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In this paper, we explore the possibility of spontaneous CP violation in the scattering of quarks and

antiquarks from QCD Zð3Þ domain walls. The CP violation here arises from the nontrivial profile of the

background gauge field ðA0Þ between different Zð3Þ vacua. We calculate the spatial variation of A0 across

the Z(3) interface from the profile of the Polyakov loop Lð ~xÞ for the Z(3) interface and calculate the

reflection of quarks and antiquarks using the Dirac equation. This spontaneous CP violation has

interesting consequences for the relativistic heavy-ion collision experiments, such as baryon enhancement

at high PT . It also acts as a source of additional J=c suppression. We also discuss its implications for the

early Universe.
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I. INTRODUCTION

The possibility of extended topological objects in the
quark-gluon plasma (QGP) phase, e.g. Z(3) interfaces
arising from spontaneous breaking of Z(3) symmetry, has
been extensively discussed in the literature [1–3]. It has
also been pointed out that there are also topological string
defects in QGP forming at the junctions of Z(3) walls [4].
Formation and evolution of these objects in the initial
transition to the QGP phase has been studied in the context
of relativistic heavy-ion collision experiments (RHICE)
[5]. Certain consequences of Z(3) walls for baryon inho-
mogeneity generation in the Universe have also been ex-
plored [6]. Investigation of these objects is important not
only for probing the very rich vacuum structure of the QCD
in the deconfining phase, but also because these provide the
only example of topological defects in a relativistic quan-
tum field theory which can be probed in laboratory con-
ditions, namely, RHICE. The existence of these objects has
been questioned in the literature, especially in the presence
of quarks [7,8]. However, there are recent lattice studies by
Deka et al. [9] of QCD with quarks which have attempted
to directly probe the existence of different Z(3) vacua.
These results show a strong possibility of the existence
of nontrivial, metastable, Z(3) vacua for high temperatures.
The exact value of the temperature, above which these
metastable Z(3) vacua are seen, is not important. What is
important is that these vacua seem to exist as metastable
thermodynamic phases of QCD in the deconfining regime,
and hence associated topological objects will necessarily
arise in any realistic phase transition from the confining
phase to the QGP phase.

In this paper we will investigate an interesting possibil-
ity arising from the existence of Z(3) interfaces. We will
study the reflection of quarks and antiquarks from Z(3)
walls and show the existence of CP violation arising from
the Z(3) walls. This CP violation is spontaneous, arising
due to the background configuration of the gauge field
corresponding to the Z(3) wall, and was first demonstrated
by Korthals Altes et al. [10]. It was shown in Ref. [10], in
the context of the Universe, that due to the nontrivial
background field configuration for the standard model
gauge fields, the localization of quarks and antiquarks on
the wall is different. Its possible effects on the electroweak
baryogenesis via sphalerons was discussed in [10]. The
same possibility of spontaneous CP violation for the case
of QCDwas also discussed in [11]. We extend these studies
by calculating the propagation of quarks and antiquarks
across the Z(3) walls and show that they have different
reflection coefficients. For this we calculate the profile of
the order parameter Lð ~xÞ between different Z(3) vacua [4]
using the effective potential for the Polyakov loop, as
proposed by Pisarski [12]. We then obtain the profile of
the background gauge field A0 from this Lð ~xÞ profile. This
A0 configuration provides a potential for the propagation of
quark causing nontrivial reflection of quarks from the wall.
It is important to know the uncertainties in the determina-
tion of the A0 profile depending on the choice of the
specific form of the effective potential, such as those given
in [13,14]. To address this issue we repeat the above
calculation for another choice of effective potential of the
Polyakov loop as provided by Fukushima [13]. We find
that, even though the two effective potentials (in
Refs. [12,13]) are of qualitatively different shapes, the
resulting wall profile and A0 profile are surprisingly simi-
lar. This gives us confidence in the use of our procedure to
calculate the reflection of quark and antiquarks from the
Z(3) interfaces.
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Different values of the reflection coefficients of quarks
and antiquarks from the Z(3) walls will have very interest-
ing implications for the case of RHICE and for the early
Universe. Here we mention that in the earlier studies by
some of us the reflection of quarks/antiquarks from Z(3)
walls (in the context of RHICE and the Universe) [6], was
studied by modeling the dependence of effective quark
mass on the magnitude of the Polyakov loop, and no
possibility of spontaneous CP violation was explored.
This CP violation, resulting in different reflection coeffi-
cients of quarks and antiquarks from Z(3) walls, will lead
to segregation of quarks and antiquarks due to motion
(collapse) of walls. As a result there will be selective
concentration of baryon (or antibaryon) number in differ-
ent regions, depending on the Z(3) vacua involved. This
will have direct observable consequences for the relativis-
tic heavy-ion collision experiments. For example, it will
affect the yield of baryons and mesons, enhancing baryon
multiplicities and suppressing meson multiplicities. As we
will see, these effects are expected to be important for
heavy quarks, especially for charm and heavier flavors. A
detailed analysis of these effects is planned for a future
work. This CP violation can also play an important role in
the context of the early Universe, especially for generation
of baryon density inhomogeneities, by segregating baryons
and antibaryons. We mention here that our analysis of the
reflection of quarks in this paper utilizes Z(3) wall profile
of pure SU(3) gauge theory, without dynamical quarks.
The effects of quarks may not be important in the context
of RHICE due to small length and time scales involved, but
for the case of the Universe these effects will be of crucial
importance. We will discuss this further below.

The paper is organized in the following manner. In
Sec. II, we discus the basic physics of the origin of sponta-
neous CP violation due to the presence of Z(3) interfaces
[10,11] and discuss the effective potential for the Polyakov
loop, as proposed by Pisarski [12] for calculating various
quantities. In Sec. III, we discuss how to obtain the profile
of the background gauge field A0 from the profile of the
order parameter Lð ~xÞ between different Z(3) vacua [4]. In
Sec. IV, we address the issue of uncertainties in the deter-
mination of the A0 profile depending on the choice of the
specific form of the effective potential by repeating
the calculations of Sec. III for the effective potential of
the Polyakov loop provided by Fukushima [13]. The result-
ing wall profile and A0 profile are found to be very close to
those found in Sec. III. We use the profile of A0 as calcu-
lated in Sec. III, for the Dirac equation (in the Minkowski
space) in Sec. V to calculate the reflection and transmission
coefficients for quarks and antiquarks. Section VI presents
our results and conclusions are discussed in Sec. VII.

II. ORIGIN OF SPONTANEOUS CP VIOLATION

We first discuss the basic physics of the origin of the
spontaneous CP violation from the existence of Z(3) walls.

For the case of pure SUðNÞ gauge theory, we start with the
definition of the Polyakov loop, [15–17]

LðxÞ ¼ 1

N
Tr

�
P exp

�
ig
Z �

0
A0ð ~x; �Þd�

��
; (1)

where A0ð ~x; �Þ ¼ Aa
0ð ~x; �ÞTa, (a ¼ 1; . . .N) are the gauge

fields and Ta are the generators of SUðNÞ in the funda-
mental representation. P denotes the path ordering in the
Euclidean time �, and g is the gauge coupling. Under
global ZðNÞ symmetry transformation, the Polyakov
Loop transforms as

LðxÞ ! Z� LðxÞ; where Z ¼ ei�: (2)

Here, � ¼ 2�m=N; m ¼ 0; 1 . . . ðN � 1Þ.
The thermal average of the Polyakov loop, hLðxÞi, is the

order parameter for the confinement-deconfinement phase
transition. (From now onwards, we will use LðxÞ to denote
hLðxÞi.) It is related to the free energy of a test quark in a
pure gluonic medium (LðxÞ / e��F). LðxÞ � 0 implies
finite free energy of a test quark and hence, the deconfined
phase (i.e. the system is above the critical temperature Tc).
This leads to spontaneous breaking of ZðNÞ symmetry. On
the other hand, Lð ~xÞ ¼ 0 implies infinite free energy of a
test quark and hence, confined phase (i.e. the system is
below Tc). The ZðNÞ symmetry is then restored. The
N-fold degeneracy of the ground state implies the exis-
tence of interfaces between regions of different Zð3Þ vacua.
For QCD, the gauge group is the color group SUð3Þc. It has
three Zð3Þ vacua resulting from the spontaneous breaking
of Zð3Þ symmetry in the high temperature (deconfined)
phase characterized by

Lð ~xÞ ¼ 1; ei2�=3; ei4�=3: (3)

As we mentioned above, there have been questions as to
whether these Z(3) domains have some physical meaning
or not [7,8]. The inclusion of quarks raises further issues as
they do not respect the ZðNÞ symmetry. It has been argued
that it is possible to interpret the effect of addition of
quarks as the explicit breaking of ZðNÞ symmetry and
lifting of degeneracy of the vacuum [12,18–20], and we
will follow this approach. Further, as we mentioned in the
Introduction, recent lattice QCD studies with quarks [9]
have strengthened the physical basis for the existence of
these different Z(3) vacua. The metastability of nontrivial
Zð3Þ vacua will have important implications for RHICE
and the early Universe. However, in the remainder of the
paper we will consider the pure gauge case for calculating
the Zð3Þ interface profiles. This is because our main ob-
jective here is to show the interesting possibility of sponta-
neous CP violation in the reflection of quarks and
antiquarks from Z(3) walls which is independent of the
explicit symmetry breaking. We will briefly comment on
the effects of quarks in the last section, and detailed study
of these effects will be presented in a future work.
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As mentioned earlier, different Zð3Þ vacua have an in-
terpolating Lð ~xÞ profile leading to Z(3) interfaces. This
essentially means that there is a background gauge field
A0ð ~xÞ profile which interpolates between different Zð3Þ
vacua. The quarks/antiquarks moving across the Zð3Þ do-
main walls will behave differently in the presence of a
given spatially varying A0 field configuration. As a result,
we should have different reflection and transmission coef-
ficient for quarks and antiquarks. This is the source of CP
violation. The origin of this CP asymmetry is spontaneous
in nature. The earlier studies [10,11] of this spontaneous
CP violation arising from Z(3) walls focused on the local-
ized solution of the Dirac equation (in Euclidean space),
and it was shown that if a wave function for a fermion
species localizes, then its CP conjugate does not. The
whole discussion in Refs. [10,11] was within the
Euclidean formalism and the exact gauge field profile
was not determined in these investigations.

In this paper we are interested in the calculation of
reflection and transmission coefficient of quarks and anti-
quarks and hence, in the propagating solutions. It is im-
portant to note here that the background gauge field profile
comes from the finite temperature field theory, which is
formulated in the Euclidean space. To calculate the reflec-
tion and the transmission coefficients (or to study propa-
gation of quarks, in general), we need to solve Dirac
equation in the Minkowski space.

We start with the Dirac equation in the Euclidean space,
with the spatial dependence of A0 calculated from the Z(3)
wall profile as mentioned above. Then we do the analytic
continuation of the full equation to the Minkowski space
and use the resulting equation to calculate the reflection
and transmission coefficients. We should mention here that
it may seem puzzling that we are extracting information
about colored objects (i.e. A0) starting with a colorless
object, the Polyakov loop. However, as we will explain
later in Sec. V, starting with a given profile of LðxÞ, one
does not get unique solution for A0ðxÞ and the ambiguity
about color information manifests itself in the form of a set
of solutions of A0.

We will use the effective model for the Polyakov loop as
proposed by Pisarski [12]. The Lagrangian density has the
form

L ¼ N

g2
j@�Lj2T2 � VðLÞ: (4)

N ¼ 3 for our case (i.e. QCD). T2 is multiplied with the
first term to give the correct dimensions to the kinetic term.
VðLÞ is the potential term that has the form

VðLÞ ¼
�
� b2

2
jLj2 � b3

6
ðL3 þ ðL�Þ3

�
þ 1

4
ðjLj2Þ2Þb4T4:

(5)

The cubic term in Lð ~xÞ in the above potential, when
written in terms of Lð ~xÞ ¼ jLðxÞjei�, gives rise to cosð3�Þ

term that leads to three degenerate Zð3Þ vacua when
Lð ~xÞ � 0 (i.e. when T > Tc). The coefficients b2, b3 and
b4, in the potential, are fixed in Refs. [18–20] by compar-
ing with lattice results for the pressure and energy density
for pure SU(3) gauge theory [21,22]. b2 is given by
b2 ¼ ð1� 1:11=xÞð1þ 0:265=xÞ2ð1þ 0:300=xÞ3 � 0:478,
where x ¼ T=Tc with Tc � 182 MeV. The other parame-
ters are b3 ¼ 2:0 and b4 ¼ 0:6061� 47:5=16 (the factor
47.5/16 for b4 is to account for the additional quark degrees
of freedom compared to pure SU(3) case). With the above

values, Lð ~xÞ ! y ¼ b3=2þ 1
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ 1Þ

q
as

T ! 1. Lð ~xÞ and other quantities are normalized as
follows:

Lð ~xÞ!Lð ~xÞ=y; b2!b2=y
2; b3!b3=y; b4!b4y

4;

(6)

so that Lð ~xÞ ! 1 as T ! 1. The normalized quantities are
then used in Eq. (5), which is then used to calculate the
Lð ~xÞ profile using energy minimization, see Ref. [4] for
details. Figure 1 shows the plot of jLð ~xÞj for the interface
between two different vacua (in the absence of quarks all
the three interfaces have same profile for jLð ~xÞj). We
mention that the surface tension � of the Z(3) walls was
estimated in Ref. [6] for the above effective potential and it
was found that � ¼ 0:34, 2.62, and 7 GeV=fm2 for T ¼
200, 300, and 400 MeV, respectively. There have been
lattice studies of Z(3) wall tension. In Ref. [23] the surface
tension was found to be �ðTcÞ ¼ 0:17T3

c . With Tc ¼
182 MeV the T ¼ 200 result for � in Ref. [6] is larger
by almost factor 10 than the lattice result of Ref. [23].
However, the values of � for larger temperatures, T ¼ 300
and 400 MeV are in reasonable agreement with the ana-

lytical estimates [24] (which give � ¼ 4ðN�1Þ�2T3

3
ffiffi
3

p
g

for large

temperatures).
The energy minimization program gives the full profile

for Lð ~xÞ which is then used for calculating A0ð ~xÞ as de-
scribed in the next section. (As we mentioned in the
Introduction, we will also consider another form of effec-
tive potential as provided by Fukushima [13] in Sec. IV.)
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z (in fm)
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FIG. 1. Variation of jLð ~xÞj between different Zð3Þ vacua for
T ¼ 200 MeV and T ¼ 300 MeV respectively, as a function of
z. Note that at higher temperature, the wall thickness is smaller,
as expected.
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III. OBTAINING A0 PROFILE

In this section we calculate the A0 profile form Lð ~xÞ
profile by inverting Eq. (1). As in Ref. [10] we choose A0 to
be of the form

A0 ¼ 2�T

g
ða�3 þ b�8Þ; (7)

where g is the coupling constant and T is the temperature,
while �3 and �8 are the diagonal Gell-Mann matrices.
Coefficients a and b depend only on spatial coordinates.
The advantage of taking this gauge choice is that we are
dealing with the eigenvalues of the matrices that are in-
variant under gauge transformation.

We take A0 to be independent of �. This is for simplicity.
Further, it can be justified in the high temperature limit due
to periodic boundary conditions on A0 in the (Euclidean)
time direction in the imaginary time formalism being used
here for finite temperature field theory.

Substituting Eq. (7) in Eq. (1), we get

3LðxÞ ¼ expði	Þ þ expði�Þ þ expði
Þ; (8)

where 	 ¼ 2�ða3 þ b
2Þ, � ¼ 2�ða3 � b

2Þ and 
¼2�ð�2a
3 Þ.

On comparing the real and imaginary part of Eq. (8), we
get

cosð	Þ þ cosð�Þ þ cosð
Þ ¼ 3jLj cosð�Þ; (9a)

sinð	Þ þ sinð�Þ þ sinð
Þ ¼ 3jLj sinð�Þ: (9b)

Here � is defined by writing LðxÞ ¼ jLðxÞjei�. In Eq. (1),
A0 appears in the phase, so any increment in the phase by a
factor of type 2�nwill result in the same value of Lð ~xÞ. We
first consider the above equations for L ¼ 1 vacuum. Note
that jLj< 1 for finite temperatures. However, we will keep
referring to the three Z(3) vacua as L ¼ 1; Z; Z2. The solu-
tions are a set of ordered pairs ða; bÞL¼1. These different
solution sets reflect 2�n ambiguity inA0. Similarly, we find

the solution sets ða; bÞL¼Z corresponding to the L ¼ Z ¼
expði2�=3Þ vacuum. One now needs to find the appropriate
values of ða; bÞ for the entire profile of LðxÞ interpolating
between these two vacua. One ambiguity in this is obvious.
Itmay appear that any of the sets ða; bÞL¼1 could bematched
to any of the sets ða; bÞL¼Z as all sets for a given vacua are
equivalent. However, this could lead to different A0 profiles
in between, which in turn would lead to different reflection
and transmission coefficients. This problem is resolved
when we realize that the variation of A0 should be smooth
across the domain wall. Thus, we can simply start with any
one pair ða; bÞL¼1, and set it as the initial condition for the
generation of the profile of A0 as one traverses the wall
starting from the L ¼ 1 vacuum to the L ¼ expði2�=3Þ
vacuum. We only require that a and b vary smoothly as
the profile of LðxÞ changes smoothly across the wall. It will
then automatically lead to the appropriate values of
ða; bÞL¼Z as the L ¼ Z vacuum is approached.
For the results shown here we had taken the initial values

of ða; bÞ ¼ ð�1:5;�1:0Þ for the L ¼ 1 vacuum (in a region
far left to the interface). As one approaches the interface,
say, along the z axis, a new value of LðxÞ is selected from
the profile of LðxÞ (calculated from the energy minimiza-
tion program). We then take small range of values near the
original ða; bÞ ¼ ð�1:5;�1:0Þ, and LðzÞ was then calcu-
lated for all these values. Those values of a and b were
selected for which the error between the calculated L and L
obtained by energy minimization was minimum. The pro-
cess was then repeated for each value of z to obtain the a, b
values. A comparison between the calculated jLj profile
and the one obtained by energy minimization is given in
Fig. 2(a). It clearly shows that this technique works well.
Figure 2(b) shows profile of parameters a and b across the
domain wall.
The calculated a, b were then used to calculate A0 using

Eq (7). The A0 profile thus obtained is reasonably well
fitted to the function A0ðxÞ ¼ p tanhðqxþ rÞ þ s using
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FIG. 2 (color online). Left: plot of calculated jLj and the one obtained from minimizing the energy. The inset figure
shows the deviation between the two profiles. Right: variation of a and b between the regions Lð ~xÞ ¼ 1 and Lð ~xÞ ¼ ei2�=3. Initial
point is (� 1:5, �1:0).
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GNUPLOT. The calculated A0 profile and fitted A0 profile are

plotted in Fig. 3.

IV. CALCULATION OF A0 PROFILE FOR A
DIFFERENT EFFECTIVE POTENTIAL

We now address the issue of the uncertainties in the
determination of the A0 profile depending on the choice
of the specific form of the effective potential. Other pa-
rametrizations of the effective potential for the Polyakov
loop have been given in the literature, e.g. in Refs. [13,14],
and we will repeat the calculations of the previous section
for the effective potential of the Polyakov loop as provided
by Fukushima [13]. For spatially varying L configurations,
we will continue to use the derivative terms as in Eq. (4)
with general dimensional considerations (with suitable
normalization of L). The effective potential for Ref. [13]
has the following form:

V½L�=T4 ¼ �2ðd� 1Þe��a=TjTrLj2 � ln½�jTrLj4
þ 8ReðTrLÞ3 � 18jTrLj2 þ 27�: (10)

� ¼ ð425 MeVÞ2 is the string tension and 2ðd�
1Þe��a=Td ¼ 0:5153 with Td ¼ 270 MeV is taken as the
transition temperature by choosing the lattice spacing a ¼
ð272 MeVÞ�1. Note that for consistency with the notations
of Ref.[13], we will use Td and Tc interchangeably, both
meaning the deconfinement transition temperature. L is the
Polyakov loop but without the normalizing factor of
Ncð¼ 3Þ. (Thus, using with Eq. (4) we rewrite the above
effective potential in terms of the normalized Polyakov
loop. Henceforth by L even for the above equation we will
mean this normalized Polyakov loop). It has been argued
by Schaefer et al. [25] that the transition temperature has
to be tuned depending on the number of quark flavors Nf

(and also the value of the baryon-chemical potential). In
Ref. [25], the value of Td ¼ 270 MeV corresponds to the

pure SU(3) case with Nf ¼ 0. In Sec. II we have used the

effective potential where the coefficient b4 is suitably
normalized for the case of 3 flavors, Nf ¼ 3. For the

case of Nf ¼ 3, the value of transition temperature from

Ref. [25] is Td ¼ 178 MeV. Thus, we will use this value of
Td for the effective potential in Eq. (10).
The effective potential in Eq. (10) is of qualitatively

different nature than the one given in Eq. (5). For small
values of L the two forms will be similar as one can see by
the expansion of the logarithmic term in the above equa-
tion. However, for jLj approaching 1 the two potentials are
dramatically different. V½l� in Eq. (10) diverges at this
limiting value thereby constraining jLj within value 1.
There is no such constraint in Eq. (5). Even the shape of
V½L� is very different away from the origin, especially near
the three Zð3Þ vacua. It is thus reasonable to expect that the
resulting profile of Zð3Þ wall and resulting A0 profile
(using the calculations of previous sections) for Eq. (10)
may be quite different from the ones obtained in Sec. III for
Eq. (5).
With diverging V½L� at jLj ¼ 1 in Eq. (10), and due to

its nontrivial shape near the Zð3Þ vacua, the application of
the technique of Ref. [4] for the determination of L profile
between two Z(3) vacua is much more complicated here.
Especially nontrivial is the choice of initial ansatz for the
wall profile which is used for the energy minimization
program. In Ref. [4], the initial profile was taken to linearly
interpolate between the two Z(3) vacua as a function of
spatial coordinate z. This choice simply does not work for
Eq. (10) due to the fact that V½L� diverges at jLj ¼ 1 and
linear interpolation takes it outside this bound. For this we
chose the initial trial profile to consist of two parts, one
linearly decreasing (with z) to L ¼ 0 along � ¼ 0 from the
vacuum value and join this with the second part linearly
increasing (with z) along � ¼ 2�=3 to the second vacuum
value. This keeps the initial profile within the allowed
region of V½L� in Eq. (10).
A second complication arises with the algorithm of

energy minimization itself. In Ref. [4] correct L profile
was obtained from the initial trial profile by fluctuating the
value of L at each lattice point and determining the accept-
able fluctuation which lowers the energy (with suitable
overshoot criterion, etc. as described in detail in
Ref. [4]). However, with Eq. (10), fluctuations of L can
take it out of the allowed region of V½L�. For this, we skip
those fluctuations which take L outside the allowed region.
With these modification in the procedure, we were able to
determine the profile of the Z(3) wall and associated A0

profile. In Sec. III we had calculated the profiles for
temperature T ¼ 400 MeV [with Tc ¼ 182 MeV for the
effective potential in Eq. (5)]. For the sake of comparison
with that case, for V½L� in Eq. (10) with Tc ¼ 178 MeV
[25], we calculate the profiles for T ¼ 391 MeV which is
close enough to the value T ¼ 400 MeV, and has the same
value for T=Tc.
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 11.5  12  12.5  13  13.5
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0 11
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data

FIG. 3 (color online). Plot of calculated A0 and the fitted
profile (A0ðxÞ ¼ p tanhðqxþ rÞ þ s). The parameters have val-
ues p ¼ �378:27, q ¼ 7:950 01, r ¼ �49:7141, s¼�1692:48.
Only (1, 1) component of A0 is plotted. The other components
also have similar fit.
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Figure 4(a) shows the wall profile of jLj for V½L� in
Eq. (10) [again, with normalized L]. The profile is almost
the same as the one shown in Fig. 2(a). We mention here
that for Fig. 4(a) we have used the same value of the
coefficient of the first jTrLj2 term in Eq. (10) as with Td ¼
270 MeV (by suitably changing the values of string ten-
sion, etc.). This is so that the shape of the barrier near the
confining vacuum remains unaffected (which determines
the first order nature of the transition). In any case, the
overall features of the profile of the wall, such as its width
and height, should depend more on the temperature scale
rather than on the shape of the barrier for the confining
vacuum. To check this, we also calculate the wall profile of
jLj for Eq. (10), but now with the value of Td ¼ 270 MeV
and T ¼ 400 MeV. The comparison of the two profiles is
shown in Fig. 4(b). We see that the two profiles are very
close to each other confirming above arguments.

We recalculate the plots of a and b for the case with T ¼
391 MeV (with Td ¼ 178 MeV). The resulting plots are
shown in Fig. 5(a) which are seen to be very similar to

those on Fig. 2(b). Finally, the profile of A0
11 in Fig. 5(b) is

also very close to the one in Fig. 3. Note that though overall
all the plots in Figs. 4 and 5 are very close to the corre-
sponding plots in Figs. 2 and 3, there is one clear differ-
ence. The profiles in Figs. 4 and 5 have somewhat sharper
variations from their asymptotic values compared to the
case in Figs. 2 and 3. This originates from the qualitatively
different shapes of the two potentials in Eqs. (5) and (10)
near the region of Z(3) vacua, and in that sense character-
izes the difference in the two potentials.
These results are quite remarkable. Even though the two

effective potentials Eq. (5) and (10) (from Refs. [12,13])
are of qualitatively different shapes, the resulting wall
profile and A0 profile are almost the same. As we men-
tioned above, for small values of L the two effective
potentials will have similar forms, which are fitted with
the lattice data. Our results thus point out that the profile of
L (and consequently, the profile of A0) are primarily de-
termined by the small L region of the effective potentials.
This is likely to happen if the variations near the Zð3Þ vacua
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are primarily in the magnitude of L and not in its phase.
The robustness of our results against different choices of
the effective potentials gives us confidence in the use of our
procedure to calculate the reflection of quark and anti-
quarks from the Z(3) interfaces. Since the A0 profiles of
Figs. 3 and 5 are almost the same, the resulting values of
reflection coefficients for quarks/antiquarks will also be
very similar. In the rest of the analysis in the paper, we will
use the effective potential as given in Eq. (5).

V. CALCULATING REFLECTION AND
TRANSMISSION COEFFICIENTS

To calculate the reflection and transmission coefficient,
we need the solutions of Dirac equation in the Minkowski
space. We start with the Dirac equation in the two-
dimensional Euclidean space

½i
0
e@0�

jk � g
0
eA

jk
0 ðzÞ þ ði
3

e@3 þmÞ�jk�c k ¼ 0; (11)

where 
0
e � i
0 and 
3

e � 
3 are the Euclidean-Dirac
matrices. @0 denotes @=@� with � ¼ it being the
Euclidean time. j, k denote color indices. We now analyti-
cally continue Eq. (11) to the Minkowski space to get

½i
0@0�
jk þ g
0Ajk

0 ðzÞ þ ði
3@3 þmÞ�jk�c k ¼ 0; (12)

where now @0 denotes @=@t in the Minkowski space. Note
that the A0 in Eq. (12), which is in the Minkowski space, is
fundamentally different from the A0 in Eq. (11) which is in
the Euclidean space. However, it is the same domain wall
profile (i.e. the same A0 dependence on z) that appears in
both the cases, which is what is needed for the calculation
of reflection and transmission coefficients. For a
wave function with time dependence c ðxÞe�iEt, Eq. (12)
reduces to

½
0
3@3�
jk þ 
0m�jk�c kðxÞ ¼ ðE� V0ðzÞÞc kðxÞ; (13)

where VðzÞ ¼ �gAjk
0 ðzÞ is the potential as seen by the

incoming fermion. We do not have any analytic way to
calculate the reflection and transmission coefficients for a
general smooth potential, so we follow a numerical ap-
proach. Kalotas and Lee [26] have discussed a numerical
technique to solve the Schrödinger equation, approximat-
ing a general smoothly varying (in space) potential in terms
of a sequence of step functions. We follow their approach
and apply their technique for solving the Dirac equation
[Eq. (13)]. We approximate the actual potential by n step
potentials in a series, each of equal width w as shown in
Fig. 6. Let c j be the wave function for the jth bin and the

height of potential be Vj. (We consider a spin up wave

function and restrict to a no-spin-flip situation.) The height
of the jth step potential is taken to be the mean value of
VðLþ jwÞ and VðLþ ðjþ 1ÞwÞ, i.e.

Vj ¼ ½VðLþ jwÞ þ VðLþ ðjþ 1ÞwÞ�
2

: (14)

We now apply boundary conditions at jth step i.e. at z ¼
Lþ jw. This gives us a set of two equations, which when
iteratively solved give

Ain

Bin

 !
¼ M�1ðL; kinÞ �MðL; k1Þ

� . . .M�1ðLþ nw; knÞ

�MðLþ nw; koutÞ
Aout

0

 !
(15a)

MðLþ jw; kqÞ ¼
eikqðLþjwÞ e�ikqðLþjwÞ
eikqðLþjwÞkq

Eqþm � e�ikqðLþjwÞkq
Eqþm

0
@

1
A (15b)

with kq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
q �m2

q
, and Eq ¼ E� Vq. (Here no left

moving wave is allowed in the region far right of the
interface.) The reflection and transmission coefficients
are then given by

R �
��������JrefJin

��������¼
��������Bin

Ain

�������� (16a)

T �
��������JtransJin

��������¼
��������Aout

Ain

���������r; (16b)

where r ¼
�
kout
kin

��
Eþm

E� Vmax þm

�
: (16c)

Here, kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
and kout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� V0Þ2 �m2
p

.

VI. RESULTS

We first calculated the reflection and transmission coef-
ficients by assuming the A0 profile to be a step function
rather than a smooth one, with the height of the step
function being the same as that of the interface in Fig. 6.
In this approximation one can calculate the reflection and
transmission coefficients analytically. For antiquarks the
reflection and transmission coefficients are obtained by
changing g ! �g, as antiquarks are in �3 representation
of SUð3Þ. We have chosen the energies of the particles such
that E> V þm, so as to avoid the Klein paradox regime.
Note that if E< V (but V � E<m so that one is away

FIG. 6. Potential (VðzÞ) approximated by a sequence of n step
potentials, each of width w.
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from Klein paradox situation), then the reflection coeffi-
cient for quarks is 1 (repulsive potential) but for antiquarks
reflection coefficient will be very small with�V providing
the attractive potential. This will provide the most dramatic
difference between the reflection of quarks and that of
antiquarks from Z(3) walls. However, for the relevant
energies of quarks/antiquarks at RHICE, we discuss in
detail the case with E> V þm.

The results for different quarks and antiquarks (with
E ¼ 3:0 GeV for each case) are given in Table I. It is clear
that quarks have different reflection coefficients than their
CP conjugates. Also, the effect is significantly higher for
the heavier quarks (for example, charm quark).

We now calculate the reflection coefficient for charm
quark using the exact potential. The product of the matrices
in Eq. (15) were calculated by a FORTRAN code and also by
using MATHEMATICA. Equation (16) was then used to cal-
culate the reflection coefficient. At E ¼ 3 GeV, we get
R ¼ 0:0011 for c quark while for �c the result is R ¼
5:24� 10�10. As an additional check on the results (for
the smooth profile), we consider shrinking of the profile of
A0 in z direction, and compared the reflection coefficient
(for the c quark with 3 GeVenergy) with the step potential
result. The results are summarized in Table II. We see that
the numerical results approach the analytical results of the
step function as A0 profile is shrunk along z to better
approximate a step function. This gives us the confidence
that our numerical technique of solving the Dirac equation
is reliable.

It is clear that if one considers the situation of quarks/
antiquarks coming from right in Fig. 6 (i.e. approaching the
domain wall from the side with L ¼ Z) then antiquarks
will have larger reflection coefficients while quarks will

have smaller reflection coefficients. Also we should men-
tion that Eq. (13) is solved by using one component of A0

profile (A11
0 in this case), which gives us the reflection

coefficient for one particular color (say red). The reflection
coefficient for other colors will remain the same when the
SUð3Þc gauge transformation is applied on the quark as
well as on the vector potential. However, there is still an
ambiguity of starting with different initial sets ða; bÞ (say in
the L ¼ 1 vacuum). Different sets lead to different profiles
for ða; bÞ across the domain wall, thus A0 profile depends
on the initial condition (which, in turn, will lead to differ-
ent reflection coefficients for a quark of a given color).
As we mentioned earlier, this ambiguity is reasonable in

view of the fact that we are extracting information about a
colored object (A0) starting from a colorless variable LðxÞ.
Thus there is no reason to expect unique solution for A0

starting from a given LðxÞ profile, even in the diagonal
gauge where A0 is determined in terms of real ða; bÞ.
For several sets of values of ða; bÞ we have checked that

different choices of ða; bÞ are related to each other by color
transformation. We can explain it in the following way:
Say we start with ða1; b1Þ for L ¼ 1 vacuum and calculate
the profile ðaðxÞ; bðxÞÞ leading to profile of A0. Now A11

0 ,

A22
0 , A33

0 all have different profiles and correspond, respec-

tively, to scattering of red, blue, and green quarks, respec-
tively, from the given domain wall profile. Now if we start
with a different set ða2; b2Þ and calculate the profile of A0

then we find (for example) that new A11
0 is the same as old

A22
0 (where one started with ða1; b1Þ) and new A22

0 is the

same as old A11
0 . This means that ða2; b2Þ set gives the same

reflection for the blue quark as ða1; b1Þ gives for the red
quark. Thus we say that our different choices of ða; bÞ
amount to considering quarks of different colors for a given
domain wall profile. Or, equivalently, for the scattering of a
fixed color (say red) quark, different sets ða; bÞ lead to
domain wall profiles carrying different color information.
(We should mention that this holds for many sets ða; bÞ we
have checked. However, we do not have a general proof
that this should be true for all sets, though it looks very
likely in view of the above arguments).
For example, if we start with ða0; b0Þ ¼ ða;�bÞ, i.e. with

(� 1:5, 1), then Eq. (7) tells us that A011
0 ¼ A22

0 and A022
0 ¼

A11
0 . See Fig. 7 for the corresponding profiles of (a,b). In

color space A0 is diagonal with elements ðA11
0 ; A22

0 ; A33
0 Þ,

and it acts on the color triplet ðr; b; gÞT . So, A11
0 acting on

ð1; 0; 0ÞT is same as A022
0 acting on ð0; 1; 0ÞT which is same

as making different choices in color space.
So, the ambiguity related to various ða; bÞ profiles or,

equivalently, corresponding A0 profiles, seems to be the
artifact of the ambiguity of making a color choice for
the domain wall profile in terms of A0, starting from the
domain wall profile in terms of LðxÞ.
This raises an important question: whether we should be

dealing with colored domain wall profile (given in terms of
A0 profile) at all, or should we restrict to colorless objects

TABLE I. Table for the reflection coefficients for various
quarks in the step function approximation. Reflection is higher
for heavier quarks.

u d s c

E (GeV) 3.0 3.0 3.0 3.0

m (MeV) 2.5 5.0 100 1270

Rq 1:73� 10�7 6:76� 10�7 2:8� 10�4 0.14

R �q 1:92� 10�8 7:55� 10�8 3:2� 10�5 6:5� 10�3

TABLE II. Table for the reflection coefficients for c quark,
with 3 GeV energy, when the profile is shrunk. Results approach
the step potential as the profile gets narrower.

Shrinking factor Reflection coeff.

No shrinking 0.0011

0.5 0.017

0.05 0.119

0.005 0.123

Step potential 0.140
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like LðxÞ (which is what was done in our earlier works, see
Refs. [4,6])? After all, the effective potential which we use
is given in terms of LðxÞ. Here we think that there is no
reason to restrict to colorless objects. We are dealing with
the QGP phase and there is no requirement of physical
observables to be color singlets. If we were dealing with
the confining phase then we had obligation of dealing with
colorless objects as physical observables. For the QGP
phase, it should make perfect sense to think of the domain
wall profile as having color properties as it arises from the
A0 profile. Of course it is possible that the actual domain
wall profile is color insensitive, and quarks of all colors
have the same reflection coefficient from a given wall. But
it is also possible that the wall is colored and a given wall
has a different reflection for quarks of different colors. The
only requirement of gauge invariance is that when color
gauge transformations are done on the A0ðxÞ profile as well
as on quarks, then the numbers should not change, which is
obviously true with the Dirac equation we are using.

VII. DISCUSSION

This CP violation will have interesting observable con-
sequences for the relativistic heavy ion collision experi-
ments at the RHIC and at the LHC. If QGP is formed in
these experiments (and there are strong indications of that),
then various Zð3Þ domains will inevitably be formed, lead-
ing to the formation of Z(3) walls. (We mention that the
QGP strings [4] which also necessarily form during tran-
sition to QGP phase should also lead to spontaneous CP
violation. Its effects on quark/antiquarks scattering, or
possible localization on the QGP strings needs to be ex-
plored). As these domain walls move/collapse, quarks/
antiquarks will get reflected/transmitted differently from
these domain walls leading to the segregation of quarks
and antiquarks. The concentration of quarks (or antiquarks,
depending on the collapsing vacuum) will grow in different
regions of the QGP. As the effects would be stronger for
heavier quarks (Table I), this should lead to enhancement

of strange and charmed baryons along with the suppression
in the yield of corresponding mesons (such as J=c ).
Detailed exploration of the formation and evolution of Z

(3) walls and QGP strings in the context of RHICE has
been carried out in Ref. [5]. These simulations show that in
the typical region of QGP formed in RHICE, one expects
several Z(3) domain walls to form, their numbers ranging
from 1 to 4, 5. The walls may extend throughout the QGP
region with size of order 10 fm. There are closed domain
walls formed with initial size of about 5–8 fm. The veloc-
ities of these walls was also estimated in Ref. [5] and were
found to range from 0.5 to 0.8. For a detailed discussion of
the properties of Z(3) wall and QGP string networks ex-
pected in RHICE, see Ref. [5]. These results about the sizes
and numbers of Z(3) walls and QGP strings are very
important. This is because one should realize that in a
very large sized QGP region, as in the early Universe, for
every domain wall connecting � ¼ 0 and � ¼ 2�=3 vacua,
there will be one connecting � ¼ 0 and � ¼ 4�=3 vacua.
These walls are conjugate of each other and the reflection
of a quark from the first wall is identical to the reflection of
an antiquark from the second wall. These two walls are
strictly degenerate, even in the presence of explicit sym-
metry breaking effects from dynamical quarks. Thus, on
the average there will not be any bias for quarks and
antiquarks as they scatter from a network of Z(3) walls.
This is, however, not true for a small QGP region as

produced in RHICE. As the number of Z(3) walls produced
in such a small region is of order one [5], there may be a net
effect for the concentration of baryon number, or for
antibaryon, in each event. This can be revealed by event-
by-event analysis. Even statistically, for a large number of
events, one can calculate the variance of baryon number
density, and spontaneous CP violation from Z(3) walls
may be detected. For a given event also, segregation of
baryons and antibaryons will occur over large distances of
order several fm as indicated by the typical wall size and
separation [5].
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This CP violation can also be very important in the
context of the early Universe where it can have interesting
implications for generation of baryon inhomogeneities. As
collapsing domain walls preferentially sweep quarks (or
antiquarks), segregation of quarks and antiquarks will
occur. One can then discuss the formation of baryonic (or
antibaryonic) lumps. These baryon inhomogeneities can be
of large magnitude, with large separations in the context of
certain low energy inflationary models [6], (but now with
CP violation incorporated). We will present a detailed
study of this in a future work.

Another important consequence will be on the Pt spectra
of hadrons. The quarks/antiquarks with high momenta will
undergo nontrivial scattering from these Z(3) walls. As
Zð3Þ walls collapse, some get transmitted while others
are reflected back. For Zð3Þ walls forming closed, collaps-
ing, structures, the quarks suffer multiple reflections inside
the wall, resulting in an increment in their transverse
momenta. This process continues until the walls either
melt away or collapse completely. So the final transverse
momentum of some quarks may be reasonably enhanced
before they escape. One can then use a specific model
(such as the recombination/coalescence model) to study
the Pt spectra of final state hadrons, which should show an
increase in the yield of hadrons at high Pt. This has been
discussed in Ref. [27], however, no account of CP viola-
tion was considered in that work. In the presence of CP
violation, the modified PT spectra will be different for
quarks and for antiquarks. We plan to carry out these
analyses in a future work.

The most important limitation of our analysis is the
absence of quark effects. Dynamical quarks will lead to
lifting of degeneracy between different Z(3) vacua, making
L ¼ 1 vacuum as the true vacuum as discussed in
Refs. [12,18–20]. The one-loop corrections from dynami-
cal quarks have also been discussed in Refs. [28–31]. As

we mentioned, recent lattice studies [9] have provided
evidence for the existence of such metastable Z(3) vacua.
Our analysis above of calculation of A0 profile and calcu-
lation of reflection coefficients for quarks and antiquarks
can be straightforwardly applied for this nondegenerate
case and work is underway on this. Apart from affecting
the numbers (for reflection coefficients), its most important
effect will be on the evolution of Z(3) wall and QGP string
network, (see Ref. [32] for a detailed simulation study of
these aspects). However, for the case of RHICE, due to
small length (and time) scales involved, the dynamics of Z
(3) walls is likely to remain dominated by the surface
tension effects with the difference in pressure between
different vacua not playing dominant role for such length
scales). Thus the above mentioned features of effects on
hadron spectra due to CP violation may remain qualita-
tively true for RHICE.
However, for the Universe the entire issue of formation

and evolution of Z(3) walls crucially depends on the im-
portance of quark effects. Some discussion of this has been
provided in [6] and we plan to investigate these issues in
future in detail. The most important issue will be to see
whether the spontaneous violation of CP discussed
here can lead to a net separation of baryons and antibary-
ons in the Universe which will have observational
consequences (e.g. from the strongly constrained nucleo-
synthesis, which can be used to constrain various parame-
ters of the model).
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