
Quadratic electroweak corrections for polarized Møller scattering

Aleksandrs Aleksejevs*

Memorial University, Corner Brook, Canada

Svetlana Barkanova†

Acadia University, Wolfville, Canada

Yury Kolomensky‡

University of California, Berkeley, USA

Eduard Kuraev§

Joint Institute for Nuclear Research, Dubna, Russia

Vladimir Zykunovk

Belarussian State University of Transport, Gomel, Belarus
(Received 8 October 2011; revised manuscript received 23 November 2011; published 10 January 2012)

This paper discusses the two-loop electroweak radiative corrections to the parity-violating e�e�!
e�e�ð�Þð��Þ scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant

for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at

future high-energy colliders. The imaginary parts of the amplitudes are taken into consideration

consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction

is significant, which indicates a need for a complete study of the two-loop electroweak radiative

corrections in order to meet the precision goals of future experiments.
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I. INTRODUCTION

Polarized Møller scattering has been a well-studied low-
energy reaction for close to 8 decades now [1], but has
attracted especially active interest from both the experi-
mental and theoretical communities due to the recent rapid
progress in measuring spin-dependent observables. Since
the nineties, the e-e scattering has allowed the high-
precision determination of the electron-beam polarization
at SLC [2], SLAC [3,4], JLab [5], and MIT-Bates [6]. A
Møller polarimeter may also be useful in future experi-
ments planned at the ILC [7]. In addition, polarized Møller
scattering can be an excellent tool for measuring parity-
violating (PV) weak interaction asymmetries [8].

The first observation of parity violation in Møller scat-
tering was made by the E-158 experiment at SLAC [9],
which studiedMøller scattering of 45- to 48-GeV polarized
electrons on the unpolarized electrons in a hydrogen target.
Its result at low Q2 ¼ 0:026 GeV2, ALR ¼ ð1:31�
0:14ðstat:Þ � 0:10ðsyst:ÞÞ � 10�7 [10] allowed one of the
most important parameters in the standard model—the sine
of the Weinberg angle—to be determined with an accuracy

of 0.5% (sin2�W ¼ 0:2403� 0:0013 in the MS scheme).

A very promising experiment measuring the e-p scattering

asymmetry currently running at the Jefferson Lab, Qweak

[11], aims to determine sin2�W with a relative precision of

0.3%. The next-generation experiment to study e-e

scattering—MOLLER (Measurement Of a Lepton Lepton

Electroweak Reaction) [12], planned at JLab following the

11 GeV electron-beam upgrade—will offer a new level of

sensitivity and measure the parity-violating asymmetry in

the scattering of longitudinally polarized electrons off an

unpolarized target to a precision of 0.73 ppb. That would

allow a determination of the weak mixing angle with an

uncertainty of �0:000 26ðstat:Þ � 0:000 13ðsyst:Þ, or about
0.1%, an improvement of a factor of 5 in fractional preci-

sion when compared with the E-158 measurement.
Since Møller scattering is a very clean process with a

well-known initial energy and low backgrounds, any in-

consistency with the standard model will signal new phys-

ics. Møller scattering experiments can provide indirect

access to physics at multi-TeV scales and play an important

complementary role to the LHC research program [13].
Obviously, before we can extract reliable information

from the experimental data, it is necessary to take into
account the higher-order effects of electroweak theory, i.e.
electroweak radiative corrections (EWC). The inclusion of
EWC is an indispensable part of any modern experiment,
but will be of paramount importance for the ultra-precise
measurement of the weak mixing angle via the 11 GeV
Møller scattering planned at JLab. To match the promised
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precision of MOLLER, theoretical predictions for the PV
e-e scattering asymmetry must include not only full treat-
ment of one-loop (next-to-leading order [NLO]) radiative
corrections but also two-loop (next-to-next-to-leading
order [NNLO]) corrections.

A significant theoretical effort has been dedicated to
one-loop radiative corrections already. A short review of
the literature to date on that topic is done in [14]. In [14],
we also calculated a full gauge-invariant set of the one-
loop EWC both numerically with no simplifications using
FEYNARTS [15], FORMCALC [16], LOOPTOOLS [16], and

FORM [17] and by hand in a compact form analytically

free from nonphysical parameters. The total correction was
found to be close to �70%, and we found no significant
theoretical uncertainty coming from the largest possible
source, the hadronic contributions to the vacuum polariza-
tion. The dependence on other uncertain input parameters,
like the mass of the Higgs boson, was below 0.1%.

It is possible that a much larger theoretical uncertainty in
the prediction of the asymmetry may come from two-loop
corrections. Reference [18] argued that the higher-order
corrections are suppressed by a factor of either about 0.1%
or 5% (depending on the type of corrections) relative to the
one-loop result. However, since the one-loop weak correc-
tions for Møller scattering are so large and since the
11 GeV MOLLER experiment is striving for such unpre-
cedented precision, we believe it is now worth looking into
evaluating two-loop weak corrections.

One way to find some indication of the size of higher-
order contributions is to compare results that are ex-
pressed in terms of quantities related to different renor-
malization schemes. In [19], we provided a tuned
comparison between the result obtained with different
renormalization conditions, first within one scheme then
between two schemes. Our calculations in the on-shell and
constrained differential renormalization (CDR, [20])
schemes show a difference of about 11%, which is com-

parable with the difference of 10% between MS [21] and
the on-shell scheme [18]. It is also worth noting that
although two-loop corrections to the cross section may
seem to be small, it is much harder to estimate their scale
and behavior for such a complicated observable as the
parity-violating asymmetry to be measured by the
MOLLER experiment.

The two-loop EWC to the Born (�M0M
þ
0 ) cross section

can be divided into two classes: the Q part induced by
quadratic one-loop amplitudes (�M1M

þ
1 ), and the T part

corresponding to the interference of the Born and two-loop
diagrams (� 2ReM0M

þ
2�loop). The goal of this paper is to

calculate the Q part exactly. We show that the Q part is
much higher than the planned experimental uncertainty of
MOLLER, which means that the two-loop EWC may be
larger that previously thought. The large size of the Q part
demands a detailed and consistent consideration of the T
part, and that will be the next task of our group.

II. GENERAL NOTATIONS
AND MATRIX ELEMENTS

Let us start by writing the cross section of polarized
Møller scattering with the Born kinematics shown in
Fig. 1,

e�ðk1Þ þ e�ðp1Þ ! e�ðk2Þ þ e�ðp2Þ; (1)

such that, with the appropriate accuracy for the present
paper, we find

� ¼ �3

2s
jM0 þM1j2

¼ �3

2s
ðM0M

þ
0 þ 2ReM1M

þ
0 þM1M

þ
1 Þ: (2)

Here, � � d�=d cos�, � is the scattering angle of the
detected electron with 4-momentum k2 in the center-of-
mass system of the initial electrons. The 4-momenta of
initial (k1 and p1) and final (k2 and p2) electrons generate a
standard set of Mandelstam variables:

s ¼ ðk1 þ p1Þ2; t ¼ ðk1 � k2Þ2; u ¼ ðk2 � p1Þ2:
(3)

It should also be noted that the electron mass m is disre-
garded wherever possible, in particular, ifm2� s,�t,�u.
M0 and M1 are the Born (Oð�Þ) and one-loop (Oð�2Þ)

amplitudes (matrix elements), respectively. Let us describe
the structure of M0:

M0 ¼ M0;t �M0;u; M0;u ¼ M0;tðk2 $ p2Þ;
M0;t ¼

X
j¼�;Z

Mj
t ; Mj

t ¼ i
�

�
Ij�DjtJ�;j;

(4)

where the t channel upper and lower electron leg currents
are

Ij� ¼ �uðk2Þ��ðvj � aj�5Þuðk1Þ;
Jj� ¼ �uðp2Þ��ðvj � aj�5Þuðp1Þ: (5)

The squared Born amplitude M0 forms the Born cross
section:

γ, Z

e−

e−

e−

e−k1 k2

p1 p2

γ, Z

e−

e−

e−

e−k1 k2

p1
p2

FIG. 1. Diagrams describing nonradiative Møller scattering in
the (1) t- and (2) u channels.
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�0 ¼ �3

2s
M0M

þ
0

¼ ��2

s

X
i;j¼�;Z

½�i;j� ðu2DitDjt þ t2DiuDjuÞ

þ �i;j
þ s2ðDit þDiuÞðDjt þDjuÞ�: (6)

A handy structure to use in the present study is

Dir ¼ 1

r�m2
i

ði ¼ �; Z; r ¼ t; uÞ; (7)

which depends on the Z-boson mass mZ or on the photon
mass m� � �. The photon mass is set to zero everywhere

with the exception of specially indicated cases where the
photon mass is taken to be an infinitesimal parameter that
regularizes the infrared divergence (IRD). Another set of
useful functions is

�i;k
� ¼ �i;k

1B�
i;k
1T � �i;k

2B�
i;k
2T: (8)

These are combinations of coupling constants and pBðTÞ,
where pBðTÞ are the degrees of polarization of electrons

with 4-momentum k1 (p1). More specifically,

�i;j
1BðTÞ ¼ �i;j

V � pBðTÞ�
i;j
A ; �i;j

2BðTÞ ¼ �i;j
A � pBðTÞ�

i;j
V ;

�i;j
V ¼ vivj þ aiaj; �i;j

A ¼ viaj þ aivj;

where

v� ¼ 1; a� ¼ 0;

vZ ¼ ðI3e þ 2s2WÞ=ð2sWcWÞ; aZ ¼ I3e=ð2sWcWÞ: (10)

The subscripts L and R on the cross sections correspond to
pBðTÞ ¼ �1 and pBðTÞ ¼ þ1, where the first subscript in-

dicates the degree of polarization for the 4-momentum k1
and the second one indicates the degree of polarization for
the 4-momentum p1. Let us recall that I3e ¼ �1=2 and
sWðcWÞ is the sine (cosine) of the Weinberg angle ex-
pressed in terms of the Z- and W-boson masses according
to the rules of the standard model:

cW ¼ mW=mZ; sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2W

q
: (11)

We can present the one-loop amplitude M1 as a sum of
boson self-energy (BSE), vertex (Ver) and box diagrams:

M1 ¼ M1;t �M1;u;

M1;u ¼ M1;tðk2 $ p2Þ;
M1;t ¼ MBSE;t þMVer;t þMBox;t:

(12)

We use the on-shell renormalization scheme from [22],
[23], so there are no contributions from the electron self-
energies. The question of the dependence of EWC on
renormalization schemes and renormalization conditions
(within the same scheme) was addressed in our earlier
paper [19].
The BSE term can easily be expressed as

MBSE;t ¼ i
�

�

X
i;j¼�;Z

Ii�D
ijt
S J�;j; (13)

with

Dijr
S ¼ �Dir�̂

ij
T ðrÞDjr; (14)

where �̂
ij
T ðrÞ is the transverse part of the renormalized

photon, Z boson and �Z self-energies. The longitudinal
parts of the boson self-energy make contributions that are
proportional to m2=r; therefore they are very small and are
not considered here.
In order to get the electron vertex amplitude (second and

third diagrams in Fig. 2), we use the form factors �Fje
V;A in

the manner of Ref. [22], replacing the coupling constants

vj; aj with form factors v�ðZÞ ! �F�ðZÞe
V , a�ðZÞ ! �F�ðZÞe

A .

Then,

MVer;t ¼
X

j¼�;Z

ðMj=B;t þMj=H;tÞ;

Mj=B;t ¼ i
�

�
Bj
�DjtJ�;j;

Mj=H;t ¼ i
�

�
Ij�DjtH�;j;

(15)

FIG. 2. One-loop t-channel diagrams for the Møller process. The circles represent the contributions of self-energies and vertex
functions. The u-channel diagrams are obtained via the interchange k2 $ p2.
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where the electron currents with vertices look like

Bj
� ¼ Ij�ðvj ! �Fje

V ; a
j ! �Fje

A Þ;
H�;j ¼ J�;jðvj ! �Fje

V ; a
j ! �Fje

A Þ:
(16)

The infrared singularity is regularized by giving photon a
small mass � and in the t-channel vertex amplitude can be
extracted in the form

M�
Ver;t ¼ ��

�

�
log

�t

m2
� 1

�
log

s

�2
M0;t: (17)

The remaining (infrared-finite) part of the t-channel vertex
amplitude has a simple form convenient for analysis and
coding:

Mf
Ver;t ¼ MVer;t �M�

Ver;t ¼ MVer;tð�2 ! sÞ: (18)

The box term can be presented as a sum of all two-boson
contributions:

MBox;t ¼ M��;t þM�Z;t þMZ�;t þMZZ;t þMWW;t: (19)

We need to account for both direct and crossed ��, �Z and
ZZ boxes:

Mij;t ¼ MD
ij;t þMC

ij;tði; j ¼ �; ZÞ; (20)

with MD
ij;t and MC

ij;t given by exact expressions in four-

dimensional integral form (4-point functions) by

MD
ij;t ¼ �i

�
�

�

�
2 � i

ð2�Þ2
Z d4k

ðk2 � 2k1kÞðk2 þ 2p1kÞððq� kÞ2 �m2
j Þðk2 �m2

i Þ
� �uðk2Þ��ðvj � aj�5Þðk̂1 � k̂þmÞ�	ðvi � ai�5Þuðk1Þ
� �uðp2Þ��ðvj � aj�5Þðp̂1 þ k̂þmÞ�	ðvi � ai�5Þuðp1Þ; (21)

MC
ij;t ¼ �i

�
�

�

�
2 � i

ð2�Þ2
Z d4k

ðk2 � 2k1kÞðk2 � 2p2kÞððq� kÞ2 �m2
j Þðk2 �m2

i Þ
� �uðk2Þ��ðvj � aj�5Þðk̂1 � k̂þmÞ�	ðvi � ai�5Þuðk1Þ
� �uðp2Þ�	ðvi � ai�5Þðp̂2 � k̂þmÞ��ðvj � aj�5Þuðp1Þ: (22)

Obviously, for WW boxes we only need the crossed expression (22).
The infrared parts of the ��- and �Z boxes in the t channel are similarly given by

M�
��ð�ZþZ�Þ;t ¼ ��

�

�
1

2
log

�u

s
log

�us

�4
þ �2

2
þ i� log

s

�2

�
M�ðZÞ

t : (23)

Using asymptotic methods, we can significantly simplify the box amplitudes containing at least one heavy boson (see, for
example, [14], where simplifications were done on the cross-section level). Then

Mf
�Z;t þMf

Z�;t ¼ ðM�Z;t þMZ�;tÞ � ðM�
�Z;t þM�

Z�;tÞ

¼ �2i

�
�

�

�
2 �

��
3

2
þ log

m2
Z

s

�
�uðk2Þ��ðvZ � aZ�5Þð���Þ�	uðk1Þ � �uðp2Þ��ðvZ � aZ�5Þ���	uðp1Þ

þ
�
3

2
þ log

m2
Z

�u

�
�uðk2Þ��ðvZ � aZ�5Þ���	uðk1Þ � �uðp2Þ�	����ðvZ � aZ�5Þuðp1Þ

�
; (24)

MZZ;t ¼ �i

�
�

�

�
2 1

16m2
Z

½ �uðk2Þ��ðvB � aB�5Þð���Þ�	uðk1Þ � �uðp2Þ��ðvB � aB�5Þ���	uðp1Þ

þ �uðk2Þ��ðvB � aB�5Þ���	uðk1Þ � �uðp2Þ�	����ðvB � aB�5Þuðp1Þ�; (25)

MWW;t ¼ �i

�
�

�

�
2 1

16m2
W

½ �uðk2Þ��ðvC � aC�5Þ���	uðk1Þ � �uðp2Þ�	����ðvC � aC�5Þuðp1Þ�; (26)

with the coupling-constants combinations for ZZ andWW
boxes

vB ¼ ðvZÞ2 þ ðaZÞ2;
aB ¼ 2vZaZ;

vC ¼ aC ¼ 1=ð4s2WÞ:
(27)

Now we are ready to present the one-loop complex
amplitude as the sum of IR and IR-finite parts:

M1 ¼ M�
1 þMf

1 ; M�
1 ¼ �

�

1

2
��
1M0;

Mf
1 ¼ MBSE þMf

Ver þMf
Box þMa;

(28)
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where

��
1 ¼ 4B log

�ffiffiffi
s

p ; (29)

and the complex value B can be presented in form (see, for
example, [24])

B ¼ log
tu

m2s
� 1þ i�: (30)

The amplitudes from the nonfactorized part of the boxes
are given by

Ma ¼ � �

2�
½ðL2

u þ �2ÞM0;t � ðL2
t þ �2ÞM0;u�; (31)

where Lr ¼ logð�s=rÞ.

III. EXTRACTION OF INFRARED DIVERGENCES

Now we should make sure that the infrared divergences
are cancelled. In a similar way as it was done for ampli-
tudes, we present the complex interference term �̂1 and
differential cross section �Q as sums of �-dependent (IRD
terms) and �-independent (infrared-finite) parts:

�̂1 ¼ �3

s
M1M

þ
0 ¼ ��

1 þ �f
1 ;

�V
Q ¼ �3

2s
M1M

þ
1 ¼ ��

Q þ �f
Q:

(32)

The one-loop cross section which we denote �1 ¼ Re�̂1

was carefully evaluated with full control of the uncertain-
ties in paper [14]. The term�V

Q [see (2)] is called theQ part

of the virtual two-loop EWC and is one of main subjects of
the present paper.

If we substitute the amplitudes derived in Sec. II to the
left-hand-side of (2), and compare the result with the right-
hand side of this equation, we will get the same expression
for �1 as given in [14]. The simplest form for ��

1 (see
formula (42) of [14]) is then

��
1 ¼ �

�
��
1�0: (33)

The infrared-finite part �f
1 can be conveniently to pre-

sented via the relative dimensionless correction:

�f
1 ¼ �

�
�f
1�0: (34)

After some transformations, the value ��
Q is given by

��
Q ¼ �3

2s
M�þ

1 ðM�
1 þ 2Mf

1 Þ

¼ 1

4

�
�

�

�
2
Re½��	

1 ð��
1 þ 2�f

1Þ��0: (35)

Finally, the infrared-finite part �f
Q expressed via the rela-

tive dimensionless corrections has form

�f
Q ¼ �3

2s
Mf

1M
fþ
1 ¼

�
�

�

�
2
�f
Q�0: (36)

IV. BREMSSTRAHLUNG AND CANCELLATION
OF INFRARED DIVERGENCES

To evaluate the cross section induced by the emission of
one soft photon with energy less then !, we follow the
methods of [25] (see also [26]). Then this cross section can
be expressed as

�� ¼ ��
1 þ ��

2 ; (37)

where ��
1;2 have the similar factorized structure based on

the factorization of soft-photon bremsstrahlung:

��
1 ¼ �

�
Re½���

1 þ R1��0;

��
2 ¼ �

�
Re½ð���

1 þ R1Þ	�̂1�;
(38)

where

R1 ¼ �4B log

ffiffiffi
s

p
2!

�
�
log

s

m2
� 1

�
2 þ 1� �2

3
þ log2

u

t
:

(39)

The first part of the soft-photon cross section, ��
1 , cancels

the IRD at the one-loop order, while the second part, ��
2 ,

cancels the IRD at the two-loop order, with half of ��
2

going to the cancellation of IRD in theQ part and the other
half going to treat IRD in the T part:

��
Q ¼ ��

T ¼ 1
2�

�
2 : (40)

To obtain the term ���
1 þ R1 in Eq. (38), we must

calculate the three-dimensional integral over the phase
space of one real soft photon. It can be done according to
[25] in center-of-mass system:

� ��
1 þ R1 ¼ Lð�;!Þ ¼ � 1

4�

Z
k0<!

d3k

k0
T
ðkÞT
ðkÞ;

(41)

where

T�ðkÞ ¼ k�1
k1k

� k�2
k2k

þ p�
1

p1k
� p�

2

p2k
: (42)

To account for the IRD cancellation between the imaginary
parts of Q- and T-type corrections, we add an imaginary
part to the soft-photon integral Im½Lð�;!Þ� ¼ �4� log �

2!

which will be removed in a combined analysis of Q and T
parts.
The difference between the estimation relying on the

soft part only and the result obtained by separation into the
soft and hard parts at the lowest order is rather small (see
[14]), so we believe that the soft cross section will provide
the sufficient accuracy at the second order as well.

QUADRATIC ELECTROWEAK CORRECTIONS FOR . . . PHYSICAL REVIEW D 85, 013007 (2012)

013007-5



At last, the cross section induced by the emission of
two soft photons with a total energy less then ! can be
written as

��� ¼ 1

2

�
�

�

�
2ðj � ��

1 þ R1j2 � R2Þ�0; (43)

where 1
2 is a statistical factor caused by the indistinguish-

ability of two final photons and R2 ¼ 8
3�

2jBj2. The de-

tailed calculations of ��� are shown in Appendix .
Just like ��, the cross section ��� is divided into equal

halves, with half going to cancel the IRD in the Q part and
half going to the T part:

���
Q ¼ ���

T ¼ 1
2�

��: (44)

Combining all the terms together, we get the infrared-
finite result at both the first ð�NLO ¼ Re½�1 þ ��

1 �Þ and the
second ð�Q ¼ �V

Q þ ��
Q þ ���

Q Þ orders. Then the sum of

the first and the second order terms looks like

�NLOþQ ¼ �NLO þ �Q

¼ �

�
Re½R1 þ �f

1��0

þ
�
�

�

�
2
Re

�
1

2
R	
1�

f
1 þ �f

Q þ 1

4
jR1j2 � 1

4
R2

�
�0:

(45)

V. NUMERICAL RESULTS

For the numerical calculations we use � ¼
1=137:035 999, mW ¼ 80:398 GeV, and mZ ¼
91:1876 GeV as input parameters in accordance
with [27]. The electron, muon, and �-lepton masses
are taken to be me ¼ 0:510 998 910 MeV, m� ¼
0:105 658 367 GeV, m� ¼ 1:776 84 GeV, while the quark
masses for vector boson self-energy loop contributions are
taken to be mu ¼ 0:069 83 GeV, mc ¼ 1:2 GeV, mt ¼
174 GeV, md ¼ 0:069 84 GeV, ms ¼ 0:15 GeV, and
mb ¼ 4:6 GeV. The values of the light quark masses
were extracted using the fact that they provide shifts in
the fine structure constant due to hadronic vacuum polar-

ization ��ð5Þ
hadðm2

ZÞ ¼ 0:027 57 [28], where

��ð5Þ
hadðsÞ ¼

�

3�

X
f¼u;d;s

Q2
f

�
log

s

m2
f

� 5

3

�
; (46)

and Qf is the electric charge of fermion f in proton charge

units qðq ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p Þ.
On the other hand, the contribution of hadronic vacuum

polarization to the fine structure constant also can be
evaluated using the dispersion relation:

��ð5Þ
hadðsÞ ¼ � s

4�2�
P
Z 1

4M2
�

ds0
�hðs0Þ

s0 � s� i0
; (47)

where P means that the principle value of the integral
should be considered and �hðsÞ is the cross section of
hadron production in eþe� annihilation. In the case of
small energies this cross section can be approximated
by the cross section of the pion production channel
eþe� ! �þ��:

�hðsÞ ¼ ��2

3s

3

�; 
� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

s

s
; (48)

thus giving the following contribution to ��ð5Þ
hadðsÞ:

��ð5Þ
hadðsÞ ¼

�

�

�
1

12
log

�
1þ 
�

1� 
�

�
� 2

3
� 2
2

�

�
: (49)

Thus, we extract the light quark masses from a combi-
nation of Eq. (46) and (49). Finally, for the mass of the
Higgs boson, we take mH ¼ 115 GeV. Although this mass
is still to be determined experimentally, the dependence of
EWC on mH is rather weak. For the maximum soft-photon
energy we use ! ¼ 0:05

ffiffiffi
s

p
, according to [14], [29].

Let us define the relative corrections to the Born cross
section due to a specific type of contributions as

�C;l ¼�l
C��0

�0

; C¼NLO;Q;T; . . . ; l¼ V;�;��:

The parity-violating asymmetry is defined in a traditional
way [12],

ALR ¼ �APV ¼ �LL þ �LR � �RL � �RR

�LL þ �LR þ �RL þ �RR

¼ �LL � �RR

�LL þ 2�LR þ �RR

; (50)

and the relative correction to the Born asymmetry due to C
contribution is defined as

�C
A ¼ AC

LR � A0
LR

A0
LR

:

Figure 3, plotted for � ¼ 90
 and Elab ¼ 11 GeV,
clearly demonstrates that the relative correction to Q part
of unpolarized cross section is numerically independent of
the photon mass �. The dashed line shows that for the
kinematics relevant to the MOLLER experiment, the sum
of the virtual and bremsstrahlung contributions is close to
zero: �Q ¼ �Q;V þ �Q;� þ �Q;�� � 0:001 98. We can also
see a quadratic dependence on the log scale of � for both
the virtual (upper parabola) and bremsstrahlung (lower
parabola) contributions.
The left frame of Fig. 4 depicts the relative corrections to

the asymmetry at Elab ¼ 11 GeV versus the scattering
angle � in center-of-mass system. The lower line shows
the corrections to the asymmetry with only one-loop EWC
taken into account, and the upper line shows the combined
one-loop and Q-part corrections. As expected, both of

ALEKSANDRS ALEKSEJEVS et al. PHYSICAL REVIEW D 85, 013007 (2012)

013007-6



them are symmetric along the line � ¼ 90
 have a mini-
mum at this point, and depend on the scattering angle quite
weakly. The difference of these two effects is an absolute
correction defined by

�A ¼ ANLOþQ
LR � A0

LR

A0
LR

� ANLO
LR � A0

LR

A0
LR

¼ ANLOþQ
LR � ANLO

LR

A0
LR

and depicted in the right frame of Fig. 4. Here we can see
that the Q part gives quite a significant contribution, with
�A reaching a maximum of 0.0419 at � ¼ 90
. Taking into

account that MOLLER’s planned experimental error to the
PVasymmetry is�2% or less, we see that it is necessary to
continue to work on the two-loop EWC, staring from the T
part.
Figure 5 shows the relative (labeled as NLO and

NLOþQ) corrections and absolute �A corrections
(labeled by Q) versus

ffiffiffi
s

p
at � ¼ 90
. In the high-energy

region (
ffiffiffi
s

p � 50 GeV) our one-loop result (see [14]) is in
excellent agreement with the result from [29] if we use the
same set of standard model parameters. As one can see
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from Fig. 5, the scale of theQ-part contribution in the low-
energy region is approximately constant, but grows sharply
at

ffiffiffi
s

p � mZ, where the weak contribution becomes com-
parable to the electromagnetic. This increasing importance
of the two-loop contribution at higher energies may have a
significant effect on the asymmetry measured at future
e�e� colliders.

VI. CONCLUSIONS

Experimental investigation of Møller scattering is not
only one of the oldest tools of modern physics, but also a
powerful probe of new physics effects. The new ultra-
precise measurement of the weak mixing angle via
11 GeV Møller scattering planned at JLab (MOLLER)—
as well as experiments proposed at future high-energy
electron colliders—will require that the higher-order effects
to be taken into account with the highest precision possible.

In this work, we build on the study of the one-loop
electroweak radiative corrections to the cross-section
asymmetry of the polarized Møller scattering at 11 GeV
initiated by our group in [14], and address some of the two-
loop effects. At this stage, we perform a detailed calcula-
tion for the part of the two-loop electroweak radiative
correction induced by squaring one-loop diagrams.

The two-loop EWC to the Born (�M0M
þ
0 ) cross section

is divided into the T part, which is the interference of Born
and two-loop diagrams (� 2ReM0M

þ
2�loop), and theQ part,

induced by quadratic one-loop amplitudes (�M1M
þ
1 ),

which we evaluate here. The results are presented in both
numerical and analytical form, with the infrared divergence
explicitly cancelled. Also, we clearly demonstrate the im-
portant role of the imaginary part of amplitude, which is
consistently taken into consideration both in the infrared-
finite and divergent terms.

As one can see from our numerical data, at the
MOLLER kinematic conditions, the part of the NNLO
EWC we considered in this work can increase the asym-
metry by up to �4%. The corrections depend quite sig-
nificantly on the energy and scattering angles; at the high-
energy region of

ffiffiffi
s

p � 1000 GeV achievable in the
planned experimental program of the ILC, the estimated
contribution of the quadratic EWC can reach þ14%; for

3 TeV at CLIC, it would be þ42%. We see that the large
size of the Q part demands detailed and consistent consid-
eration of the T part, which will be the next task of our
group. It is impossible to say at this time if the Q part will
be partially enhanced or cancelled by other two-loop ra-
diative corrections, although it seems probable that the
two-loop EWC may be larger than previously thought. Al-
though an argument can be made that the two-loop
corrections are suppressed by a factor of �=� relative to
the one-loop corrections (see [18], for example), we are
reluctant to conclude that they can be dismissed, especially
in the light of 2% uncertainty to the asymmetry promised
by MOLLER.
Since the problem of EWC for the Møller scattering

asymmetry is rather involved, a tuned step-by-step com-
parison between different calculation approaches is essen-
tial. One of the important results of this work is the
correctness of our calculations, which was controlled by
a comparison of the results obtained from the equations
derived by hand with the numerical data obtained by a
semiautomatic approach based on FEYNARTS, FORMCALC,
LOOPTOOLS, and FORM. These packages have already been

successfully employed in similar projects ([14,19]), so we
are highly confident in their reliability. In the future, we
plan to address the remaining two-loop electroweak cor-
rections which may be required by the promised experi-
mental precision of the MOLLER experiment and
experiments planned at the ILC.
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APPENDIX A: DETAILS OF CALCULATIONS
FOR THE CASE OF EMISSION OF TWO

REAL SOFT PHOTONS

First, let us calculate the amplitudes corresponding to
the emission of two real soft photons (see Fig. 6),

FIG. 6. Double-bremsstrahlung diagrams for Møller scattering in Mi
11. The u-channel diagrams are obtained by interchange

k2 $ p2.
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e�ðk1Þþe�ðp1Þ!e�ðk2Þþe�ðp2Þþ�ðkÞþ�ðpÞ (A1)

in the t and u channels with i-boson exchange (i ¼ �, Z).
The amplitudes are labeled as Mi

11;M
i
12;M

i
13; . . . , where

the first (second) subscript denotes the origin of the first
�ðkÞ (second �ðpÞ) emitted photon: 1—emitted from elec-
tron e�ðk1Þ, 2—from electron e�ðk2Þ, 3—from electron
e�ðp1Þ and 4—from electron e�ðp2Þ. The exact expression
for Mi

11 is the following:

Mi
11 ¼ ið2�eÞ4Nk1Nk2Np1

Np2
NpNk �uðk2Þ��ðvi � ai�5Þ

� 1

k̂4 �m
��e�ðpÞ 1

k̂3 �m
�
e
ðkÞuðk1Þ

� �uðp2Þ��ðvi � ai�5Þuðp1Þ 1

q2 �m2
i

� �ðk1 þ p1 � k2 � p2 � k� pÞ; (A2)

where Nk ¼ 1
ð2�Þ3=2

1ffiffiffiffiffiffi
2k0

p . Using the Dirac equation and

taking k ! 0, we can simplify

1

k̂3 �m
�
uðk1Þ ¼ k̂1 � k̂þm

ðk1 � kÞ2 �m2
�
uðk1Þ

� k̂1 þm

�2k1k
�
uðk1Þ

¼ 1

�2k1k
ð2k
1 þ �
½�k̂1 þm�Þuðk1Þ

¼ � k
1
k1k

uðk1Þ: (A3)

Analogously, at k, p ! 0,

1

k̂4 �m
��uðk1Þ ¼ k�1

�k1ðkþ pÞ þ kp
uðk1Þ: (A4)

Finally, the amplitudeMi
11 at k, p ! 0 has the following

form, with the convenient factorization from the Born
amplitude:

Mi
11jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ

� k�1 k


1

ð�k1kÞð�k1ðkþ pÞ þ kpÞM
i
0: (A5)

In the same manner, we get

Mi
22jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ

� k�2 k


2

ðk2pÞðk2ðkþ pÞ þ kpÞM
i
0;

Mi
12jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ k�2 k



1

ðk2pÞð�k1kÞM
i
0;

Mi
33jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ

� p�
1p



1

ð�p1kÞð�p1ðkþ pÞ þ kpÞM
i
0;

Mi
44jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ

� p�
2p



2

ðp2pÞðp2ðkþ pÞ þ kpÞM
i
0;

Mi
34jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ p�

2p


1

ðp2pÞð�p1kÞM
i
0;

Mi
13jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ k�1p



1

ð�k1pÞð�p1kÞM
i
0;

Mi
14jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ k�1p



2

ð�k1pÞðp2kÞM
i
0;

Mi
23jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ k�2p



1

ðk2pÞð�p1kÞM
i
0;

Mi
24jk;p!0 ¼ e2NpNke�ðpÞe
ðkÞ k�2p



2

ðk2pÞðp2kÞM
i
0: (A6)

Now we need to sum the terms generated by the sub-
stitution k $ p. For the 11–, 22–, 33–, 44–cases it works as
the following:

Mi
11jk;p!0 þ ðk $ pÞ

¼ e2NpNkM
i
0

�
e�ðpÞe
ðkÞk�1 k
1

ð�k1kÞð�k1ðkþ pÞ þ kpÞ

þ e�ðkÞe
ðpÞk�1 k
1
ð�k1pÞð�k1ðkþ pÞ þ kpÞ

�

¼ e2NpNkM
i
0

�
1

�k1k
þ 1

�k1p

�
e�ðpÞe
ðkÞk�1 k
1

ð�k1ðkþ pÞ þ kpÞ

� e2NpNkM
i
0

e�ðpÞe
ðkÞk�1 k
1
ðk1kÞðk1pÞ : (A7)

As a result, the total tðuÞ channel amplitude is given by

Mi
tðuÞjk;p!0 ¼ e2NpNke�ðpÞe
ðkÞT�ðpÞT
ðkÞMi

0;tðuÞ:

(A8)

Then, the cross section of (A1) has the form
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��� ¼ �0

1

2

Z
k0þp0<!

d3kd3pðeNkÞ2

�ðeNpÞ2T�ðpÞT�ðpÞT
ðkÞT
ðkÞ

¼ �0

�
�

�

�
2 1

2

�
1

4�

�
2 Z

k0þp0<!

d3k

k0

� d3p

p0

T�ðpÞT�ðpÞT
ðkÞT
ðkÞ: (A9)

It is possible to prove that�
1

4�

�
2 Z

k0þp0<!

d3k

k0

d3p

p0

T�ðpÞT�ðpÞT
ðkÞT
ðkÞ

¼ jLð�;!Þj2 � R2: (A10)

If we change the condition k0 þ p0 <! to simply k0 <!,
p0 <!, the term R2 will go to zero. However, the con-
ditions k0 <!, p0 <! are not valid from the experiment
point of view.

Let us calculate R2 exactly. First, we introduce the
notation

Iða1; a2; b1; b2Þ ¼
�
1

4�

�
2 Z

a1<k0<a2;b1<p0<b2

d3k

k0

� d3p

p0

T�ðpÞT�ðpÞT
ðkÞT
ðkÞ:
(A11)

From Eq. (41) it is obvious that

Ið0; a; 0; bÞ ¼ Lð�; aÞLð�; bÞ	; (A12)

which, of cause, works at � � a, b only. At da, db � a,
b, the simple geometry considerations give the equation

Iða; aþ da; b; bþ dbÞ
¼ Ið0; aþ da; 0; bþ dbÞ þ Ið0; a; 0; bÞ

� Ið0; a; 0; bþ dbÞ � Ið0; aþ da; 0; bÞ:
Simplifying using Eq. (A12) and (41), we get

Iða; aþ da;b; bþ dbÞ ¼ 16jBj2 logaþ da

a
log

bþ db

b

� 16jBj2 da
a

db

b
: (A13)

Finally, comparing Eq. (A10) and (A13), we conclude:

R2 ¼
X
�

Iða; aþ da; b; bþ dbÞ

¼ 16jBj2
Z !

0

da

a

Z !

!�a

db

b
¼ 16jBj2Li2

�
a

!

���������!

0

¼ 8

3
�2jBj2: (A14)

Here, � ¼ fa < !g \ fb < !g \ faþ b > !g. Our result
for R2 agrees with [24].

[1] C. Møller, Ann. Phys. (Leipzig) 406, 531 (1932).
[2] M. Swartz et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 363, 526 (1995).
[3] P. Steiner et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 419, 105 (1998).
[4] H. Band et al., Nucl. Instrum. Methods Phys. Res., Sect. A

400, 24 (1997).
[5] M. Hauger et al., Nucl. Instrum. Methods Phys. Res., Sect.

A 462, 382 (2001).
[6] J. Arrington et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 311, 39 (1992).
[7] G. Alexander and I. Cohen, Nucl. Instrum. Methods Phys.

Res., Sect. A 486, 552 (2002).
[8] E. Derman and W. J. Marciano, Ann. Phys. (N.Y.) 121,

147 (1979).
[9] K. S. Kumar et al., Mod. Phys. Lett. A 10, 2979 (1995);

Eur. Phys. J. A 32, 531 (2007); P. L. Anthony et al. (SLAC
E158 Collaboration) Phys. Rev. Lett. 92, 181602 (2004).

[10] P. L. Anthony et al., Phys. Rev. Lett. 95, 081601 (2005).
[11] S. Page, JLab Report No. E02-020 to PAC (Qweak-doc-

703-v5), at http://www.jlab.org/qweak/.
[12] J. Benesch et al. (The MOLLER Collaboration), at

http://hallaweb.jlab.org/12GeV/Moller/downloads/DOE_
Proposal/DOE_Moller.pdf.

[13] C. A. Heusch, Int. J. Mod. Phys. A 15, 2347 (2000); J. L.
Feng, Int. J. Mod. Phys. A 15, 2355 (2000).

[14] A. Aleksejevs et al., Phys. Rev. D 82, 093013 (2010).
[15] T. Hahn, Comput. Phys. Commun. 140, 418 (2001).
[16] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun.

118, 153 (1999).
[17] J. Vermaseren, arXiv:math-ph/0010025.
[18] F. J. Petriello, Phys. Rev. D 67, 033006 (2003).
[19] A. Aleksejevs et al., arXiv:1010.4185v3.
[20] F. del Aguila et al., Phys. Lett. B 419, 263 (1998).
[21] A. Czarnecki and W. J. Marciano, Phys. Rev. D 53, 1066

(1996).
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