the chiral-limit amplitude that is dictated by
the WZW term.

A different set of processes involving five light pseudo-
scalars is the four-pion decays of � and �0. Experimental
information about these is scarce: only upper limits on
branching ratios exist [2]; however, this may change in
the near future for at least some of the possible final states
with the advent of high-statistics �0 experiments such as
BES-III, WASA-at-COSY, ELSA, CB-at-MAMI-C, CLAS
at Jefferson Lab, etc. We are only aware of one previous
theoretical calculation of these decays, performed in the
framework of a quark model [3], whose partial width
predictions, however, have in the meantime been ruled
out by the experimental upper limits, at least for the
channel �0 ! 2ð�þ��Þ.

In principle, the decays �0 ! 4�, in contradistinction to
many other �0 decay channels, seem not terribly forbidden
by approximate symmetries: they are neither isospin for-
bidden, nor required to proceed via electromagnetic inter-

actions. The reaction �! 4�, in contrast, is essentially
suppressed by tiny phase space: only the decay into 4�0 is
kinematically allowed (M� � 4M�0 ¼ 7:9 MeV, M� �
2ðM�� þM�0Þ ¼ �1:2 MeV). Furthermore, the fact that
anomalous amplitudes always involve the totally antisym-
metric tensor ���	
 can be used to show that no two

pseudoscalars are allowed to be in a relative S wave:
assuming they were, this would reduce the five-point func-
tion PPPPP effectively to a four-point function SPPP
(where S stands for a scalar and P for a pseudoscalar), in
which there are no four independent vectors left to contract
the � tensor with. The decays �0 ! 2ð�þ��Þ and �0 !
�þ��2�0 can therefore be expected to be P-wave domi-
nated. As furthermore Bose symmetry forbids two neutral
pions to be in an odd partial wave, �0 ! 4�0 and �! 4�0

even require all �0 to be at least in relative D waves [4].
This, combined with the tiny phase space available, leads
to the notion of �! 4�0 being CP forbidden [2,5,6],
although strictly speaking it is only S-wave CP forbidden.
The outline of the article is as follows. We begin by

discussing the two decay channels with charged pions in
the final state, �0 ! 2ð�þ��Þ and �0 ! �þ��2�0, in
Sec. II. There, we calculate the corresponding decay am-
plitudes at leading nonvanishing order in the chiral expan-
sion, saturate the appearing low-energy constants by
vector-meson contributions, and calculate the correspond-
ing branching ratios. In Sec. III, we then construct a
CP-conserving (D-wave) decay mechanism for �, �0 !
4�0 and determine the resulting branching fractions, be-
fore discussing the CP-violating (S-wave) �, �0 ! 4�0

decay as induced by the QCD �-term in Sec. IV. Finally, we
summarize and conclude. The Appendices contain techni-
cal details on four-particle phase space integration as
well as on a (suppressed) tensor-meson mechanism for �,
�0 ! 4�0.
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II. �0 ! 2ð�þ��Þ AND �0 ! �þ��2�0

A. Chiral perturbation theory

We wish to calculate the leading (nontrivial) chiral con-
tribution to the anomalous decays

�0 ! �þðp1Þ��ðp2Þ�þðp3Þ��ðp4Þ;
�0 ! �þðp1Þ�0ðp2Þ��ðp3Þ�0ðp4Þ: (1)

The amplitudes can be written in terms of the invariant
variables sij ¼ ðpi þ pjÞ2, i, j ¼ 1; . . . ; 4, which are sub-

ject to the constraint

s12 þ s13 þ s14 þ s23 þ s24 þ s34 ¼ M2
�0 þ 8M2

� (2)

(in the isospin limit of equal pion masses). The five-meson
vertices of the WZW term can be deduced from the
Lagrangian

LWZW
P5 ¼ Nc���	


240�2F5
�

h’@�’@�’@	’@
’i þ . . . ; (3)

where Nc is the number of colors and will be taken to be 3
in this paper, F� ¼ 92:2 MeV is the pion decay constant,
and h. . .i denotes the trace in flavor space. For simplicity,
we refrain from spelling out the WZW term in its full,
chirally invariant form. Furthermore,

’ffiffiffi
2
p ¼

�0ffiffi
3
p þ �8ffiffi

6
p þ �0ffiffi

2
p �þ Kþ

�� �0ffiffi
3
p þ �8ffiffi

6
p � �0ffiffi

2
p K0

K� �K0 �0ffiffi
3
p � 2�8ffiffi

6
p

0
BBBB@

1
CCCCA: (4)

We assume a simple, one-angle ��0 mixing scheme,

j�i ¼ cos�Pj�8i � sin�Pj�0i;
j�0i ¼ sin�Pj�8i þ cos�Pj�0i; (5)

and use the standard mixing angle �P ¼ arcsinð�1=3Þ �
�19:5�. As we are going to present what in some sense
corresponds to a leading-order calculation of the decay
amplitudes, we regard the more elaborate two-angle mix-
ing schemes [7] as beyond the scope of this study; we

expect the error made thereby to be covered by our gen-
erous final uncertainty estimate.
The flavor structure of Eq. (3) is such that there are no

direct contributions to �, �0 ! 4�, and the decay ampli-
tudes vanish at leading order (in the anomalous sector)
Oðp4Þ. Nonvanishing contributions only occur at Oðp6Þ,
where the amplitudes are given by sums of (kaon) loops
and counterterm contributions from the Oðp6Þ Lagrangian
of odd intrinsic parity [8], see Fig. 1. Only two different
structures ( / CW

1 , C
W
12) remain when external currents are

switched off. Ref. [8] only considers the Goldstone boson

octet; we add terms / ~CW
1 ,

~CW
12 that only contribute for the

singlet field �0:

Lð6Þodd ¼ iCW
1 ���	
h��u�u�u	u
i

� i ~CW
1

3
���	
h��ihu�u�u	u
i

þ CW
12���	
hh��½u�; u�u	u
�i

�
~CW
12

3
���	
hh��½u�; u�u	�ihu
i þ . . . ; (6)

with the usual chiral vielbein u� ¼ iðuy@�u� u@�u
yÞ

(neglecting external currents), u ¼ expði’=2F�Þ, h�� ¼
r�u� þr�u� with r�X ¼ @�X þ ½��; X� and �� ¼
1
2 ðuy@�uþ u@�u

yÞ (neglecting again external currents).

Furthermore, we use �� ¼ uy�uy � u�yu, where � ¼
2Bdiagðmu;md;msÞ þ . . . contains the quark mass matrix
and B is related to the quark condensate according to B ¼
�h �qqi=F2

�. The decay amplitudes at Oðp6Þ take the com-
pact forms

Að�0=8!�þ���þ��Þ¼�Að�0=8!�þ�0���0Þ¼Nc���	


3
ffiffiffi
3
p

F5
�

p
�
1 p

�
2p

	
3p



4 ½F 0=8ðs12ÞþF 0=8ðs34Þ

�F 0=8ðs14Þ�F 0=8ðs23Þ�;
F 0ðsÞ¼�16

ffiffiffi
2
p ðCWr

12 ð�Þ� ~CWr
12 ð�ÞÞs;

F 8ðsÞ¼ 1

8�2F2
�

�
ðs�4M2

KÞ �JKKðsÞ� s

16�2

�
2log

MK

�
þ1

3

��
�16CWr

12 ð�Þs;

�JKKðsÞ¼ 1

8�2
ð1��Karccot�KÞ;

�K¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

K

s
�1

s
;

(7)

FIG. 1. Feynman diagrams contributing to �0 ! 2ð�þ��Þ
(and similarly to �0 ! �þ��2�0) at Oðp6Þ. The thick dot in

the right diagram denotes a vertex from Lð6Þodd.
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with the scale-dependent renormalized low-energy con-
stantsCWr

12 ð�Þ and ~CWr
12 ð�Þ. There are no loop contributions

to the �0 amplitudes at this order, since at Oðp4Þ the
anomalous five-pseudoscalar term (3) (the left vertex of
the loop diagram in Fig. 1) contributes only to the octet
case. Equation (7) is scale independent with the 
 function
for CWr

12 ð�Þ obtained in Ref. [8], if we demand ~CW
12 to have

the same infinite part and scale dependence as CW
12. A

numerical estimate for the finite part CWr
12 ðM�Þ will be

obtained by resonance saturation through vector-meson
contributions.

B. Resonance saturation from hidden local symmetry

Resonance saturation for theOðp6Þ chiral Lagrangian of
odd intrinsic parity has been studied in great generality
recently in Ref. [9]. Here, however, we opt for the simpler,
but on the other hand more predictive hidden-local-
symmetry scheme [10–13], which has the additional
advantage of having been tested phenomenologically in
great detail [14].

In the framework of hidden local symmetry (HLS), there
are four additional terms involving vector-meson fields,
with coefficients ci (i ¼ 1; . . . ; 4), in addition to the WZW
action for anomalous processes [10,12]; as already noted in
Ref. [15], only three independent combinations of these
contribute to low-energy amplitudes atOðp6Þ. HLS ampli-
tudes for any given anomalous process contain two kinds
of contributions: contact terms and resonance exchange
terms. The contact terms have the same form as those
derived from the WZW action, but with a modified coef-
ficient (see below); the gauge-invariant construction of the
HLS Lagrangian density guarantees that the additional,
ci-dependent contributions will be canceled by vector-
meson exchange in the low-energy limit. In the following,
we again for simplicity reasons refrain from properly
defining all the HLS Lagrangian terms in their chirally
invariant forms, but only quote the terms relevant for
vertices of five pseudoscalars; the full Lagrangians can
be retrieved e.g. from Refs. [12,13].

The contact terms for five-pseudoscalar vertices can be
read off from the Lagrangian

LHLS
P5 ¼ Nc���	


240�2F5
�

�
1�15

8
ðc1�c2Þ

�
h’@�’@�’@	’@
’i:

(8)

The low-energy limit of the vector-meson-exchange con-
tribution can be obtained by integrating out the heavy
fields: substituting the leading-order equation of motion
of the vector-meson fields

V� ¼ 1

8igF2
�

½@�’;’�; (9)

where g is the universal vector-meson coupling constant,
into the HLS Lagrangians [13,14]

LVVP ¼ �Ncc3g
2

8�2F�

���	
h@�V�@	V
’i;

LVPPP ¼ � iNcðc1 � c2 � c3Þg
32�2F3

�

���	
hV�@�’@	’@
’i;

(10)

where the vector-meson nonet (with ideal mixing) is de-
fined as

V� ¼ 1ffiffiffi
2
p

�0
�ffiffi
2
p þ !�ffiffi

2
p �þ� K�þ�

�� � �0
�ffiffi
2
p þ !�ffiffi

2
p K�0�

K��� �K�0� �

0
BBBB@

1
CCCCA; (11)

we find

Lð4Þ
P5;V
¼ Ncðc1 � c2Þ

128�2F5
�

���	
h’@�’@�’@	’@
’i; (12)

which exactly cancels the second term inside the square
brackets in Eq. (8).
If we extend the equation of motion Eq. (9) to next-to-

leading order in the derivative expansion,

V� ¼ 1

8igF2
�

�
1� @2

M2
V

�
½@�’;’�; (13)

where MV is the vector-meson mass, we can derive the
vector-meson contribution to the five-meson vertices at
Oðp6Þ. Inserting Eq. (13) into Eq. (10), we find

Lð6Þ
P5;V
¼ Ncðc1 � c2 þ c3Þ

128�2F5
�M

2
V

���	


� h@�@�’½@�’; @�’@	’@
’�
� 2@2’@�’@�’@	’@
’i: (14)

The first term is exactly of the form of the Lagrangian term
/ CW

12 in Eq. (6). For the second term, we use the equation
of motion for the Goldstone bosons, which, neglecting
higher orders in the fields, reads (compare e.g. Ref. [8])

@2’ ¼ �1
2f’;�g þ 1

3h’�i; (15)

so we also identify a vector-meson contribution to CWr
1 and

~CWr
1 . Our results read altogether

CWr
1 ðMVÞ ¼ ~CWr

1 ðMVÞ ¼ �2CWr
12 ðMVÞ

¼ Ncðc1 � c2 þ c3Þ
128�2M2

V

; (16)

where we have indicated the conventional assumption of
the resonance-saturation hypothesis to be valid roughly at
the resonance scale, � ¼ MV (which in the following we
will identify with the mass of the �, M� ¼ 775:5 MeV).

The numerical values of the HLS coupling constants are
often taken to be given by c1 � c2 � c3 � 1 [10], fairly
consistent with more elaborate phenomenological fits that
yield c1 � c2 ¼ 1:21, c3 ¼ 0:93 [14].
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In principle, this completes the task to provide the
necessary input for an evaluation of the chiral representa-
tion of the decay amplitude, Eq. (7). We observe, however,
the following. First, evaluating the slope of (the largely
linear function) F 8ðsÞ in Eq. (7) with this input (using
�J0KKð0Þ ¼ 1=ð96�2M2

KÞ), we find
8�2ð4�F�Þ2 �F 08ð0Þ

¼ 3ðc1 � c2 þ c3Þ ð4�F�Þ2
2M2

�

�
�
1þ 2 log

MK

M�

�
: (17)

Numerically, the first term is about 6:7� ðc1 � c2 þ
c3Þ=2, and the second is 0.1. Hence, at the scale � ¼
M�, the slope is entirely dominated by the vector-meson

contribution, and the kaon loops are negligible.

Second, the maximal value for the kinematical invari-
ants in �0 ! 4� allowed by phase space is

ffiffiffiffiffiffi
sij
p � M�0 �

2M� � 680 MeV, therefore replacing the � propagator by
its leading linear approximation is not phenomenologically
reliable. Even deviations induced by the finite width of the
�, �� ¼ 149:1 MeV, will be clearly visible. In the follow-

ing, we will therefore use the full vector-meson-exchange
amplitudes as derived from the HLS formalism, with the
�-meson propagators including the width, which in
addition is expected to be a very good estimate of the
higher-order pairwise P-wave interaction of the pions in
the final state (of course neglecting any crossed-channel
effects). They are given by

AVð�8!�þ���þ��Þ¼ 1ffiffiffi
2
p AVð�0!�þ���þ��Þ¼�AVð�8!�þ�0���0Þ¼� 1ffiffiffi

2
p AVð�0!�þ�0���0Þ

¼ Nc���	


16
ffiffiffi
3
p

�2F5
�

p�
1 p

�
2p

	
3p



4

�
ðc1�c2�c3Þ

�
M2

�

D�ðs12Þþ
M2

�

D�ðs34Þ�
M2

�

D�ðs14Þ�
M2

�

D�ðs23Þ
�

þ2c3

�
M4

�

D�ðs12ÞD�ðs34Þ�
M4

�

D�ðs14ÞD�ðs23Þ
��

(18)

’ Nc���	


16
ffiffiffi
3
p

�2F5
�

p�
1 p

�
2p

	
3p



4

�
ðc1�c2Þ

�
s12

D�ðs12Þþ
s34

D�ðs34Þ�
s14

D�ðs14Þ�
s23

D�ðs23Þ
�

þc3

�
M2

�ðs12þ s34Þ
D�ðs12ÞD�ðs34Þ�

M2
�ðs14þ s23Þ

D�ðs14ÞD�ðs23Þ
��
;

(19)

where

D�ðsÞ ¼ M2
� � s� iM���ðsÞ;

��ðsÞ ¼
M�ffiffiffi
s
p

�
s� 4M2

�

M2
� � 4M2

�

�
3=2

�� (20)

is the inverse � propagator, and we have neglected the
width term in the transformation from Eq. (18) to Eq. (19)
in order to demonstrate the correct chiral dimensionOðp6Þ
of the vector-meson contribution explicitly. Expanding the
resonance propagators in Eq. (19) and comparing to Eq. (7)
easily leads back to the coupling constant estimate for
CWr
12 found on the Lagrangian level in Eq. (16).
At this point, we can try to answer the introductory

question on which parts of the WZW anomaly action—
triangle, box, or pentagon—the decays �0 ! 2ð�þ��Þ
and �0 ! �þ��2�0 yield information. As the pentagon
anomaly only enters via the kaon-loop contributions, we
have found above that its significance for the decays under
investigation here is negligible; the vector-meson contri-
butions are derived from the triangle and box-anomaly
terms, see Eq. (10). As the phenomenological values of
the HLS coupling constants suggest c1 � c2 � c3 	 2c3,

the box anomaly yields the lesser part of the two, and the
decays are dominated by the triangle-anomaly term.

C. Branching ratios

We calculate the partial widths of the decays �0 !
�þ���þ�� and �0 ! �þ�0���0 using

�ð�0 ! 4�Þ ¼ 1

2SM�0

Z
jAð�0 ! 4�Þj2d�4; (21)

where the evaluation of the four-particle phase space�4 is
discussed in detail in Appendix A. S is a symmetry fac-
tor—S ¼ 4 for the 2ð�þ��Þ final state, and S ¼ 2 for the

�þ��2�0 one. Note that with the relation Að�0 !
4�Þ ¼ ffiffiffi

2
p

Að�8 ! 4�Þ and the standard mixing accord-
ing to Eq. (5), we haveAð�0 ! 4�Þ ¼Að�8 ! 4�Þ. To
obtain branching ratios, we normalize the partial widths by
the total width of the �0 as quoted by the particle data
group, ��0 ¼ ð0:199� 0:009Þ MeV [2]. Note that by using

the most precise single measurement of this width alone,
��0 ¼ ð0:226� 0:017� 0:014Þ MeV [16], our predictions

for the branching fractions would be reduced by more than
10%. Given the observation of Eq. (17), we neglect the
kaon-loop contributions altogether and evaluate the matrix
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elements using Eq. (18). In order to account for trivial
isospin-breaking effects due to phase space corrections,
we calculate the branching ratio for �0 ! �þ�0���0

using an average pion mass M� ¼ ðM�þ þM�0Þ=2, while
we employ the charged pion mass for the decay into four
charged pions. All results are first quoted as a function of
the coupling constants c1 � c2 and c3, before inserting two
sets of values: (i) c1 � c2 ¼ c3 ¼ 1, and (ii) c1 � c2 ¼
1:21, c3 ¼ 0:93 [14]. We refrain from employing the errors
given in the fits in Ref. [14]: the uncertainties in the HLS
coupling constants are well below what we estimate to be
the overall uncertainty of our prediction. The results are

Bð�0 ! 2ð�þ��ÞÞ
¼ ½0:15ðc1 � c2Þ2 þ 0:47ðc1 � c2Þc3 þ 0:37c23� � 10�4

¼ f1:0; 1:1g � 10�4; (22)

Bð�0 ! �þ��2�0Þ
¼ ½0:35ðc1 � c2Þ2 þ 1:09ðc1 � c2Þc3 þ 0:87c23� � 10�4

¼ f2:3; 2:5g � 10�4: (23)

We therefore find that the uncertainties due to the HLS
coupling constants are small. We wish to point out that
although �� P-wave dynamics are usually well approxi-
mated by the � resonance, and crossed-channel effects are
expected to occur rather at the 10% level (as inferred from
studies of decays such as !! 3�, ! 3� [17]), the
present study in some sense still amounts to a leading-
order calculation: SU(3)-breaking effects of the order of
F�=F� � 1:3 [18] may occur, and in the treatment of the

�0 (�0), we have implicitly evoked the 1=Nc expansion.
We therefore deem a generic uncertainty of 30% realistic,
and quote our predictions accordingly as

Bð�0 ! 2ð�þ��ÞÞ ¼ ð1:0� 0:3Þ � 10�4;

Bð�0 ! �þ��2�0Þ ¼ ð2:4� 0:7Þ � 10�4: (24)

These are to be compared to the current experimental upper
limits [2,19]

Bexpð�0 ! 2ð�þ��ÞÞ< 2:4� 10�4;

Bexpð�0 ! �þ��2�0Þ< 2:6� 10�3; (25)

hence signals of these decays ought to be within reach of
modern high-statistics experiments soon.

III. �, �0! 4�0

As we have mentioned in the Introduction, the P-wave
mechanism described in the previous section, proceeding

essentially via two � intermediate resonances, cannot con-
tribute to the 4�0 final states. In fact, we can show that the
D-wave characteristic of �, �0 ! 4�0 suppresses these
decays to Oðp10Þ in chiral power counting, that is to the
level of three loops in the anomalous sector. This is, in
particular, due to the flavor and isospin structure of the
anomaly, which does not contain five-meson vertices in-
cluding 2�0 at leading order (Oðp4Þ), and to the chiral
structure of meson–meson scattering amplitudes, which
only allows for S and P waves at tree level (Oðp2Þ). As a
complete three-loop calculation would be a formidable
task and is certainly beyond the scope of our exploratory
study, we instead consider the decay mechanisms shown in
Fig. 2. As shown in Appendix B, the contribution from two
f2 mesons is negligible in comparison to the pion loop. We
therefore focus on the pion loop as shown in the left panel
of Fig. 2. It represents a decay mechanism that, we believe,
ought to capture at least the correct order of magnitude of
the corresponding partial width.

A. Pion-loop contribution

Our decay mechanism for �, �0 ! 4�0 is built on the
observation that there is a specific diagrammatic contribu-
tion that we can easily calculate, and that, in particular,
comprises the complete leading contribution to the imagi-
nary part of the decay amplitude. This is given by �þ��
intermediate states, and hence harks back to the results of
the previous section. As argued above, it appears at chiral
Oðp10Þ: �0=8 ! �þ��2�0 as calculated in Eq. (7) to

Oðp6Þ, followed by rescattering �þ�� ! �0�0, where
the S wave does not contribute, and D and higher partial
waves start to appear at Oðp4Þ [20]; see Fig. 2 for illus-
tration. We calculate this first in the following approxima-
tion: given the numerical dominance of the counterterm
contribution in Eq. (7), the amplitudesF 0=8ðsÞ are taken to
be linear, F 0=8ðsÞ � F 00=8ðsÞs, neglecting tiny curvature

effects from the kaon loops; and we approximate ��
rescattering by a phenomenological D wave, thus improv-
ing on the leading chiral representation, but neglecting G
and higher partial waves. We find

FIG. 2. Left: Pion-loop contribution to �, �0 ! 4�0. The
black circle denotes an effective local �, �0 ! �þ��2�0

coupling at Oðp6Þ, the black square an effective local D-wave
�� scattering vertex at Oðp4Þ. Right: �, �0 ! 4�0 through two
intermediate f2 mesons.
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Að�8!4�0Þ¼ 1ffiffiffi
2
p Að�0!4�0Þ¼�Ncðc1�c2þc3Þ

8�

���	
ffiffiffi
3
p

F5
�

p�
1 p

�
2p

	
3p



4

�
Gðs12;s23;s14;s34;s13ÞþGðs12;s14;s23;s34;s24Þ

�Gðs13;s23;s14;s24;s12Þ�Gðs13;s14;s23;s24;s34Þ�Gðs12;s24;s13;s34;s14Þ�Gðs12;s13;s24;s34;s23Þ
�
;

Gðv;w;x;y;sÞ¼v�w�xþy

M2
�

16ðt02ðsÞ� t22ðsÞÞ
3ðs�4M2

�Þ2
�
ðs�4M2

�Þ2 �J��ðsÞ�2ðs2�10sM2
�þ30M4

�Þ
�
Lþ 1

16�2
log

M�

�

�

þ 1

16�2

�
s2

15
�8

3
sM2

�þ15M4
�

��
;

�J��ðsÞ¼ 1

8�2

�
1��

2

�
log

1þ�

1��
� i�

��
; �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4M2

�

s

s
; L¼�d�4

16�2

�
1

d�4
þ1

2
ð�E�1� log4�Þ

�
: (26)

tI2ðsÞ is the partial wave of angular momentum ‘ ¼ 2 for
the appropriate isospin quantum number I; the expression
16tI2ðsÞðs� 4M2

�Þ�2 ¼ aI2 þOðs� 4M2
�Þ, with the D-

wave scattering length aI2, is therefore finite at threshold.
Note furthermore that tI2 ¼ Oðp4Þ in chiral counting, such
that the chiral order of Eq. (26) is indeed Oðp10Þ. L con-
tains the infinite part of the divergent loop diagram in the
usual way, using dimensional regularization. Of course,
this individual loop contribution is both divergent and scale
dependent: only the imaginary part is complete (to this
order) and in that sense well-defined and finite. We display
the full expression here as wewill use the scale dependence
as a rough independent consistency check below.

Without the knowledge of counterterms of an order as
high as Oðp10Þ, one cannot make a quantitative predic-
tion using the loop amplitude derived in the above.
Hence, we have to resort to a certain phenomenological
representation. The imaginary part of Eq. (26), which is
complete at Oðp10Þ as mentioned, is used to establish a
connection to a one-f2 exchange in the s channel. Note
that the f2ð1270Þ exchange dominates the available ��
scattering phase shifts in the I ¼ 0, ‘ ¼ 2 channel, see
e.g. Ref. [21].

We will proceed to estimate the full D-wave �� rescat-
tering contribution as follows. Neglecting again any
crossed-channel effects, rescattering of two pions can be
summed by the Omnès factor,

�I
‘ðsÞ ¼ exp

�
s

�

Z 1
4M2

�

�I
‘ðzÞdz

zðz� s� i�Þ
�
; (27)

where �I
‘ is the �� scattering phase shifts in the channel

with isospin I and angular momentum ‘. Near threshold, its
imaginary part can be approximated as

Im�I
‘ðsÞ � �I

‘ðsÞf1þOð�2Þg � �tI‘ðsÞf1þOð�2Þg (28)

(neglecting the shift from unity in �ð4M2
�Þ, which is

justified in the D wave for our intended accuracy), while
in the approximation of a phase being dominated by a
narrow resonance of mass M and width �, the Omnès
factor is given by

�I
‘ðsÞ �

M2 expði�I
‘ðsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 � sÞ2 þM2�2ðsÞp ;

�ðsÞ ¼ Mffiffiffi
s
p

�
s� 4M2

�

M2 � 4M2
�

�
‘þ1=2

�: (29)

Despite D-wave scattering near threshold not being domi-
nated by the f2ð1270Þ,1 we still use Eq. (28) to invoke the
f2. This is because at somewhat higher energies, the I ¼ 0
�� D wave dominates over the I ¼ 2 component and will
be well approximated by the f2ð1270Þ resonance. One may
wonder whether, in particular, for �! 4�0, which stays
close to �� threshold throughout the allowed phase space,
this approximation may not lead to sizeable errors. We
have checked for the numerical results for the branching
fraction discussed below that, employing the full Omnès
function according to Eq. (27) with the phase parameteri-
zation provided in Ref. [23], the branching ratio changes
by about 10%, well below the accuracy we can aim for
here. On the other hand, within the �0 ! 4�0 decay, we
stay sufficiently far below the resonance energy that the
phase of the D wave can still be neglected. With the
correspondence between Eqs. (28) and (29), we conclude
that the f2ð1270Þ contribution to the amplitude can be
estimated as

1It is dominated by the low-energy constant �‘2 from theOðp4Þ
Lagrangian [20], or by t-channel vector-meson exchange in the
spirit of resonance saturation [22].
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Af2ð�8 ! 4�0Þ ¼ 1ffiffiffi
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p Af2ð�0 ! 4�0Þ ¼ �Ncðc1 � c2 þ c3Þ

24�2

���	
ffiffiffi
3
p

F5
�

p
�
1 p

�
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3p



4 fGf2ðs12; s23; s14; s34; s13; s24Þ

� Gf2ðs13; s23; s14; s24; s12; s34Þ �Gf2ðs12; s24; s13; s34; s14; s23Þg;

Gf2ðv;w; x; y; s; tÞ ¼
v� w� xþ y

M2
�

� M2
f2

M2
f2
� s
þ M2

f2

M2
f2
� t

�
; (30)

neglecting for simplicity the width of the f2, which is
justified in the kinematic regime accessible in �0 ! 4�0.
Note that, due to the special symmetry of the amplitude,
Eq. (30) can be rewritten identically by employing
a ‘‘twice-subtracted’’ version of the resonance term, i.e.
replacing Gf2 ! G00f2 ,

G 00f2ðv;w;x;y;s;tÞ¼
v�w�xþy

M2
�M

2
f2

�
s2

M2
f2
�s
þ t2

M2
f2
� t

�
;

(31)

which makes the correct chiral dimension of the resonance
contribution manifest.

As a rough final consistency check, we compare the
order of magnitude of a chiral counterterm induced by
the f2 exchange, see Eq. (31) in the low-energy limit s, t	
M2

f2
, with the scale running of such a counterterm as

necessitated by the log� dependence in Eq. (26). If we
only retain the scattering lengths in the D-wave partial
waves, the relevant part to be compared to Eq. (31) (that
does not cancel in the full amplitude) is

�
d

d�
½Gðv;w; x; y; sÞ þ Gðv;w; x; y; tÞ�

¼ v� w� xþ y

3M2
�

ða02 � a22Þ
s2 þ t2

8�2
: (32)

Comparing the numerical prefactors, we find that the scale
dependence is suppressed versus the estimate for the finite
counterterm by

a02 � a22
16�

�M4
f2
� 0:22; (33)

where we have used a02 ¼ 1:75� 10�3M�4� , a22 ¼ 0:17�
10�3M�4� [24]. In other words, the scale dependence sug-
gests the order of magnitude of our counterterm estimate
using f2 saturation to be reasonable.

B. Pion-loop contribution improved:
including vector propagators

We have seen in Sec. II on the P-wave dominated, (par-
tially) charged four-pion final states that the leading ap-
proximation in an expansion of the �meson propagators is
not a sufficient description of these decays, given the avail-
able phase space in �0 decays. With the �0=8 ! �þ��2�0

transitions entering the decay mechanism for �0=8 ! 4�0

as described in the previous section, this deficit would be
fully inherited in our estimate of the all-neutral final states.
In fact, the imaginary part of the corresponding diagram
including the full � propagators, see Fig. 3, can even be
calculated exactly, using Cutkosky rules; however, the re-
sulting expressions are extremely involved and not very
illuminating. It turns out, though, that the main effects of
the not-so-largevector-mesonmass can be approximated by
the following expression for the imaginary part:

ImAð�8 ! 4�0Þ ¼ 1ffiffiffi
2
p ImAð�0 ! 4�0Þ ¼ � Nc

8�

���	
ffiffiffi
3
p

F5
�

p
�
1 p

�
2p

	
3p



4 fðc1 � c2 � c3Þ½ImG�

1 ðs12; s23; s14; s34; s13Þ

þ ImG�
1 ðs12; s14; s23; s34; s24Þ � ImG�

1 ðs13; s23; s14; s24; s12Þ � ImG�
1 ðs13; s14; s23; s24; s34Þ

� ImG�
1 ðs12; s24; s13; s34; s14Þ � ImG�

1 ðs12; s13; s24; s34; s23Þ� þ 2c3½ImG�
2 ðs12; s23; s14; s34; s13Þ

þ ImG�
2 ðs12; s14; s23; s34; s24Þ � ImG�

2 ðs13; s23; s14; s24; s12Þ
� ImG�

2 ðs13; s14; s23; s24; s34Þ � ImG�
2 ðs12; s24; s13; s34; s14Þ � ImG�

2 ðs12; s13; s24; s34; s23Þ�g;

ImG�
1 ðv;w; x; y; sÞ ¼

�
M2

�ðv� wÞ
ðM2

� � 1
2 ðvþ wÞÞ2 �

M2
�ðx� yÞ

ðM2
� � 1

2 ðxþ yÞÞ2
�
ðt02ðsÞ � t22ðsÞÞ

�

3�
þOð�7Þ;

ImG�
2 ðv;w; x; y; sÞ ¼

M4
�ðM2

�ðv� w� xþ yÞ � vyþ wxÞ
ðM2

� � 1
2 ðvþ wÞÞ2ðM2

� � 1
2 ðxþ yÞÞ2 ðt

0
2ðsÞ � t22ðsÞÞ

�

3�
þOð�7Þ: (34)

We find, furthermore, that the neglected terms indicated asOð�7Þ are also suppressed in inverse powers ofM�, starting at
OðM�6� Þ compared to the leading terms ofOðM�2� Þ in the above. Numerically, the indicated higher-order corrections in �2

are found to be small, less than about 10% all over phase space. However, the corrections by the remnants of the �
propagators are large compared to the limit M� ! 1, given the available phase space and the high power of these
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propagators in the denominator. Using the same trick as in the previous section to transform the imaginary part into an
estimate for the whole (resonance-dominated) partial wave via the Omnès function, we arrive at
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4 fðc1 � c2 � c3Þ½G�
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f2;1
ðs13; s14; s23; s24; s34Þ

�G�
f2;1
ðs12; s24; s13; s34; s14Þ �G�

f2;1
ðs12; s13; s24; s34; s23Þ� þ 2c3½G�

f2;2
ðs12; s23; s14; s34; s13Þ

þG�
f2;2
ðs12; s14; s23; s34; s24Þ �G�

f2;2
ðs13; s23; s14; s24; s12Þ �G�

f2;2
ðs13; s14; s23; s24; s34Þ

�G�
f2;2
ðs12; s24; s13; s34; s14Þ �G�

f2;2
ðs12; s13; s24; s34; s23Þ�g;

G�
f2;1
ðv;w; x; y; sÞ ¼

�
M2

�ðv� wÞ
ðM2

� � 1
2 ðvþ wÞÞ2 �

M2
�ðx� yÞ

ðM2
� � 1

2 ðxþ yÞÞ2
� M2

f2

M2
f2
� s

;

G�
f2;2
ðv;w; x; y; sÞ ¼ M4

�ðM2
�ðv� w� xþ yÞ � vyþ wxÞ

ðM2
� � 1

2 ðvþ wÞÞ2ðM2
� � 1

2 ðxþ yÞÞ2
M2

f2

M2
f2
� s

: (35)

Note that this result is far from the one-f2 dominance
estimate, with a f2 coupling constant / M�2� as the pre-
vious section suggested. Expanding Eq. (35) simulta-
neously around the limits M� ! 1, Mf2 ! 1, the
leading term (corresponding to chiral dimension Oðp10Þ)
is not dominated by terms of OðM�2� M�4f2

Þ, but also con-
tains other terms of OðM�4� M�2f2

Þ and OðM�6� Þ. In other
words, Eq. (30) is numerically no reasonable approxima-
tion to Eq. (35) even for the decay �! 4�0, with its tiny
phase space available.

C. Branching ratios

We calculate the partial width using Eq. (21) with the
symmetry factor S ¼ 4!. Note again thatAð�0 ! 4�0Þ ¼
Að�8 ! 4�0Þ, assuming standard mixing. We employ the
amplitude as given in Eq. (35) as our ‘‘best guess’’ for an
estimate of the branching fraction. With the same numeri-
cal input as in Sec. II C (except using the neutral pion mass
everywhere), we find

Bð�0 ! 4�0Þ
¼ ½0:4ðc1 � c2Þ2 þ 1:6ðc1 � c2Þc3 þ 1:7c23� � 10�8

¼ f3:7; 3:9g � 10�8; (36)

for the two sets of coupling constants ci. Note that the use
of the amplitude (30) leads to a branching fraction of the
order of 4� 10�11, i.e. almost 3 orders of magnitude
smaller.
We can trivially also calculate the branching fraction for

�! 4�0, the only �! 4� decays that is kinematically
allowed. We again employ the amplitude (35), and note

that mixing according to Eq. (5) suggestsAð�! 4�0Þ ¼ffiffiffi
2
p

Að�8 ! 4�0Þ. Normalized to the total width of the �,
�� ¼ ð1:30� 0:07Þ keV [2], we find

Bð�! 4�0Þ
¼ ½0:4ðc1 � c2Þ2 þ 1:1ðc1 � c2Þc3 þ 1:0c23� � 10�30

¼ f2:4; 2:6g � 10�30; (37)

in other words, the D-wave characteristic of the decay
combined with tiny phase space leads to an enormous
suppression of the CP-allowed �! 4�0 decay. We again
compare these estimates to the available experimental
upper limits [6,25],

Bexpð�0 ! 4�0Þ< 5� 10�4;

Bexpð�! 4�0Þ< 6:9� 10�7; (38)

further improvements of these experimental upper limits
are planned (see e.g. Ref. [26] for �! 4�0). In this case,
our predictions are smaller than those by several orders of
magnitude.
The uncertainties of Eqs. (36) and (37) are hard to

assess. The generic SU(3) and 1=Nc error of about 30%
assumed in Sec. II C is probably too small, as here, we do
not even have a complete leading-order calculation at our
disposal. We therefore rather assume these numbers to be
the correct orders of magnitude, without quantifying the
uncertainty of the prediction any further.

FIG. 3. Pion-loop contribution to �, �0 ! 4�0 via �� inter-
mediate states; see the vector-meson dominated amplitude dis-
cussed in Sec. II. The black square denotes an effective local D-
wave �� scattering vertex at Oðp4Þ.
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IV. CP-VIOLATING �, �0 ! 4�0 DECAYS

Given the smallness of the branching fractions predicted
for �0 ! 4�0, �! 4�0 via a D-wave dominated,
CP-conserving decay mechanism in the previous section,
it is desirable to compare these numbers with possible
CP-violating contributions that may, on the other hand,
avoid the huge angular-momentum suppression. One such
CP-violating mechanism that is expected to affect strong-
interaction processes is induced by the so-called �-term, an
additional term in the QCD Lagrangian necessitated for the
solution of the Uð1ÞA problem. The �-term violates P and
CP symmetry and may induce observable symmetry-
violating effects, in particular, in flavor-conserving pro-
cesses. Its effective-Lagrangian treatment includes a term
that can be rewritten as (see Ref. [27] and references
therein)

L� ¼ i ��0
F2
�M

2
�0

12

�
hU�Uyi � log

�
detU

detUy

��
;

U ¼ u2 ¼ exp

�
i’

F�

�
; (39)

which, in addition to the well-known �! 2� amplitude
[27,28], also induces a CP-violating �! 4� amplitude,

ACPð�8!4�0Þ¼ 1ffiffiffi
2
p ACPð�0!4�0Þ

¼ACPð�0 !4�0Þ¼ 1ffiffiffi
2
p ACPð�!4�0Þ

¼�M2
�0

��0

3
ffiffiffi
3
p

F3
�

: (40)

We will useM�0
� M�0 for numerical evaluation. The fact

that this amplitude is a constant makes the phase space
integration almost trivial, with the results for the branching
fractions

Bð�!CPV4�0Þ ¼ 5� 10�5 � ��20;

Bð�0 !CPV4�0Þ ¼ 9� 10�2 � ��20: (41)

We remark that we do not consider the branching ratio
estimate for �0 ! 4�0 in Eq. (41) reliable in any sense:
given the available phase space and the possibility of
strong S-wave �� final-state interactions, it could easily
be enhanced by an order of magnitude. Were ��0 a quantity
of natural size, Eq. (41) would demonstrate the enhance-
ment of the CP-violating S-wave mechanism compared to
the CP-conserving D-wave one, see Eqs. (36) and (37).
With current limits on the QCD vacuum angle derived
from neutron electric dipole moment measurements, ��0 &
10�11 [29], these branching fractions are already bound
beyond anything measurable; however, we note that for
�! 4�0, the suppression of the CP-conserving D-wave
mechanism, see Eq. (37), is so strong that it is even smaller
than the CP-violating (S-wave) one in Eq. (41) if the
current bounds are inserted for ��0.

V. SUMMARYAND CONCLUSIONS

In this article, we have calculated the branching frac-
tions of the � and �0 decays into four pions. These pro-
cesses of odd intrinsic parity are anomalous, and—as long
as CP symmetry is assumed to be conserved—forbid the
pions to be in relative S-waves. We organize the amplitudes
according to chiral power-counting rules, and find the
leading contributions to the �0 decay amplitudes with
charged pions in the final state at Oðp6Þ. Utilizing the
framework of hidden local symmetry for vector mesons,
we assume that vector-meson exchange saturates the
Oðp6Þ low-energy constants, and find that the (P-wave)
decay amplitude is entirely governed by � intermediate
states. The dominant contribution is hence given by the
triangle anomaly via �0 ! �� (with numerically sublead-
ing box terms), not by the pentagon anomaly. In this way,
the branching fractions for �0 ! 2ð�þ��Þ and �0 !
�þ��2�0 are predicted to be

Bð�0 ! 2ð�þ��ÞÞ ¼ ð1:0� 0:3Þ � 10�4;

Bð�0 ! �þ��2�0Þ ¼ ð2:4� 0:7Þ � 10�4; (42)

respectively. The former is only a factor of 2 smaller than
the current experimental upper limit, so should be testable
in the near future with the modern high-statistics facilities.
Predictions for the decays into four neutral pions are

much more difficult, as Bose symmetry requires them to
emerge in relative D waves (assuming CP conservation),
suppressing the amplitudes to Oðp10Þ in chiral power
counting. We here do not even obtain the full leading-order
amplitudes, as these would require a three-loop calcula-
tion. We estimate the decay via a charged-pion-loop
contribution with D-wave pion-pion charge-exchange
rescattering; an alternative mechanism through two f2
mesons is found to be completely negligible in compari-
son, based on an estimate of the tensor-tensor-pseudoscalar
coupling constant in the framework of QCD sum rules.
Because of these phenomenological approximations, the
CP-conserving branching ratios thus obtained,

Bð�0 ! 4�0Þ 
 4� 10�8;

Bð�! 4�0Þ 
 3� 10�30; (43)

should only be taken as order-of-magnitude estimates. It
thus turns out that the CP-conserving decay width of �!
4�0 is so small that any signal to be observed would
indicate CP-violating physics. For the latter, we calculate
one specific example using the QCD �-term.
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project and for discussions, and Maurice Benayoun for
useful communications concerning Ref. [14]. Partial finan-
cial support by the Helmholtz Association through funds
provided to the Virtual Institute ‘‘Spin and strong QCD’’

ANOMALOUS DECAYS OF �0 AND � INTO . . . PHYSICAL REVIEW D 85, 014014 (2012)

014014-9



(VH-VI-231), by the DFG (SFB/TR 16, ‘‘Subnuclear
Structure of Matter’’), and by the project ‘‘Study of
Strongly Interacting Matter’’ (HadronPhysics2, Grant
No. 227431) under the Seventh Framework Program of
the EU is gratefully acknowledged.

APPENDIX A: FOUR-BODY
PHASE SPACE INTEGRATION

The n-body phase space is defined as

d�nðP;p1; . . . ; pnÞ � ð2�Þ4�4

�
P�Xn

i¼1
pi

�Yn
i¼1

d3pi

ð2�Þ32p0
i

:

(A1)

Using the recursive relation [2]

d�nðP;p1; . . . ; pnÞ ¼ d�jðq;p1; . . . ; pjÞ

� d�n�jþ1ðP;q;pjþ1; . . . ; pnÞdq
2

2�
;

(A2)

we have

d�4ðP;p1; . . . ; p4Þ

¼ d�2ðq;p1; p2Þd�2ðk;p3; p4Þd�2ðP;q; kÞdq
2

2�

dk2

2�

¼ 1

ð8�2Þ4M
Z M�m3�m4

m1þm2

d
ffiffiffiffiffiffi
s12
p Z M� ffiffiffiffiffi

s12
p

m3þm4

d
ffiffiffiffiffiffi
s34
p

�
Z

d��1d�03d�jp�1jjp03jjqj; (A3)

where mi, i ¼ 1 . . . 4 are the masses associated with the
final-state particles of momentum pi, M is the mass of the
decaying particle, s12 ¼ q2, s34 ¼ k2. d��1 ¼ d’�1d cos�

�
1

is the solid angle of particle 1 in the center-of-mass frame
(cmf) of particles 1 and 2, d�03 is the solid angle of particle
3 in the cmf of 3 and 4, and d� is the solid angle of the 1, 2
system in the rest frame of the decaying particle. The three-
momenta are given by

jp�1j ¼
�1=2ðs12; m2

1; m
2
2Þ

2
ffiffiffiffiffiffi
s12
p ; jp03j ¼

�1=2ðs34; m2
3; m

2
4Þ

2
ffiffiffiffiffiffi
s34
p ;

jqj ¼ �1=2ðM2; s12; s34Þ
2M

; (A4)

with the usual Källén function �ðx; y; zÞ � x2 þ y2 þ z2 �
2ðxyþ xzþ yzÞ.

Denoting quantities in the cmf of 1 and 2 (3 and 4) by
�ð0Þ, one can relate them with those in the rest frame of the
decay particle by Lorentz transformation. Explicitly,

p
�
1 ¼ f�12ðp0�

1 þ �12 � p�1Þ; �12ð�12p
0�
1 þ p�

1jjÞ;p�1?g;
p
�
2 ¼ f�12ðp0�

2 � �12 � p�1Þ; �12ð�12p
0�
2 � p�

1jjÞ;�p�1?g;
p�
3 ¼ f�34ðp00

3 þ �34 � p03Þ; �34ð�34p
00
3 þ p0

3jjÞ;p03?g;
p�
4 ¼ f�34ðp00

4 � �34 � p03Þ; �34ð�34p
00
4 � p0

3jjÞ;�p03?g;
(A5)

where �12 ¼ q=q0 (�34 ¼ k=k0) is the velocity of the 1, 2
(3, 4) system in the rest frame of the decay particle, and

�12ð34Þ ¼ ð1� �2
12ð34ÞÞ�1=2. Moreover, p�

1jjð?Þ are the com-

ponents of p�1 parallel (perpendicular) to q, and p0
3jjð?Þ are

the components of p03 parallel (perpendicular) to k. One
can define ��1 as the angle between the directions of q and
p�1, and �03 as the one between k ¼ �q and p03. The angle
between p�1 and p03, �13, is related to the solid angles ��1
and �03 by

cos�13¼�cos��1 cos�
0
3�sin��1 sin�

0
3 cosð’03þ’�1Þ: (A6)

The angles are shown for illustration in Fig. 4. It is obvious
that the integration d� as well as the one over either ’�1 or
’03 are trivial, such that Eq. (A3) simplifies to

d�4ðP;p1; . . . ; p4Þ
¼ 1

ð8�2Þ3M
Z M�m3�m4

m1þm2

d
ffiffiffiffiffiffi
s12
p Z M� ffiffiffiffiffi

s12
p

m3þm4

d
ffiffiffiffiffiffi
s34
p

�
Z

d cos��1d cos�03d’03jp�1jjp03jjqj: (A7)

FIG. 4 (color online). The solid angles of particle 1 (3) in the
cmf of 1 and 2 (3 and 4). �13 is the angle between the momentum
of particle 1 in the cmf of 1 and 2 and the momentum of particle
3 in the cmf of 3 and 4.
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APPENDIX B: TENSOR-MESON
CONTRIBUTIONS TO �, �0 ! 4�0

1. Amplitude, decay width

In this Appendix, we discuss an alternative, resonance-
driven decay mechanism for the decays �, �0 ! 4�0,
namely, via two f2ð1270Þ tensor mesons, see the right
panel of Fig. 2. The Lagrangian for the tensor-tensor-
pseudoscalar interaction reads

L TTP ¼ gTTPffiffiffi
2
p �����g	
h@�T�	T�
@�’i; (B1)

where the tensor nonet is given by

T�� ¼

a0
2��ffiffi
2
p þ f2��ffiffi

2
p aþ2�� Kþ2��

a�2�� � a0
2��ffiffi
2
p þ f2��ffiffi

2
p K0

2��

K�2��
�K0
2�� f02��

0
BBBBB@

1
CCCCCA: (B2)

The coupling constant gTTP is not easily determined phe-
nomenologically; we will first write the resulting decay
width as a function of gTTP, and then proceed to estimate it
in Appendix B 2 using QCD sum rules.

The decay of the f2 into two pseudoscalars is described
by the Lagrangian [21,30]

Lf2 ¼ gTf2��hu�u�i ¼ gT
F2
�

f2��h@�’@�’i þ . . . : (B3)

Using the polarization sum for a tensor meson [31]

X
�

ð�Þ��ðpÞð�Þ��ðpÞy

¼ 1

2
ðX��X�� þ X��X��Þ � 1

3
X��X��; (B4)

with X�� � g�� � p�p�=M
2
f2
, it is straightforward to

derive the f2 ! �� decay width as [21]

�ðf2 ! ��Þ ¼ g2T
80�M2

f2
F4
�

ðM2
f2
� 4M2

�Þ5=2: (B5)

Inserting Mf2 ¼ 1275:1 MeV, �f2 ¼ 185:1 MeV, and

Bðf2 ! ��Þ ¼ 84:8% [2] (neglecting the corresponding
uncertainties), the coupling constant can be obtained as
gT ¼ 39:4 MeV.

Applying the polarization sum of a tensor field as given
in Eq. (B4), the decay amplitude for the process �0 !
f2f2 ! 4�0 takes the simple form

A f2f2 ¼ �
ffiffiffi
2

3

s
2gTTPg

2
T

F4
�

���	
p
�
1 p

�
2p

	
3p



4

� ½H ðs12; s23; s14; s34; s13; s24Þ
�H ðs13; s23; s14; s24; s12; s34Þ
�H ðs12; s24; s13; s34; s14; s23Þ�: (B6)

The three terms in the square brackets are due to inter-
change of identical pions in the final state, and
H ðv;w; x; y; s; tÞ is given by

H ðv;w; x; y; s; tÞ ¼ v� w� xþ y

ðM2
f2
� sÞðM2

f2
� tÞ ; (B7)

where we have again neglected the f2 width in the
propagators.
We calculate the partial width as in Sec. III C, and find as

the result for the decay mechanism through two virtual f2
states

�ð�0 ! f2f2 ! 4�0Þ � 1� 10�16
g2TTP
GeV�2

MeV: (B8)

The value of gTTP is estimated using the method of QCD
sum rules in Appendix B 2 to be about 9 GeV�1. Thus, the
branching fraction is

B ð�0 ! f2f2 ! 4�0Þ � 4� 10�14: (B9)

It is orders of magnitude smaller than the value in Eq. (36),
and hence can be safely neglected.

2. Estimate of gTTP via QCD sum rules

In this Appendix, we estimate the unknown coupling
constant gTTP using QCD sum rules [32,33]. We choose to
estimate it from the a2f2� coupling. Since we are not
aiming at a precise calculation, complications due to mix-
ing with gluon operators and anomalous dimensions will
be neglected. The interpolating fields for the aþ2 [34] and
�þ are

j
ðaþ2 Þ
�� ðxÞ ¼ i

2
�dðxÞð��D

$
� þ ��D

$
�ÞuðxÞ;

jð�
þÞ

5 ðxÞ ¼ imq
�dðxÞ�5uðxÞ; (B10)

where D
$

� � ðD
!

� �D
 

�Þ=2, with D� the standard cova-

riant derivative, and mq is the light quark mass. The flavor

wave function for the f2 is ð �uuþ �ddÞ= ffiffiffi
2
p

, and the
corresponding interpolating field follows from the above
equation. Wewill study the three-point correlation function

���	
ðp0; qÞ ¼
Z

d4xd4yeiðp0xþqyÞh0jTfjðf2Þ�� ðxÞjð�þÞ5 ðyÞ

� ½jðaþ2 Þ	
 ðzÞ�ygj0iz!0

� �ðp0; qÞp0�q�ðg	��
��� þ g	��
���

þ g
��	��� þ g
��	���Þ þ . . . : (B11)

In the last step, only one Lorentz structure is kept, which
we will use for the estimate.
The operator product expansion for the correlation func-

tion can be calculated in the deep Euclidean region.
Keeping operators of the lowest dimension only, we find
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�ðp0; qÞ ¼ �mqh �qqi
16

ffiffiffi
2
p 1

q2
½logð�p2Þ þ logð�p02Þ�; (B12)

with p ¼ qþ p0, where we have neglected all polynomial
terms since they will not contribute after the Borel trans-
form. The correlation function can also be expressed in
terms of hadronic quantities, which reads

�ðp0; qÞ ¼ � 1

4
F�M

2
�

gTTPf
2
TM

6
T

ðq2 �M2
�Þðp2 �M2

TÞðp02 �M2
TÞ
;

(B13)

where SU(3) symmetry is assumed for the a2 and f2 by
requiring their decay constants and masses to be the same.
The hadronic quantities are defined as

h0jjð�þÞ5 j�þi ¼ 1ffiffiffi
2
p F�M

2
�; h0jjðf2Þ�� jf2i ¼ fTM

3
T��;

(B14)

with �� as defined in Eq. (B4). Note that fT defined in

this way is dimensionless. Following Ref. [35], we take
p2 ¼ p02, and perform the Borel transform only once. We
obtain the sum rule

gTTP ¼ F�M
4
B

4
ffiffiffi
2
p

f2TM
6
T

eM
2
T=M

2
B ; (B15)

where MB is the so-called Borel mass, and mqh �qqi ¼
�M2

�F
2
�=2 has been used. In addition, fT was already

calculated in QCD sum rules [34]. Because of a cancella-
tion between the gluon condensate and the four-quark
condensate, the sum rule for fT is dominated by a pertur-
bative contribution, which reads [34]

M6
Tf

2
Te
�M2

T=M
2
B � 3

160�2

Z s0

0
s2e�s=M2

Bds; (B16)

where s0 is a threshold parameter introduced to mimic the
spectral function in the region q2 > s0 by the one calcu-
lated using perturbative QCD. Finally, we obtain

gTTP � 20
ffiffiffi
2
p

�2

3
F�M

4
B

�Z s0

0
s2e�s=M2

Bds

��1
: (B17)

This estimate is plotted in Fig. 5 as a function of M2
B.

Taking the same interval of M2
B 2 ½0:8; 1:0� GeV2 and

s0 ¼ 2:5 GeV2 as in Ref. [34], the coupling constant is
estimated as

gTTP � 9 GeV�1: (B18)
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