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The standard wave function approach for the treatment of neutrino oscillations fails in situations where

quantum ensembles at a finite temperature with or without an interacting background plasma are

encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to

both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and

generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the

evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to

systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus

expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction

picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective

oscillation length). It is understood that this method also provides a promising starting point for the

treatment of the more general case in which decoherence is taken into account.
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I. INTRODUCTION

Ever since the conjecture that neutrinos have mass and
thus might be subject to flavor oscillations [1], there has
been a thriving interest in this very phenomenon which
clearly indicates and gives rise to speculations as to how to
describe physics beyond the electroweak standard model.

A convenient and established way to deal with neutrino
flavor oscillations is to encode this effect in a Hamiltonian
formulation in which the oscillatory behavior is captured in
a Schrödinger-like equation for a wave function in neutrino
flavor space. This formalism, in principle, applies to an
arbitrary number of neutrino generations and is also ca-
pable of incorporating medium effects on neutrino propa-
gation such as coherent elastic forward scattering in, e.g.,
stellar matter [2]. It was soon realized that the Hamiltonian
formalism for neutrino oscillations can be given a geomet-
rical interpretation in N2 � 1-dimensional flavor space for
N neutrino flavors [3]. This approach to neutrino oscilla-
tions sees equations of motion for a coherence vector [4] in
that the Schrödinger-like equation of motion can be re-
phrased as a gyroscope equation, i.e., a formal equivalent
to, e.g., the precession of a magnetic moment in an external
magnetic field. Besides its apparent usefulness when it
comes to picture neutrino oscillations, there is also a purely
formal merit to the gyroscope-type equations in that they
are introduced by means of decomposing the Hamiltonian
in terms of the generators of the associated SUðNÞ, e.g., the
Pauli matrices for a two-flavor system.

This decomposition procedure is also most convenient
when the notion of a wave function is not suitable anymore
to describe the physics of neutrino oscillations. A typical

situation in which the breakdown of the wave function
formalism is expected is quantum ensembles with a finite
temperature or neutrino ensembles with a finite tempera-
ture and an interacting background plasma. The latter
situation is encountered in the early Universe prior to big
bang nucleosythesis. The crucial point in such an environ-
ment is the breaking of coherence due to the small mean
free path of neutrinos at high temperatures. The other
important modification results from the fact that neutrino
oscillations in the early Universe can alter the lepton
asymmetry, which in turn contributes to the refraction
index of the primeval plasma rendering the equations of
motion nonlinear. It is essentially for those two reasons that
the wave function formalism must fail in describing neu-
trino oscillation phenomena now. The appropriate descrip-
tion is then given by the density matrix formalism. The
density matrix of the neutrino ensemble obeys a von
Neumann equation and the different contributions to the
effective Hamiltonian are given by collisions (non-forward
scattering), with particles from the background medium,
which introduce decoherence. On the other hand, coherent
oscillations are governed by a matter-dependent effective
Hamiltonian which comes about via coherent forward-
scattering processes of neutrinos off the background parti-
cles [5,6].
The dynamics of the neutrino ensemble are determined

by the quantum kinetic equations (QKE) which present a
generalization of the Pauli-Boltzmann equations. The for-
mer evolve quantum amplitudes as is indispensable if a
consistent description of particle oscillation phenomena,
which are inherently nonclassical, is sought. The Pauli-
Boltzmann approach on the other hand evolves probabil-
ities rather than amplitudes; this procedure is essentially
classical since quantum mechanics only enters the problem
when it comes to calculating cross sections for the various
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possible reaction channels. The resultant quantum rate
equations are inappropriate when neutrino oscillations oc-
cur. Thus, in order to obtain the QKE the full density
matrix for all particles in the plasma is evolved forward
in time by means of the S matrix and tracing over all
degrees of freedom other than the neutrinos under consid-
eration yields the equation of motion for the system’s
density matrix, the QKE, which do reduce to quantum
rate equations in the appropriate limit [5]. The variable
of interest in the QKE is the one-body reduced momentum-
dependent density operator, which is conveniently decom-
posed in terms of the generators of the associated SUðNÞ.

In the forthcoming analysis, we account for a brief
motivation on how to obtain the QKE from the density
matrix formalism in the case of coherent forward scattering
(which also dominates the bulk of the studies to follow)
and how to relate the solutions to the QKE, i.e., the
coherence vector, to physical observables in Sec. II.
Moreover, we introduce the Magnus expansion, which
allows for an analytic, yet approximative, solution to the
underlying QKE. A short discussion of the convergence
properties of the Magnus expansion proves useful to single
out suitable quantities to describe the physics at hand. In
Sec. III, we unfold a systematic way to develop an adia-
batic perturbation theory starting from the QKE for a two-
flavor neutrino ensemble with generic potentials. We show
that the Magnus expansion not only allows to analytically
solve the QKE in a perturbative way, but can also serve to
motivate the definition of physical quantities, such as an
effective mixing angle or an adiabaticity parameter. In
order to isolate a convenient perturbation parameter, we
perform different changes of the quantum mechanical
picture (e.g., into the interaction picture) for the QKE.
Hence, a suitable succession of bases changes can improve
the convergence properties of the expansion. We solve the
QKE for the coherence vector to first order in the Magnus
expansion. The perturbation parameter in the adiabatic
perturbation theory can then be used to identify a suitable
expansion parameter for the nonadiabatic case. Once this
parameter is identified, the nonadiabatic perturbation the-
ory can be treated on the same ground as the adiabatic one,
i.e., singling out an appropriate expansion parameter by
changing the quantum mechanical picture and solving the
QKE in the resulting representation by means of the
Magnus expansion. This nonadiabatic perturbation theory
is developed in Sec. IV. In Sec. V, we comment on the
integrals appearing in both the adiabatic and nonadiabatic
perturbation theories and show how the latter lead to the
correct limits such as vacuum neutrino oscillations and
the slab model approximation to nonadiabatic transitions
in the Mikheev-Smirnov-Wolfenstein (MSW) framework.
We sketch how to extend the developed perturbation theory
to higher orders in the Magnus expansion. Moreover, we
elaborate on possible extensions of the theory introduced to
scenarios including decoherence in the ensemble due to

collision processes with particles from a background
plasma. It turns out that the continuation of the perturba-
tion theory is somewhat nontrivial and deserves a more
careful study.

II. NOTATION AND MATHEMATICAL TOOL BOX

The purpose of our analysis is to describe the evolution of
a two-flavor neutrino ensemble with generic potentials at a
finite temperature. To this end, we commence our consid-
erations by a close inspection of the underlying QKE, which
in this context can be readily derived from the density matrix
formalism for neutrino oscillations. We remark that the
latter has to be used to correctly deal with quantum systems
at finite temperature as well as in situations where loss of
coherence becomes important. The wave function formal-
ism ceases to provide an appropriate handle for such sys-
tems. However, it is not until Sec. VC that we discuss an
extension of the formalism to be discussed shortly to
systems with a background plasma, in which ensemble
decoherence due to collisions is encountered.
The density matrix�ðp;tÞ obeys a von Neumann equation

_�ðp; tÞ ¼ �i½Hðp; tÞ; �ðp; tÞ�; (1)

where p is the neutrino four-momentum, H a generic
Hamiltonian for the system. Since we are dealing with a
two-flavor system, we can now decompose both the density
matrix and the Hamiltonian in terms of the generators
of the associated SUð2Þ, namely, the Pauli matrices �i.
This yields

� ¼ 1
2 Tr�½1þ Trð��iÞ�i� � 1

2P0½1þ ~P ~��; (2)

H ¼ 1
2 TrH½1þ TrðH�iÞ�i� � 1

2V0½1þ ~V ~��; (3)

where repeated indices are to be summed over and the

obvious identifications P0 ¼ Tr�, V0 ¼ TrH, ~P ¼
Trð� ~�Þ, ~V ¼ TrðH ~�Þ, and ~� ¼ ð�x; �y; �zÞ have been

made. Here, ~P is the so-called coherence vector [7].
Making use of this notation, it is straightforward to recast
the von Neumann equations according to

_P i ¼ ½�V0"ilkV
k�Pl: (4)

Hence, we can identify

Sil � �V0"ilkV
k or S ¼ V0

0 �Vz Vy

Vz 0 �Vx

�Vy Vx 0

0
BB@

1
CCA (5)

as the evolution matrix of the neutrino ensemble [8]. Put
another way, the QKE can now be written [9] as

d

dt
~PðtÞ ¼ SðtÞ ~PðtÞ: (6)

The entries of the effective potential vector ~V ¼ ðVx; Vy; VzÞ
can also be readily obtained via
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V0Vx � � ¼ 2ReH12 ¼ �m2

2p
sin2�0; (7)

V0Vy ¼ 2ImH12 ¼ 0; (8)

V0Vz � � ¼ ðH11 �H22Þ ¼ ��m2

2p
cos2�0 þ V�; (9)

whereHij are the elements of the HamiltonianH,�m2 is the

mass-squared difference of the two neutrino states, �0 is the
associated vacuum mixing angle between the two flavors,
which we shall denote as �a and �b for definiteness. V� is
the difference of potential terms affecting �a and �b, re-
spectively. The last equality has been obtained using the
2� 2 neutrino oscillation Hamiltonian in flavor space. Note,
also, that all possible time dependences for the effective
potential vector have been suppressed for reasons of nota-
tional convenience. It is, however, understood that all com-

ponents of ~V depend on time in general and we shall in fact
use Vx ¼ VxðtÞ and Vz ¼ VzðtÞ for the upcoming analysis.

In the coherence vector description, the expectation
values of the generators of the associated SUð2Þ are pro-
moted to observables of interest. All information about the
system can thus, in principle, be extracted from a solution

to Eq. (6) for ~P. Some comments related to this issue are in
order: In the one-particle interpretation, the diagonal en-
tries of the density matrix simply give the probability to
find the system in one or the other state, i.e.,

prob ð�a ! �aÞ ¼ 1
2P0½1þ Pz�; (10)

prob ð�a ! �bÞ ¼ 1
2P0½1� Pz�: (11)

In the ensemble interpretation of the density matrix, the
diagonal entries give the relative number densities for the
different neutrino flavors normalized to the equilibrium
Fermi-Dirac number distribution at zero chemical potential
� according to

NaðpÞ ¼ 1
2P0½1þ Pz�NEQðp; 0Þ; (12)

NbðpÞ ¼ 1
2P0½1� Pz�NEQðp; 0Þ; (13)

NEQðp;�Þ ¼ 1

2	2

p2

1þ eðp��Þ=T ; (14)

where T is the temperature of the ensemble. Those
relations are also easily inverted to yield a physical
meaning of both

P0 ¼ Na þ Nb

NEQ
; (15)

Pz ¼ Na � Nb

Na þ Nb

: (16)

Hence, P0 is connected to conservation of probability and,
in a broader context, also lepton number. It is important to
note that oscillations merely swap neutrinos from one

flavor to another so that P0 does not evolve in time, unless
repopulation effects from some background plasma have to
be taken into account as is the case, e.g., in the early
Universe. On the other hand, Pz parametrizes the asym-
metry of the system that is the excess of �a over �b. The
latter fact also motivates the way of speaking in which Px,
Py are called coherences encoding the amount of decoher-

ence in the system. Therefore, the evolution of Pz is of
special interest in most applications.
Our next concern is to provide mathematical means to

approximately solve the differential equations (6). In order
to do so, we rewrite the QKE supplied with an initial
condition as

@

@t
~PðtÞ ¼ SðtÞ ~PðtÞ; ~Pi ¼ ~Pðt0Þ (17)

and notice that we are dealing with a nonautonomous
set of linear differential equations. If the matrix S did not
depend on time, the corresponding differential equation
could be readily solved by taking the matrix exponential

exp½Sðt� t0Þ� and writing ~PðtÞ ¼ exp½Sðt� t0Þ� ~Pi. It is
then fair to ask whether the solution to Eq. (17) can always
be written as an exponential via

~PðtÞ ¼ exp½�ðt; t0Þ� ~Pi: (18)

A method for finding such a true exponential solution [10]
has indeed been established under the label Magnus ex-
pansion [11,12]. The Magnus operator � ¼ lnS satisfies
its own differential equation which in turn is solved by a
series expansion � ¼ P1

n¼1 �nðtÞ, where each Magnus
approximant �nðtÞ is small in an appropriate sense. The
smallness of each Magnus approximant then determines
the convergence properties of the expansion. A general
theorem states that for a differential equation (17) defined
in a Hilbert space with a bounded operator S the series
converges in the interval t 2 ½t0; tc½ such that

Z tc

t0

d
kSð
Þk<	; (19)

where k:k is a matrix norm. As can be inferred from this
condition, the convergence properties of the Magnus ex-
pansion can be improved by means of a change of the
quantum mechanical picture and thus improving the con-
vergence properties of the expansion can be rephrased as
minimizing the matrix norm of the evolution matrix.
The first two Magnus approximants assume a form

�1ðtÞ ¼
Z t

t0

d
Sð
Þ; (20)

�2ðtÞ ¼ 1

2

Z t

t0

dt1
Z t1

t0

dt2½Sðt1Þ; Sðt2Þ� (21)

and various methods have been worked out to calculate
higher-order terms [13]. All such terms contain nested
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commutators of S evaluated at different times from
which it is readily seen that the Magnus expansion gives
the exact result (the matrix exponential for a time-
independent matrix S) already in first order, if the matrix
S commutes with the matrix obtained by integrating S over
a certain time interval. Note that each approximant �n

adopts the same properties as the matrix S. If S was (anti-)
Hermitian, so would be the exponentials of all approxim-
ants; this means that unitarity of the solution will be
preserved in each order of the perturbation expansion
separately.

The convenience of the Magnus expansion is now ap-
parent: In lieu of a calculation of eigenvalues and eigen-
vectors of a matrix, it poses the problem of calculating a
matrix exponential. The latter problem is usually solvable
for 3� 3 matrices. Note, however, that the dimension of
the evolution matrix corresponds to the number of gener-
ators of the associated SUðNÞ, i.e., for an N-dimensional
system the dimension of the evolution matrix is N2 � 1.
So, for the case of three interacting neutrinos one
already has to choose between diagonalizing an 8� 8
matrix or calculating its exponential. Both problems are
intricate.

Another nice feature of the Magnus expansion is that it
provides a clear description of how to improve the approxi-
mation by going to higher-order terms. It also reproduces
exact solutions to the QKE in the appropriate limits as will
be seen later, but is also apparent at this stage of our
analysis by inspecting the form of the Magnus approxim-
ants. Moreover, the condition for its convergence appears
as an integral condition on the norm of the evolution
matrix. This condition can be used as a cross-check for
whether changing from one quantum mechanical picture to
another improves convergence properties of the expansion
or not. We will invoke this criterion in the upcoming
analysis and as it turns out, it can even supply some physical
insight.

III. ADIABATIC PERTURBATION THEORY

Having established QKE of the form

@

@t
~PðtÞ¼SðtÞ ~PðtÞ; SðtÞ¼

0 ��ðtÞ 0
�ðtÞ 0 ��ðtÞ
0 �ðtÞ 0

0
@

1
A; (22)

it is easy to calculate the matrix norm [14] according to

kSk2F ¼ TrðSySÞ ¼ 2!2
eff : (23)

It is straightforward to show that the effective oscillation
length of the system is indeed given by

2	

leffosc

� !eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
: (24)

At this point of our analysis, it might seem academic to
calculate the matrix norm of the evolution equation under
consideration, but it will be seen shortly that a comparison
between matrix norms in different quantum mechanical
pictures can provide physical insight into the nature of
the neutrino ensemble at hand. Note, moreover, that we
treat both � and � as time-dependent quantities. This
generic assumption provides greater freedom when it
comes to adapting the QKE to early universe applications.
To this end, we notice that � scales as p�1 in momentum
and, in an expanding universe, this momentum is red-
shifted and thus depends on time [15]. We shall sketch
how to treat such situations later on.
Furthermore, in order to get a grasp on how this oscil-

lation length can be understood physically we transform
the QKE to a basis which resembles the commonly en-
countered mass eigenbasis in the MSW framework. To do
so, we notice that there are only nonvanishing contribu-
tions to the effective potential vector’s x and z component,
namely, Vx and Vz. Thus, it is only sensible to consider a
generic time-dependent rotation in the xz plane by an angle
�ðtÞ as

~PðtÞ ¼ RðtÞ ~QðtÞ with R½�ðtÞ� ¼
cos�ðtÞ 0 sin�ðtÞ

0 1 0
� sin�ðtÞ 0 cos�ðtÞ

0
@

1
A; (25)

where ~Q is the coherence vector in the new corotating frame and RðtÞ is the time-dependent rotation matrix. The QKE in
the new basis appear as

@

@t
~QðtÞ ¼ SQðtÞ ~QðtÞ; SQ ¼

0 �� cos�� � sin� � d�
dt

� cos�þ � sin� 0 �� cos�þ � sin�
d�
dt � cos�� � sin� 0

0
B@

1
CA: (26)

Since we introduced� as a generic time-dependent mixing
angle, we are endued with its explicit definition according
to our needs. It is readily seen that the ðSQÞ23 and ðSQÞ32
elements of the evolution matrix can be eliminated by an
appropriate choice of the mixing angle �ðtÞ. The advan-
tage of this choice is the geometrical interpretation: in the

Q picture, the motion of the coherence vector is confined to
the xy plane, if there was not the additional perturbation by
the time derivative of the effective angle, which introduces
a nonzero z component to the problem and forces the
motion to exit the xy plane as the ensemble evolves.
The smaller the change of the effective mixing with time,
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the smaller the urge of the coherence vector to exit the xy
plane. Therefore, we fix the effective mixing angle to be

cos�ðtÞ¼ �ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðtÞþ�2ðtÞp ; sin�ðtÞ¼ �ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ðtÞþ�2ðtÞp :

(27)

The effective mixing angle reveals that mixing becomes
maximal (� ¼ 	=2) if the condition

�ðtresÞ ¼ 0 (28)

is satisfied for the so-introduced resonant time tres. A
vanishing �ðtÞ, i.e., maximal effective mixing, hence co-
incides with the existence of a resonance in neutrino con-
versions, which can also be equivalently rephrased for a
resonant temperature Tres, depending on the application
one has in mind.

We now recast the evolution matrix in the Q picture as

SQ ¼
0 �!eff � d�

dt

!eff 0 0
d�
dt 0 0

0
B@

1
CA: (29)

Consider the matrix norm of this evolution matrix in the
new quantum mechanical picture

kSQk2F ¼ 2!2
eff

�
1þ

�
1

!eff

d�

dt

�
2
�
: (30)

At first glance, the above transformation seems to worsen
the convergence properties due to the appearance of the
additional

� � 1

!eff

d�

dt
(31)

term. However, if this very term is sufficiently small, � �
1, the convergence will only be marginally altered.
Moreover, the smallness condition can be understood
physically as well: the characteristic time scale of the
system under study is 
sys ¼ 1=!eff , whereas the charac-

teristic time scale of the interaction can be identified as

int ¼ ðd�=dtÞ�1. Hence, the parameter � simply com-
pares the characteristic time scale of the system to the
characteristic time scale of the interaction, stating that a
small � can be paraphrased as the system’s time scale
being much smaller than the interaction’s time scale. Put
another way, the interaction is adiabatic. The parameter �
is thus readily interpreted and henceforth referred to as the
adiabaticity parameter for the system [16].

The evolution matrix of the system thus reads

SQ ¼
0 �!eff ��!eff

!eff 0 0
�!eff 0 0

0
@

1
A: (32)

Before we move on with our analysis, it is just to briefly
comment on the definition of the adiabaticity parameter
and the effective mixing angle. The effective mixing angle
defined above is essentially the expression encountered

when it comes to the usual MSW framework of matter-
affected neutrino oscillations. Note, however, that the latter
typically features a sin2� instead of sin� as defined here.
In order to streamline notation, we will nonetheless still
omit this factor of 2. Moreover, we alert the reader that
defining 1=� as the adibaticity parameter is also quite
common in the literature. However, the physics is not
altered by this convention. Also, when comparing our
analysis to other work it is important to notice that in the
� instead of 2� convention the adiabaticity parameter
lacks a factor of 2 as well. We will analyze the adiabaticity
parameter further in Sec. IV.
Note that the concept of a Hamiltonian, in general,

ceases to exist when QKE of thermal neutrino ensembles
are considered. It is important to keep in mind this point in
order to fully appreciate our paradigm.What is done here is
the following: a rotation of the coherence vector into the xy
plane for the adiabatic limit of taking � ! 0. This looks
similar to the diagonalization of the underlying
Hamiltonian for single neutrino states in the sense that it
allows to define mixing angles and adiabaticity parameters
for the ensemble. The benefit of this procedure, however, is
that it does not explicitly rely on the form of the time
evolution matrix. It gives the prescription that an adiaba-
ticity parameter for the system under consideration can be
found by employing a suitable change of basis for the
QKE without making any reference to an underlying
Hamiltonian of the system. This point can prove especially
useful when collision-affected neutrino conversions are
considered; a system in which the Hamiltonian formulation
definitely ceases to be applicable.
It is by now established that � can serve as a small

perturbation parameter in the adiabatic regime of neutrino
conversions. It thus feels harmonious to struggle through
just another transformation which is introduced to isolate
the perturbation parameter � in a convenient way and such
that fast convergence of the expansion to come is assured.
The prescription is as follows,

~QðtÞ¼UðtÞ ~XðtÞ; where @

@t
UðtÞ¼S!QðtÞUðtÞ; Uðt0Þ¼1;

(33)

having decomposed the evolution matrix according to

SQ¼S!QþS�Q¼
0 �!eff 0

!eff 0 0
0 0 0

0
@

1
Aþ

0 0 ��!eff

0 0 0
�!eff 0 0

0
@

1
A

(34)

in self-obvious notation. The subsidiary evolution equation
for UðtÞ is also readily solved to give

UðtÞ¼
cos ~!eff �sin ~!eff 0

sin ~!eff cos ~!eff 0

0 0 1

0
BB@

1
CCA and ~!effðtÞ¼

Z t

t0

d
!effð
Þ:

(35)
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The QKE in disguise are recognized to be

@

@t
~XðtÞ¼SXðtÞ ~XðtÞ;

SXðtÞ¼
0 0 ��!eff cos ~!eff

0 0 �!eff sin ~!eff

�!eff cos ~!eff ��!eff sin ~!eff 0

0
BB@

1
CCA

(36)

and calculating the matrix norm yields

kSXk2F ¼ 2�2!2
eff : (37)

It is evident now that the small parameter in the adiabatic
regime, namely, �, has been isolated and hence good
convergence of the sought-after perturbation theory can
be expected. This comforts us to seek a perturbative ex-
pansion in this basis (which is but an interaction picture for

the ~Q basis).
The considerations unfolded in this section have seen

two linear transformations RðtÞ, UðtÞ from the original ~P

basis to the ~Q and ~X basis. The reason for those trans-
formations is twofold: On the one hand, changing the basis
for the QKE discloses the physics of the system we are
dealing with and on the other hand it seems advisable to
find a basis for the QKE in which an approximate solution
gives accurate results. For convenience, we shall now
recapitulate the meaning of the transformations introduced
so far.

The first transformation ( ~P!R ~Q ) is inherently physical.
It gives a recipe on how to establish the concept of a mass
eigenbasis in the coherence vector description of neutrino
oscillations. The effective mixing angle defined in this
way differs from the effective mixing angle encountered
in the common MSW formalism by a conventional factor
of 2. In this quantum mechanical picture, a clear path of
approaching the resonance in neutrino oscillations is un-
veiled. A resonant conversion of neutrino flavors is en-
countered for �ðtÞ ¼ 0. Moreover, the transformation to
the matter eigenbasis sees the introduction of an effective
mixing angle, which is a harbinger for the adiabaticity
parameter � subsequently laid open. Adiabatic neutrino
conversion occurs for � � 1, when the time scale of the
system is much smaller than the time scale of the interac-
tion. The mathematical benefit of this transformation is
that we get a grasp on the convergence properties of the
approximation we want to employ and we can furnish it
with physical meaning. The convergence properties of the
expansion get worse as the amount of adiabaticity viola-
tion increases, which later will be useful to construct a
nonadiabatic perturbation theory. Also, the change to the
matter eigenbasis suggests that the adiabaticity parameter
� should be the appropriate small quantity to expand in.

The second transformation ( ~Q!U ~X ) is convenient from
a mathematical point of view. It removes an exactly inte-
grable part of the evolution matrix and thus the matrix
norm for the latter is directly proportional to the small
expansion parameter �. This truly renders � into the
sought-after perturbation parameter and we take comfort
that the envisaged expansion converges fast. Put another
way, already the first approximant should provide good
guidance for the exact solution.
However, one final comment regarding the terminology

is in order: The terms quantum mechanical picture or
rather change of the quantum mechanical picture are
used to denote a distinct basis for the time evolution matrix
of the QKE or a basis change from one basis of the QKE to
another, respectively. This is to be understood as a manner
of speaking motivated by standard Schrödinger quantum
mechanics.
Note eventually that no attempt for solving the QKE has

been made so far. We have merely changed the quantum
mechanical pictures to unfold the underlying physics. The
paradigm of our analysis is that a careful treatment of the
QKE, i.e., a succession of different changes of the quantum
mechanical pictures already allows to extract important
information about the system under consideration without
ever explicitly solving the QKE.

In the ~X basis, the QKE are solved to first order in the
Magnus expansion by

~X ð1ÞðtÞ ¼ exp

�Z t

t0

d
SXð
Þ
�
~Xðt0Þ: (38)

The formal solution for the coherence vector ~PðtÞ to first
order in the Magnus expansion is thus obtained as

~P ð1ÞðtÞ ¼ RðtÞUðtÞ exp
�Z t

t0

d
SXð
Þ
�
R�1ðt0Þ ~Pðt0Þ: (39)

In order to streamline notation, we write the terms con-
tained in the matrix exponential as

JsðtÞ ¼
Z t

t0

d
�!eff sin ~!eff ; (40)

JcðtÞ ¼
Z t

t0

d
�!eff cos ~!eff ; (41)

as well as

jJj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2c þ J2s

q
(42)

and the resultant expression for the coherence vector as-
sumes a form
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~Pð1ÞðtÞ ¼
cos�ðtÞ 0 sin�ðtÞ

0 1 0

� sin�ðtÞ 0 cos�

0
BB@

1
CCA

cos ~!eff � sin ~!eff 0

sin ~!eff cos ~!eff 0

0 0 1

0
BB@

1
CCA

� 1

jJj2
J2s þ J2c cosjJj �JcJsð�1þ cosjJjÞ �JcjJj2sincjJj

�JcJsð�1þ cosjJjÞ J2c þ J2s cosjJj JsjJj2sincjJj
JcjJj2sincjJj �JsjJj2sincjJj jJj2 cosjJj

0
BB@

1
CCA�

cos�0 0 � sin�0

0 1 0

sin�0 0 cos�0

0
BB@

1
CCA ~Pi; (43)

where additionally �ðt0Þ � �0 and sincx � sinx
x was

defined. This expression, as cumbersome as it may look
at a first glance, presents an analytic, yet perturbative,
solution to the QKE as given in Eq. (22) for a generic
potential, i.e., for a generic time (or equivalently tempera-
ture in early universe applications) dependence of both �
and �, as long as the transition can be considered adiabatic
(� � 1). Note also that oscillation probabilities in the one-
particle interpretation can be extracted from this formal
solution. Moreover, oscillating contributions to this very
probability can be studied since there is no inherent aver-
aging over rapidly oscillating contributions as is usually
considered in the derivation of the oscillation probability in
the MSW framework. Still, to fully appreciate this result a
thorough discussion of various limiting cases, such as the
adiabatic limit, is called for [17]. We postpone this en-
deavor until Sec. V.

IV. NONADIABATIC PERTURBATION THEORY

Before we proceed by developing a nonadiabatic pertur-
bation theory on the same grounds as the foregoing adiabatic
perturbation theory, it is instructive to briefly reconsider the
adiabaticity parameter as defined in Eq. (31) and rephrase it
in a way that allows for an understanding of the notion of
adiabaticity in terms of the parameters � and �. It is
straightforward to show that

�ðtÞ ¼ ��

!3
eff

d

dt
ln
�

�
: (44)

However, physically the adiabaticity parameter at the neu-
trino conversion resonance (� ¼ 0) is of foremost interest.
We find

�res � �ðtresÞ ¼ � 1

�2ðtresÞ
d�

dt

��������t¼tres

: (45)

The adiabaticity parameter depends on the shape of the
matter profile d�=dt as is expected from the MSW frame-
work. Large variations of the matter profile at resonance are
clearly disfavored for the sought-after perturbation expan-
sion towork. Besides this contribution, also the term 1=�2 is
familiar. It simply states that the larger �, the better the
expansion works. Put another way, if the notion of adiaba-
ticity as put forward in our analysis is adopted, a small � at
resonance is incompatible with an adiabatic perturbation
expansion to some extent. A regime with small � thus

indicates nonadiabatic transitions; we will also refer to this
regime as the sudden regime henceforth.
Recalling the QKE according to Eq. (22), it is obvious

that � itself can be adopted as a small perturbation pa-
rameter if a nonadiabatic perturbation theory is desired. We
split the evolution matrix S as

SðtÞ¼S�ðtÞþS�ðtÞ¼
0 ��ðtÞ 0

�ðtÞ 0 0

0 0 0

0
BB@

1
CCAþ

0 0 0

0 0 ��ðtÞ
0 �ðtÞ 0

0
BB@

1
CCA

(46)

in obvious notation. The S� subsystem of this evolution
equation can be integrated exactly and hence we impose
the following change of the quantum mechanical picture,

~PðtÞ ¼ VðtÞ ~YðtÞ with
@

@t
VðtÞ ¼ S�ðtÞVðtÞ: (47)

The subsidiary evolution equation again is solved to give

VðtÞ¼
cos ~� �sin ~� 0

sin ~� cos ~� 0

0 0 1

0
BB@

1
CCA and ~�ðtÞ¼

Z t

t0

d
�ð
Þ; (48)

rephrasing the QKE as

@

@t
~YðtÞ ¼ SYðtÞ ~YðtÞ;

SYðtÞ ¼
0 0 �� sin ~�

0 0 �� cos ~�

� sin ~� � cos ~� 0

0
BB@

1
CCA: (49)

Note also that the new quantum mechanical picture is just
the interaction picture. The matrix norm reveals isolation
of the small perturbation parameter:

kSYk2F ¼ 2�2: (50)

Solving the QKE for ~YðtÞ will see the time-integrated
evolution matrix SY since the first-order Magnus expansion
gives the coherence vector as

~P ð1ÞðtÞ ¼ VðtÞ exp
�Z t

t0

d
SYð
Þ
�
~Pðt0Þ (51)

and it is thus sensible to define the following integrals to
streamline notation,
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KsðtÞ ¼
Z t

t0

d
� sin ~�; (52)

KcðtÞ ¼
Z t

t0

d
� cos ~�; (53)

as well as

jKj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

c þ K2
s

q
(54)

in order to mimic the notation introduced above for the
adiabatic perturbation theory. The coherence vector to first
order in the Magnus expansion is calculated to be

~Pð1ÞðtÞ ¼
cos ~� � sin ~� 0

sin ~� cos ~� 0

0 0 1

0
BB@

1
CCA� 1

jKj2
K2

c þ K2
s cosjKj KcKsð�1þ cosjKjÞ �KsjKj2sincjKj

KcKsð�1þ cosjKjÞ K2
s þ K2

c cosjKj �KcjKj2sincjKj
KsjKj2sincjKj KcjKj2sincjKj jKj2 cosjKj

0
BB@

1
CCA ~Pi: (55)

This is the analytic perturbative solution to the QKE in
Eq. (22) with generic potential and time dependence for �
and � as long as the evolution can be considered non-
adiabatic, which is equivalent to saying that � is a small
quantity one can expand in. Again, this result can only be
fully appreciated once the associated limiting cases are
recovered. We will see to this in the next section [18].

V. PERTURBATION THEORY INGREDIENTS
AND LIMITING CASES

We understand that our approach is a generic solution to
the QKE in Eq. (22) without making any explicit reference
to the physics it can be applied to. Hence, the integrals
Jc=sðtÞ,Kc=sðtÞ explicitly depend on the time dependence of

both �, i.e., the potential term V�, as well as � and have to
be evaluated in each application separately. However, cer-
tain general statements can be made already due to the fact
that neutrino conversions reveal a resonance at � ¼ 0.

In any case, however, it is still necessary to demonstrate
that the Magnus expansion does give exact results in the
various physical limits.

A. The integrals: Jc=sðtÞ and Kc=sðtÞ
The structure of the integrals Jc=sðtÞ and Kc=sðtÞ, for the

adiabatic and nonadiabatic case, respectively, at a first
glance, is similar: the integrand is the expansion parameter
(�!eff for the adiabatic case; � for the nonadiabatic case)
multiplied by an oscillatory function. On second thought,
however, there is a crucial difference; the oscillatory term

in Kc=s has a stationary phase (d~�=dt ¼ 0 at resonance),

whereas Jc=s does not.
Let us therefore evaluateKc=s by means of the stationary

phase method. Two main assumptions are needed to apply
the stationary phase method: The oscillatory behavior of
the integrand must be rapid enough to suppress all large
contributions to the integral which might come from � so
that the latter can simply be evaluated at resonance. The
other requirement is that the resonance happens in a small
region around tres; put another way, the smallness of the
aforementioned region is determined by whether the sub-
stitution t0 ! �1 and t ! 1 is justified in this region or

not. Supposing that these two requirements are met, we
find

jKsj ¼ 0; (56)

jKcj ’
�
2	

�res

�
1=2

; (57)

hence jKj ’
�
2	

�res

�
1=2

: (58)

Note that in the nonadiabatic perturbation theory the re-
ciprocal value of the adiabaticity parameter at resonance is
a small quantity.
Consider the integrals Jc=s now. The first step that comes

to mind here is integration by parts. We get

JsðtÞ ¼ �� cos ~!effjtt0 þ
Z t

t0

d

d�

d

cos ~!eff ; (59)

JcðtÞ ¼ � sin ~!effjtt0 �
Z t

t0

d

d�

d

sin ~!eff : (60)

If the variation of � in the interval ½t0; t� is sufficiently
mild, the main contribution to the integrals is expected to
come from the first term on the right-hand side.
Given these arguments, the integrals Kc=s, Jc=s reveal a

common trademark. Both integrals turn out to be small in
the following sense: Kc=s is proportional to the inverse of

�res which, in a nonadiabatic perturbation theory, is a large
quantity; likewise, in the adiabatic perturbation theory � is
the small quantity to expand in and again the integrals Jc=s
turn out to be proportional to �.

B. Limiting cases

We begin our consideration by studying appropriate
limits for the adiabatic perturbation theory first.
(1) Adiabatic perturbation theory: The vacuum limit.

This limit to Eq. (43) is probably the most intuitive
one, if we confine ourselves to the one-particle
interpretation. We understand that for an exactly
solvable system the first-order Magnus term should
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already give the exact result, hence implying
~Pð1ÞðtÞ � ~PðtÞ. Let us examine how this works out
here: Firstly, we discard the potential term V�. This

gives � ! � �m2

2p cos2�0 and � ¼ �m2

2p sin2�0.

Hence, for consistency we must take the adiabatic
limit of � ! 0, which immediately implies Jc=s !

0. Moreover, ~!eff ! !t if we define the common

oscillation frequency ! ¼ �m2

2p and set t0 ¼ 0 (as no

resonance time exists, the choice of t0 is arbitrary).
Finally, it follows directly from the definition of the
effective mixing angles that �ðtÞ ! 2�0 for all
times. All this reduces the coherence vector to

~Pð1ÞðtÞ ¼
cos22�0 cos!tþ sin22�0 cos2�0 sin!t sin4�0sin

2 !t
2

cos2�0 sin!t cos!t � sin2�0 sin!t

sin4�0sin
2 !t

2 � sin2�0 sin!t cos22�0 þ sin22�0 cos!t

0
BB@

1
CCA ~Pi: (61)

Suppose we start with a �a flavor such that ~Pi ¼ ð0; 0; 1Þ.
The probability to find the neutrino in the same/the other
state after time t is then using Eqs. (10) and (11) as well as
Eq. (61) given by

prob ð�a ! �aÞ ¼ 1� sin22�0sin
2 !t

2
; (62)

prob ð�a ! �bÞ ¼ sin22�0sin
2 !t

2
; (63)

which is just the common oscillation probability. Note,
moreover that this result was obtained solely using the
truncated Magnus expansion as given above and that it
accounts for probability conservation. Put another way,
unitarity is guaranteed by means of the expansion itself
and does not have to be imposed by hand.

We next turn our attention to the nonadiabatic case.
There exist (at least) two interesting limits.

(1) Nonadiabatic perturbation theory: The sudden
limit. The sudden limit of taking � ! 0 renders
the QKE (22) into formally exactly solvable differ-
ential equations such that the Magnus expansion
should give an exact result. The limit � ! 0 enfor-
ces !eff ¼ j�j and hence cos� ¼ 1, sin� ¼ 0,
which in turn implies � ! 0. The coherence vector
assumes a form

~PðtÞ ¼
cos ~� � sin ~� 0
sin ~� cos ~� 0
0 0 1

0
B@

1
CA ~Pi: (64)

The coherences of the ensemble are oscillating as a
function of time (the ensemble is incoherent) and
the flavor is frozen to its initial value. Put another
way, in physical situations in which the evolution of
the ensemble happens in a way that with increasing
time also � increases, the unfreezing of the en-
semble can be studied using nonadiabatic perturba-
tion theory since it treats � as a small perturbation.
We will point out in Sec. VC that this is typically
the case in early universe applications. There is,
however, a twist when it comes to early universe
applications in that such systems are typically

collision-dominated at high temperatures and thus
the notion of adiabaticity is expected to be modified
due to the presence of collisions. Put another way, a
small � in early universe environments augmented
by the presence of decohering collisions might as
well allow for an adiabatic perturbation theory (see
Sec. VC for some more details).

(2) Nonadiabatic perturbation theory: The slab model
limit. Suppose that we start the evolution of the

neutrino ensemble from a purely �a state ~Pi ¼
ð0; 0; 1Þ. We obtain for the coherence vector

~Pð1ÞðtÞ¼
ð�Kscos ~�þKc sin ~�ÞsincjKj
�ðKc cos ~�þKs sin ~�ÞsincjKj

cosjKj

0
BB@

1
CCA: (65)

The flavor oscillation probability is then written as

prob ð�a ! �aÞ ¼ cos212jKj: (66)

Suppose furthermore that the situation as described
above to estimate theK-type integrals holds, i.e., the
resonance in neutrino conversions happens in a
narrow time interval centered around tres.
Applying the stationary phase approximation, we
then obtain

prob ð�a ! �aÞ ¼ cos2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	

2

1

�res

s
: (67)

This result is the oscillation probability for the slab
model as outlined in Ref. [19]. So, the relevant limit
is respected in this situation.

C. Higher-order corrections and applications

As has been seen in the previous sections, the Magnus
expansion can be easily extended to higher orders by
summing the associated approximants according to�ðtÞ ¼
�1ðtÞ þ�2ðtÞ þ . . . . In order to get a grasp on how this
prescription unfolds, we calculate the 2nd-order Magnus
approximant to be
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�2ðtÞ ¼
0 J 0

�J 0 0
0 0 0

0
@

1
A; (68)

where J is given by

J ad ¼ 1

2

Z t

t0

dt1
Z t1

t0

dt2�ðt1Þ�ðt2Þ!effðt1Þ!effðt2Þ

� sin½ ~!effðt2Þ � ~!effðt1Þ� (69)

for the adiabatic case and

J nad ¼ 1

2

Z t

t0

dt1
Z t1

t0

dt2�ðt1Þ�ðt2Þ sin½~�ðt2Þ� ~�ðt1Þ� (70)

for the nonadiabatic case, respectively. The calculations
are performed in the X picture for adiabatic transitions and
in the Y picture for nonadiabatic transitions. Two things are
readily inferred: the second-order approximant is indeed
Oð�2Þ and Oð�2Þ for adiabatic and nonadiabatic correc-
tions, respectively, as is expected. Moreover, it is seen that
the 2nd order populates the (23) and (32) entries of the
Magnus operator �.

We shall now shortly elaborate on the complications
which arise when ensemble decoherence is to be taken
into account. This typically happens in early universe
applications in which the time evolution of neutrinos is
governed by three distinct physical processes: Firstly, the
expansion of the Universe. Secondly, coherent oscillations
governed by a matter-dependent effective Hamiltonian
which results from coherent forward-scattering processes
of neutrinos off the background particles. Thirdly, scatter-
ing processes with the background plasma of elementary
particles. These collisions, or non-forward-scattering pro-
cesses, with particles from the background medium typi-
cally introduce decoherence effects into the neutrino
ensemble. In our analysis in this paper, we have neglected
the ensemble decoherence due to non-forward scattering.

The epoch of foremost interest in studying neutrino
oscillations in the early Universe is the one between
muon decoupling at T �m� � 100 MeV and neutrino

decoupling, i.e., prior to big bang nucleosynthesis
(BBN), at about T � 1 MeV, since during this time the
initial conditions for nucleosynthesis, the electron neutrino
abundance, are set [20], which then directly influence the
neutron-to-proton ratio at the onset of BBN via � pro-
cesses pþ e� Ð nþ �e. The primordial plasma during
this epoch thus consists of electrons, positrons, neutrinos,
and antineutrinos.

The density matrix � for the system of interacting and
oscillating neutrinos encodes ratios of number density
distributions and hence the expansion of the Universe
does not directly contribute to the time evolution of the
density matrix. However, the momenta of the particles are
redshifted and the equilibrium number distributions
NEQðp; 0Þ thus depend on time through this redshifting.

An interesting application of the approach developed
here exists in scenarios as discussed in, e.g., Ref. [21],
namely, active-sterile flavor oscillations. The latter are
interesting since active-sterile oscillations would populate
the additional sterile species and thus contribute significant
additional energy density, which in turn would trigger an
accelerated expansion of the Universe and hence lead to a
higher weak freeze-out temperature. This again would alter
the neutron-to-proton ratio at the onset of BBN. The co-
herent part of matter-affected active-sterile oscillations
splits in two contributions. One is just the leading-order
density-dependent contribution (the MSW [2] part). This
part is only temperature dependent indirectly via the
cosmological redshifting of fermion number density. The
second contribution comes from leading-order finite
temperature gauge boson effects [22], which cannot be
neglected at the temperatures considered here.
The loss of coherence is due to neutrino collisions with

the background medium. The decoherence (or damping)
function for this process in thermal equilibrium turns out to
be proportional to the total collision rate for the neutrino
with momentum p under consideration.
The epoch of interest can now be decomposed into three

distinct domains: At high temperatures, finite temperature
gauge boson effects dominate. Repopulation effects from
the background plasma can be neglected since at high
temperatures thermal equilibrium for all relevant species
is rapidly established. At intermediate temperatures, lepton
number production starts and the forward-scattering con-
tribution comes into play as a small perturbation. Finally,
prior to the onset of BBN, at low temperatures, collisional
effects and finite temperature gauge boson contributions
cease to be important and coherent neutrino oscillations are
the dominant process.
In each of the aforementioned temperature domains, the

QKE should be solved to determine the evolution of the
neutrino ensemble. It is obvious that decoherence and
repopulation effects modify the underlying QKE and com-
plicate their analysis by introducing new physical scales in
the system. The early Universe framework thus deserves a
more careful treatment which is beyond the scope of this
work.
However, we do understand that our paradigms for

obtaining the oscillation frequency, the effective mixing,
as well as the adiabaticity parameter of the system do not
necessitate a full solution for the coherence vector. Hence,
we are at liberty to take a first glance at such collision-
affected neutrino conversions invoking our formalism.
The time evolution matrix for a collision-affected

two-flavor active-sterile neutrino ensemble in the early
Universe is given by

SðtÞ ¼
�DðtÞ ��ðtÞ 0
�ðtÞ �DðtÞ ��ðtÞ
0 �ðtÞ 0

0
@

1
A (71)
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in the framework described above. The potential term �ðtÞ
now contains the MSW potential from coherent elastic
forward scattering of neutrinos on the background plasma
as well as a finite temperature W-boson contribution.
Moreover, DðtÞ gives the decoherence (damping) function,
which is proportional to the total collision rate for the
active neutrino flavor. Applying our paradigm to this sys-
tem, we find for the effective oscillation frequency

!eff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þD2

q
; (72)

which readily reduces to the well-known expression in the
collisionless limit of taking D ! 0. Moreover, we demand
that effective mixing still have the property of being maxi-
mal at the resonance (�ðtresÞ ¼ 0) and give way to the
standard coherent oscillations results as discussed in our
analysis above. We thus find

cos�ðtÞ ¼ �ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þD2

p ; (73)

sin�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þD2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 þD2

p : (74)

Since now we have an effective mixing angle at our dis-
posal, we can identify an adiabaticity parameter via

� � 1

!eff

d�

dt
; (75)

which can be calculated to yield

�¼ 1

!3
eff

�
��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þD2
p d�

dt
þ D�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þD2
p dD

dt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þD2

q d�

dt

�
(76)

or rather at the resonance

�res ¼ � 1

�2 þD2

d�

dt

��������t¼tres

: (77)

Two things are readily observed: Firstly, this result reduces
to the standard paradigm of an adiabaticity parameter in
the collision-unaffected regime (D ! 0) and secondly, it
entails an intriguing modification of adiabaticity in the
presence of collisions. The latter means that a small �
does not necessarily coincide with nonadiabatic neutrino
conversions any-more.

As has been mentioned before, an explicit solution for
the coherence vector in a collision-affected regime de-
mands good care and is beyond the scope of this work.

VI. CONCLUSIONS

The standard wave function approach for the treatment
of neutrino oscillations fails in situations, where quantum
ensembles at a finite temperature with or without an inter-
acting background plasma are encountered. A first step to

treat such phenomena consists in a thorough analysis of
two-flavor neutrino oscillations. The most interesting (and
general) system of collision-unaffected neutrino oscilla-
tions, which offers some insight into the physics at hand,
is an oscillatory neutrino ensemble with generic matter
potentials—as would be realized in a MSW-like scenario
in which the matter potential due to coherent elastic
forward scattering is augmented by nonstandard interac-
tions. We study the time evolution, and hence the flavor
oscillations, of such systems in a novel way, which
also sheds light on how to extend the formalism on appli-
cations beyond collision-unaffected neutrino systems,
e.g., collision-affected neutrino conversions in the early
Universe.
In our analysis, we focus on providing novel and model-

independent methods for solving the underlying quantum
kinetic equations for a two-flavor neutrino ensemble at
finite temperature subject to generic potentials rather
than delving into explicit model building for specific neu-
trino configurations and hence certain physics models. To
this end, we use the Magnus expansion and argue that it has
virtues when it comes to perturbatively solve coupled non-
autonomous differential equations such as the QKE con-
sidered here: the expansion is unitary to each order of the
approximation, which is a most convenient feature if os-
cillation probabilities are calculated; moreover, we get a
handle on the convergence properties of the expansion by
studying the matrix norm of the underlying evolution
matrix. The perturbation ansatz proposed maps the prob-
lem of diagonalizing a time evolution matrix with generic
potentials (and hence possible time dependences) onto
calculating the exponential of a matrix and the associated
integrals as its emergent ingredients.
We understand that calculating the matrix norm of the

evolution equation (via the Frobenius norm) also reveals
new physics insight into the nature of the neutrino en-
semble at hand. It is found that the matrix norm coincides
with the effective oscillation frequency of the system (up to
a proportionality factor). This feature can now be easily
generalized to more complicated physics models by inter-
preting the matrix norm of the evolution matrix as the
effective oscillation frequency. This can be done without
making any reference to the Hamiltonian of the underlying
system, which turns out to be particularly useful when a
Hamiltonian description of the system at hand ceases to be
applicable anyway.
We continue our analysis by performing several changes

of basis for the QKE. The benefit of this procedure is
twofold: On the one hand, it is of purely mathematical
merit in that it demonstrates how successive transforma-
tions of the time evolution equation of the system can result
in a shape of the latter most suitable for a perturbative
solution of the QKE; the exactly solvable part of the
differential equation is removed and hence the small per-
turbation to the exactly solvable system isolated. On the
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other hand, we understand that the successive change of
basis for the QKE also provides further physical insight.

A rotation to a comoving frame for the QKE reveals that
the definition of an effective mixing angle becomes pos-
sible, which closely resembles, but, however, is not iden-
tical to the one encountered in the Hamiltonian formulation
of the system at hand. It is found that the cosine of such a
mixing angle is simply given by the expression containing
the potential term normalized to the effective oscillation
frequency. Again, this notion of an effective mixing angle
is (largely) independent of the explicit shape of the time
evolution matrix and could hence be adopted to seek a
similar definition of effective mixing in more elaborate
systems.

Moreover, with the oscillation frequency (a character-
istic time scale of the system) and the effective mixing (a
characteristic time scale of the interaction) at our disposal,
it is straightforward to define an adiabaticity parameter of
the system. Note, that all this physics insight is basically
model independent and can easily be generalized to more
complicated systems without the necessity of solving for
the coherence vector explicitly.

Applying our novel paradigm for solving the QKE to the
system of two-flavor neutrino conversions at a finite tem-
perature subject to generic potentials, we obtain a pertur-
bative solution for the coherence vector in the adiabatic
regime. Moreover, keeping in mind the strategy to tackle

QKE promulgated in our analysis, we understand that with
the aid of the adiabaticity parameter as constructed during
our analysis it is straightforward to develop a nonadiabatic
perturbation theory on the same theoretical considerations
as applied for the adiabatic case. This result is yet another
advantage of our approach in that it treats both adiabatic
and nonadiabatic neutrino conversions on the same ground;
the two distinct physical situations do not have to be
studied with two distinct perturbation theories. We take
comfort that our approach yields accurate results since we
demonstrate that it respects several limiting cases of the
physics under considerations.
In order to illustrate the usefulness of our approach, we

also eventually give an outlook how the ideas put forward
in this article can be used to describe collision-affected
neutrino conversions in the early Universe. Therefore, we
understand that our analysis presents a promising basis for
further investigations concerning the inclusion of decoher-
ence in the ensemble and the resulting applications in early
universe scenarios, e.g., the generation of lepton number in
active-sterile oscillations prior to BBN.
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