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Enlightened by the idea of the 3� 3 Cabibbo-Kobayashi-Maskawa angle matrix proposed recently by

Harrison et al., we introduce the Dirac angle matrix � and the Majorana angle matrix � in the lepton

sector for Dirac and Majorana neutrinos, respectively. We show that in the presence of CP violation, the

angle matrix� or� is entirely equivalent to the complex Maki-Nakagawa-Sakata matrix V itself, but has

the advantage of being real, phase rephasing invariant, directly associated to the leptonic unitarity

triangles and do not depend on any particular parametrization of V. In this paper, we further analyzed

how the angle matrices evolve with the energy scale. The one-loop renormalization group equations of�,

� and some other rephasing invariant parameters are derived and a numerical analysis is performed to

compare between the case of Dirac and Majorana neutrinos. Different neutrino mass spectra are taken into

account in our calculation. We find that apparently different from the case of Dirac neutrinos, for

Majorana neutrinos the renormalization group equation evolutions of�,� and J strongly depend on the

Majorana-type CP-violating parameters and are more sensitive to the sign of �m2
31. They may receive

significant radiative corrections in the minimal supersymmetric standard model with large tan� if three

neutrino masses are nearly degenerate.

DOI: 10.1103/PhysRevD.85.013006 PACS numbers: 14.60.Pq

I. INTRODUCTION

Since 1998, a number of successful neutrino oscillation
experiments have provided us with very convincing evi-
dence that neutrinos are massive and lepton flavors are
mixed [1]. The flavor mixing among three neutrinos can
be described by the Maki-Nakagawa-Sakata (MNS) matrix
V. Now three mixing angles in V and two squared neutrino
mass differences have been approximately determined. But
whether neutrinos are Dirac or Majorana particles remains
an open question. The Majorana nature of massive neutri-
nos can be revealed by the investigation of processes
in which the total lepton charge L changes by two units
�L ¼ 2. Neutrinoless double-beta (0���) decay experi-
ments are considered as the most promising method in this
catalog. If 0��� decay is eventually observed, we shall
make sure that neutrinos are Majorana particles. If there is
no experimental signal for the 0��� decay, however, we
shall be unable to conclude that neutrinos are just Dirac
particles [2].

CP violation in the lepton sector is another open ques-
tion. In the framework of three Dirac neutrinos, CP viola-
tion in the MNS matrix V can be described by a single
Dirac CP-violating phase which can be measured in the
neutrino oscillation experiments. If three neutrinos are
Majorana particles, two extra Majorana CP-violating
phases are introduced in V. It is well known that the
presence of Majorana phases introduces some novel fea-
tures in leptonicCP violation, like the possibility of having
CP violation in the case of two Majorana neutrinos [3] as

well as having CP breaking even in the limit of three
exactly degenerate neutrinos [4]. Besides, these extra
Majorana phases can affect significantly the rates of
0��� decay [5] and some lepton flavor violating decays
[6], play an important role in the renormalization group
(RG) evolutions of the neutrino masses and mixing matrix
V [7], and be the source of CP violation in the leptogenesis
[8]. Although the Majorana phases can not be directly
measured in neutrino oscillation experiments [9], the con-
strains on them can be drawn indirectly from the studies of
the above mentioned processes.
If the 3� 3 MNS matrix V is unitary, its nine elements

satisfy the following normalization and orthogonality con-
ditions: X

�

V�iV
�
�j ¼ �ij;

X
i

V�iV
�
�i ¼ ���; (1)

where the Greek and Latin subscripts run over (e,�, �) and
(1, 2, 3), respectively. The six orthogonality relations geo-
metrically define six leptonic unitarity triangles (UTs) in
the complex plane [10], as illustrated in Fig. 1. The six UTs
have 18 different sides and nine different inner angles, but
their areas are all identical to J =2 with J being the
Jarlskog invariant of CP violation [11] defined by

ImðV�iV�jV
�
�jV

�
�iÞ ¼ J

X
�

����
X
k

�ijk: (2)

The leptonic UTs provide us with a visible way of studying
the CP violation in the lepton sector. In the presence of CP
violation, all the physical parameters in V can be drawn
from these six UTs no matter if the neutrinos are Dirac or
Majorana particles [10,12].*luoshu@xmu.edu.cn
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Enlightened by the idea of the 3� 3 Cabibbo-
Kobayashi-Maskawa (CKM) angle matrix proposed re-
cently by Harrison et al. [13], we introduce the 3� 3
Dirac angle matrix � in the lepton sector for Dirac neu-
trinos. Moreover, we extrapolate this concept to account
for Majorana neutrinos and propose the Majorana angle
matrix�. In Sec. II, we introduce the concepts of� and�.
We show that in the presence of CP violation, the angle
matrix � (�) is entirely equivalent to the complex mixing
matrix V itself for Dirac (Majorana) neutrinos, but has the
advantage of being real, phase rephasing invariant, directly
associated to the leptonic UTs and do not depend on any
particular parametrization of the MNS matrix. In Sec. III,
we further analyze how the angle matrices and some other
rephasing invariant parameters evolve with the energy
scale. The one-loop renormalization group equations
(RGEs) of jVj, �, � and the Jarlskog J are derived.
Unlike the CKM angle matrix which is quite stable against
the RG evolution [14], the leptonic angle matrix � and �
may receive significant radiative corrections when evolve
from the electroweak scale �EW to a superhigh energy
scale. Section IV is devoted to a numerical analysis of
the RGE running behaviors of � and �, and to a careful
comparison between the case of Dirac and Majorana
neutrinos. Different neutrino mass spectra are taken into

account in our calculation. A brief summary of the main
results is given in Sec. V.

II. DIRAC ANGLE MATRIX VS MAJORANA
ANGLE MATRIX

In the mass eigenstate basis, the charged-current inter-
action of leptons is described by

LCC ¼ gffiffiffi
2

p ð l1 l2 l3 ÞL��V

�1

�2

�3

0
BB@

1
CCA

L

W�
� þ H:c:; (3)

and the CP violation is naturally included if the MNS
matrix V is complex. If the neutrinos are Dirac particles,
one has the freedom to make phase rotations on both the
charged lepton fields and the neutrino fields, which leads to
the redefinition

V ! ei�lVe�i�� ; (4)

where �l ¼ diagð	l1 ; 	l2 ; 	l3Þ and �� ¼ diagð	�1
; 	�2

;

	�3
Þ. Physical quantities are basis independent and must

be invariant under the rephasing of Eq. (4). The simplest
rephasing invariant quantities are the moduli of nine ele-
ments of V which are all real. Although they might
implicitly involve CP-violating phases, it is convenient to

FIG. 1. Schematic diagrams for six leptonic unitarity triangles in the complex plane, where each triangle is named by the index that
does not manifest in its three sides.
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look for imaginary parameters that explicitly require CP
violation. As been pointed by many references, the lowest-
order (in V) rephasing invariants that are not automatically
real are the quartic products (which are also called
‘‘boxes’’ in some references) [15]:

�ih�j � V�iV�jV
�
�jV

�
�i; (5)

where the Greek and Latin subscripts run over (e,�, �) and
(1, 2, 3), respectively. �ih�j are not automatically real if

� � � and i � j. In this paper, no summation on repeated
indices is implied. The imaginary parts of �ih�j

�i=�j � Im�ih�j � Im½V�iV�jV
�
�jV

�
�i�; (6)

are the measures of the CP violation in V. For three
fermion generations, there is only one such independent
complex quantity, all �i=�j equal to the Jarlskog invariant

J except a sign difference. Correspondingly we define the
real parts of �ih�j as

�i<�j � Re�ih�j � Re½V�iV�jV
�
�jV

�
�i�: (7)

Neutrino oscillation probabilities are linear in �i<�j and
�i=�j, enabling a straightforward description of oscillation

data.

Pð��!��Þ¼����4
X
j>i

�i<�jsin
2
�m2

jiL

4E

þ2
X
j>i

�i=�jsin
�m2

jiL

4E

¼����4
X
j>i

�i<�jsin
2
�m2

jiL

4E

þ8J
X
�

����sin
�m2

21L

4E
sin

�m2
31L

4E
sin

�m2
32L

4E
:

(8)

General analyses of neutrino oscillations among three
flavors can readily determine the boxes [16].

Enlightened by the idea of the 3� 3 CKM angle matrix
proposed by Harrison et al. [13], we can similarly
construct the 3� 3 MNS angle matrix � for Dirac
neutrinos

� ¼
�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA; (9)

by using the angles of nine box invariants

��i � � argð��jh�kÞ; (10)

where�,� and � run cocyclically over e,�, and �, while i,
j, and k run cocyclically over 1, 2, and 3.

We can easily find that the absolute value of ��i is just
the inner angle shared by the UTs�� and�i as one can see
in Fig. 1. Besides, the common sign of all nine angle matrix
elements is just the sign of the Jarlskog invariant J . If

J > 0, all the nine angles in � lie between 0 and 
; if
J < 0, all the nine angles lie between �
 and 0.1 Each
row or column of � corresponds to one UT, and the
unitarity of V now implies that elements of � satisfy the
normalization conditionsX

�

��i ¼
X
i

��i ¼ 
: (11)

We can draw from Eq. (11) that there are only four inde-
pendent real parameters in �, same as the number of the
independent real parameters in the unitary MNS matrix V.
We can further prove that in the presence of CP violation,
the angle matrix is fully equivalent to the MNS matrix. In
Appendix A, we show how to re-obtain the mixing matrix
V from the angle matrix�, the process is analogous to that
in the quark sector [13].
The latest global analysis of current neutrino oscillation

data yields 0:27< sin2�12 < 0:36, 0:39< sin2�23 < 0:64
and 0:001< sin2�13 < 0:035 (NH) or 0:001< sin2�13 <
0:039 (IH) at the 3� level [17], where ‘‘NH’’ and ‘‘IH’’
correspond to the normal and inverted neutrino mass hier-
archies, respectively. The CP-violating phases remain to-
tally unconstrained. Correspondingly, the allowed range of
the moduli of the elements of the MNS matrix jV�ij and
the elements of the Dirac angle matrix ��i can be
obtained:

jVj ¼

0:786� 0:854
0:784� 0:854

0:510� 0:600
0:510� 0:600

0:032� 0:187
0:032� 0:197

0:184� 0:562
0:177� 0:567

0:390� 0:728
0:385� 0:731

0:613� 0:800
0:612� 0:800

0:200� 0:570
0:193� 0:575

0:412� 0:742
0:407� 0:745

0:589� 0:781
0:588� 0:781

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(12)

�¼

�16:7��16:7�

�17:6��17:6�
�35:8��35:8�

�37:7��37:7�
131:2��228:8�

128:6��231:4�

�180��180� �180��180�
�30:0��30:0�

�31:6��31:6�

�180��180� �180��180�
�31:9��31:9�

�33:7��33:7�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(13)

1There is another immediate way to find out the sign of J . We
first define the sequence of the sides of the UTs: for triangles �e,
�� and ��, we follow the sequence of V�1V

�
�1 ! V�2V

�
�2 !

V�3V
�
�3, where �� ¼ ��, �e and e�, respectively; and for

triangles �1, �2 and �3, we follow the sequence of VeiV
�
ej !

V�iV
�
�j ! V�iV

�
�j, where ij ¼ 23, 31 and 12, respectively. Then

all the UTs can be sorted into two classes: clockwise triangles
and anticlockwise triangles. We can easily find that if J > 0, all
six UTs [as shown in Fig. 1] are clockwise triangles while a
negative J indicates that all six UTs are anticlockwise triangles.
This rule is true for both the Dirac and the Majorana neutrinos.
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where the upper (lower) row corresponds to normal
(inverted) neutrino mass hierarchy. The Jarlskog invariant
J can range between ½�0:0433; 0:0433� (NH) or
½�0:0455; 0:0455� (IH) at the 3� level.

The question is more pressing when we consider the
case of Majorana neutrinos. Because of the Majorana
nature of the neutrinos, the phases of three neutrino fields
in Eq. (3) can not be freely chosen. The phase rotations on
the charged lepton fields lead to the redefinition

V ! ei�lV; (14)

where �l ¼ diagð	l1 ; 	l2 ; 	l3Þ. Therefore, for Majorana

neutrinos, we have the new rephasing invariants [18]

S�ij � V�iV
�
�j; (15)

which are not quartic but quadric products of V�i and are
not obviously real if i � j.

In order to include the informations of Majorana-type
CP violation, we introduce the following 3� 3 Majorana
angle matrix:

� ¼
�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA; (16)

with its nine elements are the angles of S parameters in
Eq. (15)

��i � argS�jk ¼ argðV�jV
�
�kÞ; (17)

where i, j and k run cocyclically over 1, 2, and 3. We can
find that the three matrix elements in each row of � sum
to zero:

X
i

��i ¼ arg

�Y
i

jV�ij2
�
¼ 0: (18)

Above normalization conditions are satisfied independent
of if V is unitary. Then the number of independent real
parameters in � is six, equals to the number of free pa-
rameters in the Majorana neutrino mixing matrix. In the
case of Majorana neutrinos, we can also reconstruct the
leptonic mixing matrix V from the Majorana angle matrix
�, the detail processes can be found in Appendix A.

We can easily see from Eqs. (5) and (15) that there are
the constitutive relations

�ih�j ¼ S�ijS
�
�ij: (19)

Therefore we can easily construct the�matrix from the�
matrix:

��i ¼ ��i ���i þ 
; (20)

where �, � and � run cocyclically over e, �, and �. It
means we can also write out the Dirac angle matrix � for

Majorana neutrinos, but are unable to draw informations
about the Majorana phases from it.
From Eq. (19) we can find that even all �i=�j are zero

(i.e., J ¼ 0 and no Dirac-type CP violation in V), the
imaginary part of some S�ij can be nonzero and stands for

the CP violation in V. On the contrary, if S�ij are all real,

there is no CP violation in V and J also equals to zero. It
means that Dirac-type CP violation requires the existence
of the Majorana-type CP violation but obviously the con-
verse is not true [18].
Here we introduce another combination of S�ij

��ij � S�ijS�ij ¼ V�iV
�
�jV�iV

�
�j; (21)

in which informations of the Majorana-type CP violation
are also involved. For the sake of conciseness, we define
the following notations:

R ��ij � Re��ij and I��ij � Im��ij: (22)

The parameters ��i, S�ij, and ��ij can show up in a

variety of lepton number violating processes, including
0��� decay and possibly leptogenesis et al.. For example,
the effective neutrino mass hmiee in 0��� decay can be
expressed as

hmiee ¼
��������
X
i

V2
eimi

��������
¼ jjVe1j2e�2i�e2m1 þ jVe2j2e�2i�e1m2 þ jVe3j2m3j:

(23)

Another point worth mentioning is that the nine ele-
ments of� are physically related to the orientations of the
nine sides of UTs �1, �2, and �3 in the complex plane
[see Fig. 1]. Therefore, the orientations of these three UTs
have physical meanings if neutrinos are Majorana parti-
cles [12]. On the other side, if the neutrinos are Dirac
particles, the orientations of the UTs have no physical
meaning, reflecting the fact that Dirac UTs rotate under
rephasing of the charged lepton fields or the neutrino
fields.
Before our analysis of the radiative corrections to the

angle matrix � and �, we show here that the conceptions
of the Dirac and the Majorana angle matrices can be
extrapolated to account for any generation of neutrinos.

There is no a unique way to choose the elements of �ðNÞ

and �ðNÞ for N (N > 3) generation neutrinos, we give one
possible choice here. Here (e,�, �, s4; s5; . . . ; sN) stand for
the flavor indices and (1; 2; 3; 4; 5; . . . ; N) for the mass
indices.
For N generation of Dirac neutrinos, we define the N �

N Dirac angle matrix
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�ðNÞ ¼

�e1 �e2 �e3 � � � �eN

��1 ��2 ��3 � � � ��N

��1 ��2 ��3 � � � ��N

..

. ..
. ..

. . .
. ..

.

�sN1 �sN2 �sN3 � � � �sNN

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

� argð��2h�3Þ � argð��3h�4Þ � argð��4h�5Þ � � � � argð��1h�2Þ
� argð��2hs43

Þ � argð��3hs44
Þ � argð��4hs45

Þ � � � � argð��1hs42
Þ

� argð�s42hs53
Þ � argð�s43hs54

Þ � argð�s44hs55
Þ � � � � argð�s41hs52

Þ
..
. ..

. ..
. . .

. ..
.

� argð�e2h�3Þ � argð�e3h�4Þ � argð�e4h�5Þ � � � � argð�e1h�2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (24)

and its elements �ðNÞ
�i satisfy the normalization conditionsX

�

�ðNÞ
�i ¼ X

i

�ðNÞ
�i ¼ ðN � 2Þ
; (25)

where � stands for the flavor index and i for the mass index. Then there are altogether 1
2 ðN � 1ÞðN � 2Þ independent

parameters in�ðNÞ which is equivalent to the number of the independent real parameters in aN � N unitary mixing matrix.
For N generation of Majorana neutrinos, the N � N Majorana angle matrix can be defined as

�ðNÞ ¼

�e1 �e2 �e3 � � � �eN

��1 ��2 ��3 � � � ��N

��1 ��2 ��3 � � � ��N

..

. ..
. ..

. . .
. ..

.

�sN1 �sN2 �sN3 � � � �sNN

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

argðVe2V
�
e3Þ argðVe3V

�
e4Þ argðVe4V

�
e5Þ � � � argðVe1V

�
e2Þ

argðV�2V
�
�3Þ argðV�3V

�
�4Þ argðV�4V

�
�5Þ � � � argðV�1V

�
�2Þ

argðV�2V
�
�3Þ argðV�3V

�
�4Þ argðV�4V

�
�5Þ � � � argðV�1V

�
�2Þ

..

. ..
. ..

. . .
. ..

.

argðVsN2V
�
sN3

Þ argðVsN3V
�
sN4

Þ argðVsN4V
�
sN5

Þ � � � argðVsN1V
�
sN2

Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (26)

and the N matrix elements in each row of �ðNÞ satisfy the
normalization conditions

X
i

��i ¼ arg

�Y
i

jV�ij2
�
¼ 0; (27)

where � stands for the flavor index and i for the mass
index. There are totally 1

2NðN � 1Þ independent real pa-
rameters in �ðNÞ. Again, this number is equivalent to that
of the N � N Majorana neutrino mixing matrix. In case of
N generation Majorana neutrinos, we can also construct
the � matrix from the � matrix:

��i ¼ ��i ���i þ 
; (28)

where � and � are the next two flavor indices right after �.

III. ONE-LOOP RENORMALIZATION
GROUP EQUATIONS

The RGEs of neutrino masses and mixing have been
discussed in many papers with variety of parametrizations
[7,19–22]. It has been shown that three neutrino masses and
the mixing matrix may receive large radiative corrections,
especially if neutrino masses are nearly degenerate or in
case of the minimal supersymmetric standard model
(MSSM)with large tan�. Studies also show that the running
behaviors can be quite different for Dirac or Majorana
neutrinos [7], and the additional Majorana phases may
have intrinsic behaviors in the evolution [20]. In this sec-
tion, we proceed to consider the one-loop RGEs of jV�ij2,
�,� and J for both the Dirac and the Majorana neutrinos.
Note that all these parameters are rephasing invariant and
independent of any particular parametrization of the MNS
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matrix V. Distinguishable RGE running effects between
Dirac neutrinos and Majorana neutrinos are discussed in
detail.

A. Dirac neutrinos

If neutrinos are Dirac particles, their Yukawa coupling
matrix Y� must be extremely suppressed in magnitude to
reproduce the light neutrino masses of Oð1Þ eV or smaller
at low energy scales. The running of Y� from the electro-
weak energy scale �EW to a superhigh energy scale � is
governed by the one-loop RGE [21]

16
2 d!

dt
¼ 2�D!þ C½ðYlY

y
l Þ!þ!ðYlY

y
l Þ�; (29)

where! � Y�Y
y
� is a Hermitian quantity, t � lnð�=�Þwith

� being an arbitrary renormalization scale between�EW and
�, Yl is the charged-lepton Yukawa coupling matrix, C ¼
�1:5 (SM) or C ¼ 1 (MSSM) and �D 	 �0:45g21 �
2:25g22 þ 3y2t (SM) or �D	�0:6g21�3g22þ3y2t (MSSM).

Here g1 and g2 are the gauge couplings, yt stands for the top-
quark Yukawa coupling. In writing out Eq. (29), we have
safely neglected those tiny terms ofOð!2Þ.
Without loss of generality, we choose the flavor basis

where Yl is diagonal and real (positive): Yl ¼
diagfye; y�; y�g. In this basis ! can be diagonalized by

the unitary transformation Vy!V ¼ !̂ � diagfy21; y22; y23g,
where V is just the MNS matrix and at �EW the Dirac
neutrino masses are mi ¼ vyi (SM) or mi ¼ vyi sin�
(MSSM) with v 	 174 GeV. One may use Eq. (29) to
derive the explicit RGEs of neutrino masses and the
MNS matrix V. By taking some lengthy but not compli-
cated calculations we can further derive the RGEs of those
rephasing invariant parameters with the help of Eqs. (2),
(5), and (10). Here we simply give the resulting one-loop
RGEs of jV�ij2, � and J . During the derivation, we have
taken the approximation of �-lepton dominance. In other
words, the contributions of y2e and y

2
� to all of the RGEs are

negligibly small and are safely neglected.

16
2 d

dt

jVe1j2 jVe2j2 jVe3j2
jV�1j2 jV�2j2 jV�3j2
jV�1j2 jV�2j2 jV�3j2

0
BB@

1
CCA ¼ 2Cy2�

8>>><
>>>:
m2

2 þm2
1

�m2
21

�e1<�2
e1<�2 0

��1<�2
�1<�2 0

��1<�2
�1<�2 0

0
BB@

1
CCAþm2

3 þm2
1

�m2
31

�e1<�3 0 e1<�3

��1<�3 0 �1<�3

��1<�3 0 �1<�3

0
BB@

1
CCA

þm2
3 þm2

2

�m2
32

0 �e2<�3
e2<�3

0 ��2<�3
�2<�3

0 ��2<�3
�2<�3

0
BB@

1
CCA
9>>>=
>>>;; (30)

16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA ¼ Cy2�J

8>>><
>>>:
m2

2 þm2
1

�m2
21

�jV�2j�2 jV�1j�2 jV�2j�2 � jV�1j�2

�jVe2j�2 jVe1j�2 jVe2j�2 � jVe1j�2

1�jV�2j2
jVe2j2jV�2j2

jV�1j2�1
jVe1j2jV�1j2

1�jV�1j2
jVe1j2jV�1j2 þ

jV�2j2�1
jVe2j2jV�2j2

0
BBB@

1
CCCA

þm2
3 þm2

1

�m2
31

�jV�3j�2 jV�3j�2 � jV�1j�2 jV�1j�2

�jVe3j�2 jVe3j�2 � jVe1j�2 jVe1j�2

1�jV�3j2
jVe3j2jV�3j2

1�jV�1j2
jVe1j2jV�1j2 þ

jV�3j2�1
jVe3j2jV�3j2

jV�1j2�1
jVe1j2jV�1j2

0
BBB@

1
CCCA

þm2
3 þm2

2

�m2
32

jV�3j�2 � jV�2j�2 �jV�3j�2 jV�2j�2

jVe3j�2 � jVe2j�2 �jVe3j�2 jVe2j�2

1�jV�2j2
jVe2j2jV�2j2 þ

jV�3j2�1
jVe3j2jV�3j2

1�jV�3j2
jVe3j2jV�3j2

jV�2j2�1
jVe2j2jV�2j2

0
BBB@

1
CCCA
9>>>=
>>>;; (31)

16
2 d

dt
J ¼ Cy2�J

�
m2

2 þm2
1

�m2
21

ðjV�1j2 � jV�2j2Þ þm2
3 þm2

1

�m2
31

ðjV�1j2 � jV�3j2Þ þm2
3 þm2

2

�m2
32

ðjV�2j2 � jV�3j2Þ
�
: (32)

Since we have �m2
21 
 �m2

31 	 �m2
32, we can infer

from Eq. (30) that in the standard parametrization �12 ¼
arctanðjVe2j=jVe1jÞ is in general more sensitive to the ra-
diative correction than the other two mixing angles �13 ¼
arcsinðjVe3jÞ and �23 ¼ arctanðjV�3j=jV�3jÞ. This result is
also true if the neutrinos are Majorana particles which can

be easily seen from Eq. (41) and is consist with the analy-
ses in many previous papers [19,21,22].
Since the absolutemass scale of threeneutrinos and the sign

of �m2
31 remain unknown, we further consider three typical

patterns of the neutrino mass spectrum: normal hierarchy
(NH), inverted hierarchy (IH), and near degeneracy (ND).
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(1) Normal hierarchy m3 � m2 � m1 ’ 0, m2 	ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
and m3 	

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q
.

In this neutrino masses limit the one-loop RGEs of
� and J can be approximately expressed as

16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA

	2Cy2�J

8>>><
>>>:

1

jVe2j2jV�2j2
�jVe2j2 0 jVe2j2
�jV�2j2 0 jV�2j2
1�jV�2j2 0 jV�1j2�1

0
BB@

1
CCA

þ�m2
21

�m2
31

1

jVe3j2
0 0 0

1 �1 0

�1 1 0

0
BB@

1
CCA
9>>>=
>>>;; (33)

16
2 d

dt
J 	 2Cy2�J ðjV�1j2 � jV�3j2Þ; (34)

where in the next leading order terms lead by
�m2

21=�m
2
31, we preserve only those terms inversely

proportional to jVe3j. Taking into account of the

smallness of jVe3j, the contribution of these terms
may be comparable with the leading order terms.
Some discussions are in order.

(a) The angle �e2 is most insensitive to the radiative
correction in the leading order if neutrino masses are
of normal hierarchy.

(b) In case of the MSSM with large tan�, �m2
21=�m

2
31

increases significantly with the increase of energy
scale [21], therefore ��1, ��2, ��1 and ��2 are

probably having significant evolutions, especially
when jVe3j takes a small value. While in the SM, all
nine angles receive only small radiative corrections.

(c) The one-loop RGE of J is proportional to J itself,
therefore its evolutions are apparently opposite for
positive and negative J .

(d) Consider the evolution of J from �EW to a super-
high energy scale. We can find from Eq. (12) that
jV�1j2 � jV�3j2 is negative at �EW. In the SM, C<
0, we can expect that jJ j only slightly increases
during the evolution. In the MSSM, C> 0,
and we can find from Eq. (30) that jV�j2 increases
with the evolution while jV�j2 decreases. Therefore
jV�1j2 � jV�3j2 keeps negative which indicates that
jJ j will go approaching zero during the evolution.

(2) Inverted hierarchy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m2

31

q
	m2	m1�m3	0.

In this neutrino masses limit the one-loop RGEs of
� and J can be approximately expressed as

16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA 	 �Cy2�J

8>>>><
>>>>:
2�m2

31

�m2
21

�jV�2j�2 jV�1j�2 jV�2j�2 � jV�1j�2

�jVe2j�2 jVe1j�2 jVe2j�2 � jVe1j�2

1�jV�2j2
jVe2j2jV�2j2

jV�1j2�1
jVe1j2jV�1j2

1�jV�1j2
jVe1j2jV�1j2 þ

jV�2j2�1
jVe2j2jV�2j2

0
BBB@

1
CCCA

þ
�jV�2j�2 �jV�1j�2 1�jV�3j2

jV�1j2jV�2j2

�jVe2j�2 �jVe1j�2 1�jVe3j2
jVe1j2jVe2j2

1�jV�2j2
jVe2j2jV�2j2

1�jV�1j2
jVe1j2jV�1j2 �jVe1j�2 � jVe2j�2 � jV�1j�2 � jV�2j�2

0
BBBBB@

1
CCCCCA

9>>>>=
>>>>;
; (35)

16
2 d

dt
J 	 �Cy2�J ½2�m

2
31

�m2
21

ðjV�1j2 � jV�2j2Þ þ ð1� 3jV�3j2Þ�: (36)

Note that, in the case of IH, �m2
31 is negative.

(3) Near degeneracy m3 	 m2 	 m1 and �m2
32 	 �m2

31.

If three neutrino masses are nearly degenerate, the one-loop RGEs of � and J can be approximately expressed
as
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16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA	2Cy2�J

8>>><
>>>:

m2
1

�m2
21

�jV�2j�2 jV�1j�2 jV�2j�2�jV�1j�2

�jVe2j�2 jVe1j�2 jVe2j�2�jVe1j�2

1�jV�2j2
jVe2j2jV�2j2

jV�1j2�1
jVe1j2jV�1j2

1�jV�1j2
jVe1j2jV�1j2þ

jV�2j2�1
jVe2j2jV�2j2

0
BBB@

1
CCCA

þ m2
1

�m2
31

�jV�2j�2 �jV�1j�2 1�jV�3j2
jV�1j2jV�2j2

�jVe2j�2 �jVe1j�2 1�jVe3j2
jVe1j2jVe2j2

1�jV�2j2
jVe2j2jV�2j2

1�jV�1j2
jVe1j2jV�1j2 �jVe1j�2�jVe2j�2�jV�1j�2�jV�2j�2

0
BBBBB@

1
CCCCCA

9>>>=
>>>;; (37)

16
2 d

dt
J 	 2Cy2�J

�
m2

1

�m2
21

ðjV�1j2 � jV�2j2Þ

þ m2
1

�m2
31

ð1� 3jV�3j2Þ
�
: (38)

We can easily find that the RGEs of ��i and J in the
cases of IH and ND are alike if neutrinos are Dirac parti-
cles. Equations (35) and (36) can be obtained from
Eqs. (37) and (38) by simply choosing m2

1 ¼ ��m2
31. We

can expect from the above Eqs. (35)–(38) that all nine
angles ��i and the Jarlskog J may have large evolutions,
especially in the MSSM with large tan� if the neutrino
mass spectrum is ND or IH.

B. Majorana neutrinos

Majorana neutrino masses are believed to be attributed
to some physics at a superhigh energy scale �, e.g., the
seesaw mechanisms. But all these new physics point to the
unique dimension-five Weinberg operator in an effective
theory after the corresponding heavy particles are inte-
grated out [23]

L¼ 1
2
�lLH �� �HTlcLþH:c:; ðSMÞ

or L¼ 1
2
�lLH2 �� �HT

2 l
c
LþH:c:; ðMSSMÞ (39)

which lead to the effective Majorana neutrino mass matrix
M� ¼ �v2 (SM) or M� ¼ �v2sin2� (MSSM), with tan�
denotes the ratio of the vacuum expectation values of two
MSSM Higgs doublets. Here � is a cut off energy scale
stands for the energy scale of new physics. The evolution
of � from� down to the electroweak scale�EW is formally
independent of any details of the relevant model from
which � is derived. Below � the energy dependent of the
effective neutrino coupling matrix � is described by

16
2 d�

dt
¼ �M�þ C½ðYlY

y
l Þ�þ �ðYlY

y
l ÞT�; (40)

at the one-loop level [22], where �M 	 �3g22 þ 6y2t þ �
(SM) or �M 	 �1:2g21 � 6g22 þ 6y2t (MSSM) with � de-
notes the Higgs self-coupling in the SM.
Similarly, one may use Eq. (40) to derive the explicit

RGEs for neutrino masses and MNS matrix in the flavor
basis where Yl is diagonal and real. In this basis, we have
� ¼ V�̂VT with �̂ ¼ diagf�1; �2; �3g where V is just the
MNS matrix and at �EW Majorana neutrino masses are
mi ¼ v2�i (SM) or mi ¼ v2�isin

2� (MSSM). Then we
can further calculate the RGEs of jV�ij2,� (�) and J . We
give only the concise results here, where again the excel-
lent approximation of � dominance are taken.

16
2 d

dt

jVe1j2 jVe2j2 jVe3j2
jV�1j2 jV�2j2 jV�3j2
jV�1j2 jV�2j2 jV�3j2

0
BB@

1
CCA ¼ 2Cy2�

8>>><
>>>:
m2

2 þm2
1

�m2
21

�e1<�2
e1<�2 0

��1<�2
�1<�2 0

��1<�2
�1<�2 0

0
BB@

1
CCAþ 2m2m1

�m2
21

�Re�12 Re�12 0

�R��12 R��12 0

�R��12 R��12 0

0
BB@

1
CCA

þm2
3 þm2

1

�m2
31

�e1<�3 0 e1<�3

��1<�3 0 �1<�3

��1<�3 0 �1<�3

0
BB@

1
CCAþ 2m3m1

�m2
31

�Re�13 0 Re�13

�R��13 0 R��13

�R��13 0 R��13

0
BB@

1
CCA

þm2
3 þm2

2

�m2
32

0 �e2<�3
e2<�3

0 ��2<�3
�2<�3

0 ��2<�3
�2<�3

0
BB@

1
CCAþ 2m3m2

�m2
32

0 �Re�23 Re�23

0 �R��23 R��23

0 �R��23 R��23

0
BB@

1
CCA
9>>>=
>>>;; (41)
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16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA ¼ Cy2�

8>>><
>>>:
m2

2 þm2
1

�m2
21

J

�jVe2j�2 jVe1j�2 jVe2j�2 � jVe1j�2

jV�2j�2 �jV�1j�2 jV�1j�2 � jV�2j�2

0 0 0

0
BB@

1
CCA

þm2
3 þm2

1

�m2
31

J

�jVe3j�2 jVe3j�2 � jVe1j�2 jVe1j�2

jV�3j�2 jV�1j�2 � jV�3j�2 �jV�1j�2

0 0 0

0
BB@

1
CCA

þm2
3 þm2

2

�m2
32

J

jVe3j�2 � jVe2j�2 �jVe3j�2 jVe2j�2

jV�2j�2 � jV�3j�2 jV�3j�2 �jV�2j�2

0 0 0

0
BB@

1
CCA

þ 2m2m1

�m2
21

Ie�12jVe2j�2 �Ie�12jVe1j�2 Ie�12ðjVe1j�2 � jVe2j�2Þ
I��12jV�2j�2 �I��12jV�1j�2 I��12ðjV�1j�2 � jV�2j�2Þ
I��12jV�2j�2 �I��12jV�1j�2 I��12ðjV�1j�2 � jV�2j�2Þ

0
BB@

1
CCA

� 2m3m1

�m2
31

Ie�13jVe3j�2 Ie�13ðjVe1j�2 � jVe3j�2Þ �Ie�13jVe1j�2

I��13jV�3j�2 I��13ðjV�1j�2 � jV�3j�2Þ �I��13jV�1j�2

I��13jV�3j�2 I��13ðjV�1j�2 � jV�3j�2Þ �I��13jV�1j�2

0
BB@

1
CCA

þ 2m3m2

�m2
32

Ie�23ðjVe2j�2 � jVe3j�2Þ Ie�23jVe3j�2 �Ie�23jVe2j�2

I��23ðjV�2j�2 � jV�3j�2Þ I��23jV�3j�2 �I��23jV�2j�2

I��23ðjV�2j�2 � jV�3j�2Þ I��23jV�3j�2 �I��23jV�2j�2

0
BB@

1
CCA
9>>>=
>>>;; (42)

16
2 d

dt
J ¼ Cy2�

�
m2

2 þm2
1

�m2
21

J ðjV�1j2 � jV�2j2Þ

þm2
3 þm2

1

�m2
31

J ðjV�1j2 � jV�3j2Þ þm2
3 þm2

2

�m2
32

J ðjV�2j2 � jV�3j2Þ

þ 2m2m1

�m2
21

½I��12ðjV�2j2 � jV�1j2Þ � I��12ðjV�2j2 � jV�1j2Þ�

� 2m3m1

�m2
31

½I��13ðjV�3j2 � jV�1j2Þ � I��13ðjV�3j2 � jV�1j2Þ�

þ 2m3m2

�m2
32

½I��23ðjV�3j2 � jV�2j2Þ � I��23ðjV�3j2 � jV�2j2Þ�
�
: (43)

From Eq. (20), we have

16
2 d

dt
��i ¼ 16
2

�
d

dt
��i � d

dt
��i

�
; (44)

where � and � are the next two flavor indices right after �.
By using this equation, the one-loop RGE of � matrix for
the Majorana neutrinos can then be easily obtained from
Eq. (42).

We can clearly see that the parameters R��ij and I��ij
which are associated with the Majorana phases in V and
not related to the one-loop RGEs for Dirac neutrinos are
involved in the RGEs for Majorana neutrinos. These terms
could dominate over others and determine the running
behaviors of jV�ij, ��i and J if the Majorana phases are
properly chosen. It is well known that for Dirac neutrinos,

if J is zero at some scale, it will keep vanished at any
energy scale. However, we can see from Eqs. (42) and (43),
for Majorana neutrinos, even if J ¼ 0 (no Dirac-type CP
violation) at some energy scale,��i andJ can still receive
significant radiative corrections only if not all the ��i are
zero (i.e., Majorana-type CP violation exists).
Here we give the approximate RGEs of ��i and J

in three limits of neutrino mass hierarchy: NH, IH,
and ND.

(1) Normal hierarchy m3 � m2 � m1 ’ 0, m2 	ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

q
and m3 	

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

31

q
.

In this neutrino masses limit the one-loop RGEs of
� and J can be approximately expressed as
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16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA 	 2Cy2�

8>>><
>>>:J

�jVe2j�2 0 jVe2j�2

jV�2j�2 0 �jV�2j�2

0 0 0

0
BB@

1
CCAþ �m2

21

�m2
31

J

jVe3j�2 �jVe3j�2 0

0 0 0

0 0 0

0
BB@

1
CCA

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

�m2
31

s Ie�23ðjVe2j�2 � jVe3j�2Þ Ie�23jVe3j�2 �Ie�23jVe2j�2

I��23ðjV�2j�2 � jV�3j�2Þ I��23jV�3j�2 �I��23jV�2j�2

I��23ðjV�2j�2 � jV�3j�2Þ I��23jV�3j�2 �I��23jV�2j�2

0
BB@

1
CCA
9>>>=
>>>;; (45)

16
2 d

dt
J 	 2Cy2�J ðjV�1j2 � jV�3j2Þ þ 2Cy2�

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

�m2
31

s
½I��23ðjV�3j2 � jV�2j2Þ � I��23ðjV�3j2 � jV�2j2Þ�: (46)

Again, for terms lead by �m2
21=�m

2
31, we reserve only those terms inversely proportional to jVe3j. By using Eq. (44), the

one-loop RGEs of ��i in the limit of NH can be easily derived from Eq. (45):

16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA 	 2Cy2�

8>>><
>>>:

J
jVe2j2jV�2j2

�jVe2j2 0 jVe2j2
�jV�2j2 0 jV�2j2
1� jV�2j2 0 jV�2j2 � 1

0
BB@

1
CCA

þ�m2
21

�m2
31

J
jVe3j2

0 0 0

1 �1 0

�1 1 0

0
BB@

1
CCAþ

ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21

�m2
31

s
Ie�23
jVe3j2

� � �
�1 1 �
1 �1 �

0
BB@

1
CCA
9>>>=
>>>;: (47)

Here the symbol � stands for terms that are not inversely proportional to jVe3j, which lead only mild corrections to the
angle matrix in the case of NH. Comparing Eqs. (47) and (46) with Eqs. (33) and (34), we can find that the terms lead byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

21=�m
2
31

q
may lead to very different running behaviors of Majorana neutrinos compared to the Dirac neutrinos. For

some specific pattern of V, terms with I��ij can be dominating and even change the evolution directions of ��i and J .

(2) Inverted hierarchy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m2

31

q
	 m2 	 m1 � m3 	 0.

In this neutrino masses limit the one-loop RGEs of � and J can be approximately expressed as

16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA 	 �Cy2�

8>>><
>>>:
4�m2

31

�m2
21

ReS�12

ImSe12
jVe2j2 � ImSe12

jVe1j2 ImSe12
jVe2j2�jVe1j2
jVe1j2jVe2j2

ImS�12

jV�2j2 � ImS�12

jV�1j2 ImS�12
jV�2j2�jV�1j2
jV�1j2jV�2j2

ImS�12
jV�2j2 � ImS�12

jV�1j2 ImS�12
jV�2j2�jV�1j2
jV�1j2jV�2j2

0
BBBBB@

1
CCCCCA

þ
�jVe2j�2 jVe1j�2 jVe2j�2 � jVe1j�2

jV�2j�2 �jV�1j�2 jV�1j�2 � jV�2j�2

0 0 0

0
BB@

1
CCA
9>>>=
>>>;; (48)

16
2 d

dt
J ¼ Cy2�

�
4�m2

31

�m2
21

ReS�12½ImS�12ðjV�2j2 � jV�1j2Þ � ImS�12ðjV�2j2 � jV�1j2Þ� þ J ð3jV�3j2 � 1Þ
�
: (49)

Note that, in the case of IH, �m2
31 is negative.

(3) Near degeneracy m3 	 m2 	 m1 and �m2
32 	 �m2

31.

If three neutrino masses are nearly degenerate the one-loop RGEs of � and J can be approximately expressed as
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16
2 d

dt

�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA

	4Cy2�

8>>>><
>>>>:

m2
1

�m2
21

ReS�12

ImSe12
jVe2j2 �ImSe12

jVe1j2 ImSe12
jVe2j2�jVe1j2
jVe1j2jVe2j2

ImS�12

jV�2j2 �ImS�12

jV�1j2 ImS�12
jV�2j2�jV�1j2
jV�1j2jV�2j2

ImS�12
jV�2j2 �ImS�12

jV�1j2 ImS�12
jV�2j2�jV�1j2
jV�1j2jV�2j2

0
BBBBB@

1
CCCCCA

þ m2
1

�m2
31

2
666664�ReS�13

ImSe13
jVe3j2 ImSe13

jVe3j2�jVe1j2
jVe1j2jVe3j2 �ImSe13

jVe1j2
ImS�13

jV�3j2 ImS�13
jV�3j2�jV�1j2
jV�1j2jV�3j2 �ImS�13

jV�1j2
ImS�13
jV�3j2 ImS�13

jV�3j2�jV�1j2
jV�1j2jV�3j2 �ImS�13

jV�1j2

0
BBBBB@

1
CCCCCA

þReS�23

ImSe23
jVe3j2�jVe2j2
jVe2j2jVe3j2

ImSe23
jVe3j2 �ImSe23

jVe2j2

ImS�23
jV�3j2�jV�2j2
jV�2j2jV�3j2

ImS�23

jV�3j2 �ImS�23

jV�2j2

ImS�23
jV�3j2�jV�2j2
jV�2j2jV�3j2

ImS�23
jV�3j2 �ImS�23

jV�2j2

0
BBBBB@

1
CCCCCA

3
777775

9>>>>=
>>>>;
;

(50)

16
2 d

dt
J ¼ 4Cy2�

�
m2

1

�m2
21

ReS�12½ImS�12ðjV�2j2 � jV�1j2Þ

� ImS�12ðjV�2j2 � jV�1j2Þ�

� m2
1

�m2
31

ReS�13½ImS�13ðjV�3j2 � jV�1j2Þ

� ImS�13ðjV�3j2 � jV�1j2Þ�

þ m2
1

�m2
31

ReS�23½ImS�23ðjV�3j2 � jV�2j2Þ

� ImS�23ðjV�3j2 � jV�2j2Þ�
�
: (51)

Equations (45)–(51) indicate that the RGE running be-
haviors of �, � and J for Majorana neutrinos are very
different to that for Dirac neutrinos [see Eqs. (33)–(38)].
We can find that three neutrino masses are nearly degen-
erate, the running behaviors of �, � and J depend on the
interplay of several terms [see Eqs. (37), (38), (50), and
(51)] and are very sensitive to the sign of �m2

31 no matter

whether the neutrinos are Dirac or Majorana particles.

IV. NUMERICAL ANALYSIS AND DISCUSSION

The running behaviors of the above mentioned rephas-
ing invariant quantities are numerically illustrated by as-
suming �� 1014 GeV, which is the typical scale of the
conventional seesaw mechanisms and is very close to the
scale of the grand unified theories. We chose several sets of
typical values of the angle matrix elements in Eq. (9) and
(19) which are allowed by current 3� experimental data at
�EW and calculated the RGE running effects of the Dirac

(Majorana) angle matrix � (�) and the Jarlskog invariant
J from �EW up to �. For each set of inputs, we consider
four typical patterns of neutrino mass spectrum: (i) NH
(m1 ’ 0), (ii) IH (m3 ’ 0), (iii) ND with �m2

31 > 0 and

(iv) ND with �m2
31 < 0. In our numerical calculation,

�m2
21 ¼ 7:59� 10�5 eV2 and �m2

31¼�2:4�10�3 eV2

have been taken as the typical inputs at �EW and in case
(iii) and (iv) we have chosen m1 ¼ 0:2 eV. We carry out
our numerical calculation in the framework of either the
SM or the MSSM, where the Higgs mass mH ¼ 140 GeV
in the SM and the parameter tan� ¼ 10 or 50 in the MSSM
have typically been input. Our numerical results and the
corresponding inputs are summarized in Tables I, II, III,
and IV and Figs. 2–5.
In Tables I, II, and III, for the same set of inputs, we

calculated the radiative corrections to J , � and � at � in
the SM (Table I), the MSSMwith tan� ¼ 10 (Table II) and
the MSSM with tan� ¼ 50 (Table III), respectively. If the
neutrino mass spectrum is NH or IH, angles of � and �
can receive non-negligible radiative corrections (larger
than 1�) only in the case of MSSM with tan� ¼ 50. If
three neutrino masses are nearly degenerate, all the angles
of � and � can receive significant radiative corrections
especially in the MSSM and we can find that their running
behaviors are very sensitive to the sign of �m2

31 for either

Majorana or Dirac neutrinos.
The running behaviors of the Jarlskog invariant J in the

SMand theMSSMwith tan� ¼ 10 are shown in Figs. 2 and
3, respectively for both the Dirac and Majorana neutrinos.
The Jarlskog J can receive significant radiative correction
if three neutrino masses are nearly degenerate. As already
mentioned in Sec. III, if neutrinos are Majorana particles,
the running ofJ is very sensitive to the sign of�m2

31 in case

of ND. For this specific set of inputs (with negative J ), we
can see that if �m2

31 < 0, J will decrease when running

from�EW to�. If�m2
31 > 0,J will increase and in case of

MSSM with tan� ¼ 50, J can even run above zero and
evolve to a positive value [see case (a) in Fig. 5].
In the framework of MSSM with tan� ¼ 50, we con-

sider another two sets of inputs with J > 0 and J ¼ 0
respectively. The corresponding results are shown in
Tables IV and V. Figures 4 and 5 illustrate the evolution
of J in these three special cases: (a) J < 0 (Table III),
(b) J > 0 (Table IV) and (c) J ¼ 0 (Table V) for Dirac
and Majorana neutrinos, respectively. Note that the input
values of J and ��i at �EW in Table IV have the same
absolute values but opposite signs as that in Table III. If
neutrinos are Dirac particles, the RGE running behaviors
of J and ��i in these two cases are entirely opposite. We
can find that at�� 1014 GeV,J and��i in Tables III and
IV still have the same absolute values but opposite signs.
For Dirac neutrinos, jJ j is always decreasing and ap-
proaching zero in the MSSM when running from �EW to
�. It means that when evolving from�EW to�, positive J
decreases while negative J increases on the contrary, but
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TABLE II. Radiative corrections to the Jarlskog J , the Dirac angle matrix � and the Majorana angle matrix � at �� 1014 GeV in
the MSSM (with tan� ¼ 10) where we choose �12 ¼ 34�, �23 ¼ 46�, �13 ¼ 7�, � ¼ �90�, � ¼ 120� and � ¼ 60� (in the standard
parametrization of V) as typical inputs at the electroweak energy scale �EW.

�EW �� 1014 GeV
Majorana neutrinos Dirac neutrinos

NH IH Near degeneracy NH IH Near degeneracy

m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0 m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0

J �0:027 812 �0:027 761 �0:027 682 �0:020 323 �0:030 539 �0:027 786 �0:027 290 �0:018 018 �0:017 959
�e1 �9:40� �9:38� �9:28� �6:32� �9:68� �9:39� �8:96� �4:71� �4:69�
�e2 �20:50� �20:48� �20:78� �18:15� �27:29� �20:49� �21:52� �36:61� �40:05�
�e3 �150:10� �150:14� �149:94� �155:53� �143:03� �150:12� �149:52� �138:68� �135:26�
��1 �85:46� �85:43� �86:86� �101:86� �100:05� �85:46� �84:96� �75:83� �75:70�
��2 �80:10� �80:13� �78:68� �66:29� �63:37� �80:09� �80:32� �82:00� �82:28�
��3 �14:44� �14:44� �14:46� �11:85� �16:58� �14:45� �14:72� �22:17� �22:02�
��1 �85:14� �85:19� �83:86� �71:82� �70:27� �85:15� �86:08� �99:46� �99:61�
��2 �79:40� �79:39� �80:54� �95:56� �89:34� �79:42� �78:16� �61:39� �57:67�
��3 �15:46� �15:42� �15:60� �12:62� �20:39� �15:43� �15:76� �19:15� �22:72�
�e1 �30� �29:97� �30:93� �40:62� �40:72�
�e2 �30� �30:01� �29:59� �25:87� �25:56�
�e3 60� 59.98� 60.52� 66.49� 66.28�
��1 64.86� 64.84� 65.21� 67.56� 69.01�
��2 70.60� 70.60� 69.87� 58.57� 65.10�
��3 �135:46� �135:44� �135:08� �126:13� �134:11�
��1 �124:54� �124:54� �124:07� �118:76� �120:67�
��2 �129:90� �129:88� �130:91� �139:58� �142:19�
��3 �105:56� �105:58� �105:02� �101:66� �97:14�

TABLE I. Radiative corrections to the Jarlskog J , the Dirac angle matrix � and the Majorana angle matrix � at �� 1014 GeV in
the SM (withmH ¼ 140 GeV) where we choose �12 ¼ 34�, �23 ¼ 46�, �13 ¼ 7�, � ¼ �90�, � ¼ 120� and � ¼ 60� (in the standard
parametrization of V) as typical inputs at the electroweak energy scale �EW.

�EW �� 1014 GeV
Majorana neutrinos Dirac neutrinos

NH IH Near degeneracy NH IH Near degeneracy

m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0 m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0

J �0:027 812 �0:027 813 �0:027 815 �0:027 986 �0:027 748 �0:027 813 �0:027 823 �0:028 010 �0:027 993
�e1 �9:40� �9:40� �9:41� �9:50� �9:41� �9:40� �9:42� �9:58� �9:58�
�e2 �20:50� �20:50� �20:49� �20:48� �20:30� �20:50� �20:47� �20:15� �20:10�
�e3 �150:10� �150:10� �150:10� �150:02� �150:29� �150:10� �150:11� �150:27� �150:32�
��1 �85:46� �85:46� �85:43� �84:93� �84:91� �85:46� �85:47� �85:64� �85:64�
��2 �80:10� �80:10� �80:13� �80:59� �80:72� �80:10� �80:10� �80:03� �80:02�
��3 �14:44� �14:44� �14:44� �14:48� �14:37� �14:44� �14:43� �14:33� �14:34�
��1 �85:14� �85:14� �85:16� �85:57� �85:68� �85:14� �85:11� �84:78� �84:78�
��2 �79:40� �79:40� �79:38� �78:93� �78:98� �79:40� �79:43� �79:82� �79:88�
��3 �15:46� �15:46� �15:46� �15:50� �15:34� �15:46� �15:46� �15:40� �15:34�
�e1 �30� �30:00� �29:98� �29:67� �29:62�
�e2 �30� �30:00� �30:01� �30:15� �30:18�
�e3 60� 60.00� 59.99� 59.82� 59.80�
��1 64.86� 64.86� 64.86� 64.76� 64.70�
��2 70.60� 70.60� 70.61� 70.92� 70.84�
��3 �135:46� �135:46� �135:47� �135:68� �135:54�
��1 �124:54� �124:54� �124:55� �124:74� �124:71�
��2 �129:90� �129:90� �129:88� �129:56� �129:46�
��3 �105:56� �105:56� �105:57� �105:70� �105:83�
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TABLE III. Radiative corrections to the Jarlskog J , the Dirac angle matrix� and the Majorana angle matrix� at �� 1014 GeV in
the MSSM (with tan� ¼ 50) where we choose �12 ¼ 34�, �23 ¼ 46�, �13 ¼ 7�, � ¼ �90�, � ¼ 120� and � ¼ 60� (in the standard
parametrization of V) as typical inputs at the electroweak energy scale �EW.

�EW �� 1014 GeV
Majorana neutrinos Dirac neutrinos

NH IH Near degeneracy NH IH Near degeneracy

m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0 m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0

J �0:027 812 �0:025 703 �0:024 026 �0:013 500 �0:033 435 �0:026 677 �0:010 653 �0:000 337 �0:000 332
�e1 �9:40� �8:52� �7:37� 4.55� �95:91� �8:84� �2:61� �0:43� �0:43�
�e2 �20:50� �19:68� �23:88� 35.11� �67:78� �20:48� �58:64� �88:07� �101:29�
�e3 �150:10� �151:80� �148:75� 140.34� �16:31� �150:68� �118:75� �91:50� �78:28�
��1 �85:46� �84:38� �109:98� 16.84� �60:88� �85:24� �61:66� �15:17� �14:67�
��2 �80:10� �81:18� �56:79� 129.41� �100:27� �79:67� �83:31� �77:09� �78:01�
��3 �14:44� �14:44� �13:23� 33.75� �18:85� �15:09� �35:03� �87:74� �87:32�
��1 �85:14� �87:10� �62:65� 158.61� �23:21� �85:92� �115:73� �164:40� �164:90�
��2 �79:40� �79:14� �99:33� 15.48� �11:95� �79:85� �38:05� �14:84� �0:70�
��3 �15:46� �13:76� �18:02� 5.91� �144:84� �14:23� �26:22� �0:76� �14:40�
�e1 �30� �28:75� �45:50� 100.87� �28:33�
�e2 �30� �29:09� �25:58� 158.09� �50:30�
�e3 60� 57.84� 71.08� 101.04� 78.63�
��1 64.86� 64.15� 71.85� 79.48� 128.46�
��2 70.60� 71.77� 55.09� �6:43� 117.75�
��3 �135:46� �135:92� �126:94� �73:05� 113.79�
��1 �124:54� �124:37� �115:52� �95:97� �147:45�
��2 �129:90� �127:91� �148:79� �151:32� �130:03�
��3 �105:56� �107:72� �95:69� �112:71� �82:52�

TABLE IV. Radiative corrections to the Jarlskog J , the Dirac angle matrix� and the Majorana angle matrix� at �� 1014 GeV in
the MSSM (with tan� ¼ 50) where we choose �12 ¼ 34�, �23 ¼ 46�, �13 ¼ 7�, � ¼ 90�, � ¼ 120� and � ¼ 60� (in the standard
parametrization of V) as typical inputs at the electroweak energy scale �EW.

�EW �� 1014 GeV
Majorana neutrinos Dirac neutrinos

NH IH Near degeneracy NH IH Near degeneracy

m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0 m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0

J 0.027 812 0.027 568 0.015 023 0.014 327 �0:027134 0.026 677 0.010 653 0.000 337 0.000 332

�e1 9.40� 9.13� 4.46� 4.94� �40:79� 8.84� 2.61� 0.43� 0.43�
�e2 20.50� 21.22� 17.53� 47.79� �125:26� 20.48� 58.64� 88.07� 101.29�
�e3 150.10� 149.65� 158.01� 127.27� �13:95� 150.68� 118.75� 91.50� 78.28�
��1 85.46� 83.82� 35.79� 11.03� �124:48� 85.24� 61.66� 15.17� 14.67�
��2 80.10� 80.66� 132.66� 122.51� �43:25� 79.67� 83.31� 77.09� 78.01�
��3 14.44� 15.52� 11.55� 46.46� �12:27� 15.09� 35.03� 87.74� 87.32�
��1 85.14� 87.05� 139.75� 164.03� �14:73� 85.92� 115.73� 164.40� 164.90�
��2 79.40� 78.12� 29.81� 9.70� �11:49� 79.85� 38.05� 14.84� 0.70�
��3 15.46� 14.83� 10.44� 6.27� �153:78� 14.23� 26.22� 0.76� 14.40�
�e1 150� 148.49� 111.98� 94.10� �66:18�
�e2 150� 151.76� 161.04� 152.04� �20:50�
�e3 60� 59.75� 86.98� 113.86� 86.68�
��1 55.14� 55.54� 71.73� 78.13� 99.09�
��2 49.40� 49.88� 10.85� �18:26� 148.01�
��3 �104:54� �105:42� �82:58� �59:87� 112.90�
��1 �115:46� �115:33� �103:81� �96:93� �121:70�
��2 �110:10� �108:90� �151:62� �150:47� �157:25�
��3 �134:44� �135:77� �104:57� �112:60� �81:05�
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the signs of J are not changed. However, if neutrinos are
Majorana particles, the running behaviors of the Dirac-type
CP-violating parameters J and ��i strongly depend on
the Majorana-type CP-violating parameters ��i. A point
need to be pointed out is that the running behaviors of J in
(a), (b), and (c) three cases are somehow similar as shown
in Fig. 5. This is because of these three sets of inputs
correspond to the same values of the Majorana angles �
and � in the standard parametrization. By choosing a
different set of inputs of ��i, we are able to make a very
different evolution of J for the same set of ��i. A more
special case is thatJ ¼ 0 but the Majorana CP violation is
nonzero as shown in Table V. If J ¼ 0 is input at �EW, J
will keep vanishing in case of Dirac neutrinos. But for
Majorana neutrinos, J can evolve to a nonzero value at �,
which indicates that the UTs expand from a line and the
Dirac-type CP violation is radiatively generated from the
Majorana-type CP violations.
As we have declaimed in the beginning section, both the

Dirac-type and the Majorana-type CP violation can be
illustrated by the six UTs. Therefore, the RGE running of
the Dirac angle matrix� and the Majorana angle matrix�
also correspond to the evolutions and the rotations of the
UTs in the complex plane. We choose two examples in the
MSSM with tan� ¼ 50 where the Majorana neutrino
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FIG. 2. Running behaviors of the Jarlskog invariant J from
�EW to �� 1014 GeV in the SM for both the Dirac and the
Majorana neutrinos, where the corresponding inputs at �EW and
outputs at � can be found in Table I. In this figure, the solid lines
stand for the case of NH with m1 	 0, the dotted lines for the
case of IH with m3 	 0, the dashed lines for the ND case with
�m31 > 0 and the dash dotted lines for the ND case with
�m31 < 0. Two solid lines in this figure are almost coincide.
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FIG. 3. Running behaviors of the Jarlskog invariant J from
�EW to �� 1014 GeV in the MSSM (with tan� ¼ 10) for both
the Dirac and the Majorana neutrinos, where the corresponding
inputs at �EW and outputs at � can be found in Table II. In this
figure, the solid lines stand for the case of NH with m1 	 0, the
dotted lines for the case of IH with m3 	 0, the dashed lines for
the ND case with �m31 > 0 and the dash dotted lines for the ND
case with �m31 < 0. Two solid lines in this figure are almost
coincide.
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FIG. 4 (color online). Running behaviors of the Jarlskog in-
variant J from �EW to �� 1014 GeV in the MSSM (with
tan� ¼ 50) for Dirac neutrinos, where the corresponding inputs
at �EW and outputs at � for case (a), (b), and (c) can be found in
Tables III, IV, and V respectively. The solid lines stand for the
case of NH with m1 	 0, the dotted lines for the case of IH with
m3 	 0, the dashed lines for the ND case with �m31 > 0 and the
dash dotted lines for the ND case with �m31 < 0. In this figure,
the dashed lines and the dash doted lines are almost coincide in
case I and II, and in case III all four lines are almost coincide.
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masses are nearly degenerate and show in Fig. 6 [�m2
31 >

0] and 7 [�m2
31 < 0] how the six UTs evolve from �EW to

�, where triangles with thicker sides are at higher energy
scale. The common area of the six UTs equals to J =2.
Since the orientations of �e, �� and �� have no physical

meaning, we simply choose one side of each triangle
(V�3V

�
�3, V�3V

�
e3 and Ve3V

�
�3) to lie on the

x-axial and point to the origin. In this way, the triangle
lie above the x-axial is clockwise and corresponds to a
positive J and the triangle lie below x-axial is anticlock-
wise corresponds to a negative J on the contrary. Then we
can clearly see from Fig. 6, when evolve from �EW to the
high energy scale �, the Jarlskog J changed its sign as
illustrated in Table III.

V. SUMMARY

In summary, we introduced the concepts of the Dirac
angle matrix� and the Majorana angle matrix� for Dirac
and Majorana neutrinos, respectively, and show that the
angle matrix carries equivalent information to the complex
mixing matrix itself, but with the added advantage of being
basis and phase convention independent. Our prescription
works for any number of fermion generation. We further
calculated the one-loop RGEs of �, � and some other
rephasing invariant parameters. Numerical analyses are
carried out for illustration. We find that apparently
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FIG. 5 (color online). Running behaviors of the Jarlskog in-
variant J from �EW to �� 1014 GeV in the MSSM (with
tan� ¼ 50) for Majorana neutrinos, where the corresponding
inputs at �EW and outputs at � for case (a), (b), and (c) can be
found in Tables III, IV, and V, respectively. In this figure, the
solid lines stand for the case of NH with m1 	 0, the dotted lines
for the case of IH with m3 	 0, the dashed lines for the ND case
with �m31 > 0 and the dash dotted lines for the ND case with
�m31 < 0.

TABLE V. Radiative corrections to the Jarlskog J , the Dirac angle matrix � and the Majorana angle matrix � at �� 1014 GeV in
the MSSM (with tan� ¼ 50) where we choose �12 ¼ 34�, �23 ¼ 46�, �13 ¼ 7�, � ¼ 0�, � ¼ 120� and � ¼ 60� (in the standard
parametrization of V) as typical inputs at the electroweak energy scale �EW.

�EW �� 1014 GeV
Majorana neutrinos Dirac neutrinos

NH IH Near degeneracy NH IH Near degeneracy

m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0 m1 ’ 0 m3 ’ 0 �m2
31 > 0 �m2

31 < 0

J 0 0.001 043 �0:011 926 0.013� 0:011 926144 �0:036 288 0 0 0 0

�e1 0� 0.35� �3:67� 4.56� �67:38� 0� 0� 0� 0�
�e2 0� 0.83� �12:41� 40.09� �94:47� 0� 0� 0� 0�
�e3 180� 178.82� �163:92� 135.35� �18:15� 180� 180� 180� 180�
��1 0� 2.03� �26:13� 12.83� �88:40� 0� 0� 0� 0�
��2 180� 177.31� �145:45� 128.01� �72:50� 180� 180� 180� 180�
��3 0� 0.66� �8:42� 39.16� �19:10� 0� 0� 0� 0�
��1 180� 177.62� �150:20� 162.61� �24:22� 180� 180� 180� 180�
��2 0� 1.86� �22:14� 11.90� �13:03� 0� 0� 0� 0�
��3 0� 0.52� �7:66� 5.49� �142:75� 0� 0� 0� 0�
�e1 60� 62.12� 42.14� 93.61� �35:78�
�e2 �120� �121:42� �115:33� �12:72� �44:94�
�e3 60� 59.30� 73.19� �80:89� 80.72�
��1 60� 59.74� 71.94� 76.22� 120.00�
��2 60� 60.44� 42.53� 179.18� 122.03�
��3 �120� �120:18� �114:47� 104.60� 117.97�
��1 �120� �119:91� �111:73� �99:22� �127:38�
��2 �120� �118:73� �149:88� 39.27� �152:44�
��3 �120� �121:36� �98:39� 59.95� �80:18�
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different from the case of Dirac neutrinos, for Majorana
neutrinos the RG evolutions of �, � and J strongly
depend on the Majorana-type CP-violating parameters
and are quite sensitive to the sign of �m2

31. They may

receive significant radiative corrections in the MSSM
with large tan� if three neutrino masses are nearly
degenerate.

Of course, the numerical examples presented in this
work are mainly for the purpose of illustration. The point
is that the nature and the mass spectrum of neutrinos
determine the RGE running behaviors of those rephasing
invariant parameters which may be crucial for building a
realistic neutrino model. Our analyses complement those
previous studies of radiative corrections to the physical
parameters of Dirac and Majorana neutrinos and are help-
ful for building a realistic neutrino mass model at a high
energy scale.
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�EW and outputs at � can be found in Table III.
FIG. 7. RG evolutions of all six leptonic unitarity triangles
in the complex plane from �EW to �� 1014 GeV in the
MSSM (with tan� ¼ 50) for Majorana neutrinos, where tri-
angles with thicker sides are at higher energy scale. Here the
neutrino mass spectrum is ND with �m2

31 < 0 and the corre-

sponding inputs at �EW and outputs at � can be found in
Table III.
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APPENDIX A: RECONSTRUCT THE
LEPTONIC MIXING MATRIX V FROM
THE DIRAC ANGLE MATRIX � OR THE

MAJORANA ANGLE MATRIX �

In Sec. II we have shown that the Dirac (Majorana) angle
matrix carries equivalent independent real parameters as
that of the MNS matrix V for Dirac (Majorana) neutrinos.
We now further prove the equivalence of the mixing matrix
and the angle matrix in the presence of the Dirac-type CP
violation (which indicates that none of the moduli jV�ij is
zero) by presenting the way of re-obtaining the mixing
matrix starting from the angle matrix in case of three
generation neutrinos. We shall take it as given that the
matrix of mixing moduli is essentially equivalent to
the complex mixing matrix [24], and content ourselves in
the first instance with showing how to obtain the mixing-
matrix moduli jV�ij, starting from the angles.

1. Dirac angle matrix �

The 3� 3 Dirac angle matrix � is defined by Eqs. (9)
and (10), and its nine matrix elements satisfy the normal-
ization conditions of Eq. (11). The Dirac angle matrix can
be manipulated to yield the magnitudes of mixing matrix
elements. Firstly, we introduce the sin matrix

sin� ¼
sin�e1 sin�e2 sin�e3

sin��1 sin��2 sin��3

sin��1 sin��2 sin��3

0
BB@

1
CCA

¼ J

j�2h�3j�1 j�3h�1j�1 j�1h�2j�1

j�2he3j�1 j�3he1j�1 j�1he2j�1

je2h�3j�1 je3h�1j�1 je1h�2j�1

0
BB@

1
CCA; (A1)

and then define certain products of sines ��i:

��i � sin��j sin��k sin��i sin��i; (A2)

multiplying together the four sin� entries in the same row
and column as sin��i, excluding sin��i itself. Clearly
every mixing modulus-squared except jV�ij2 enters in the
denominator of the product ��i, whereby the ��i must be
proportional to jV�ij2,

��i ¼ 1

N
jV�ij2: (A3)

The relevant normalizing factor N may be obtained by
summing over any row or column (or indeed over both
rows and columns)

1

N
¼ X

�

��i ¼
X
i

��i ¼ 1

3

X
�;i

��i ¼ J 4Q
�;i
jV�ij2

: (A4)

Then we have

jV�ij2 ¼ N��i ¼ 3��iP
�j

��j

: (A5)

As for the Jarlskog J , we can find from Eq. (A1) that

Y
�;i

sin��i ¼ J 9

ðQ
�;j

jV�jj2Þ2
; (A6)

together with Eq. (A4) and (A5), we can obtain

J ¼
9
Q
�;i

sin��i

ðP
�;i
��iÞ2

: (A7)

Then we conclude that the � matrix is equivalent to the
complex mixing matrix V if neutrinos are Dirac particles.

2. Majorana angle matrix �

The Majorana angle matrix is defined as

�¼
�e1 �e2 �e3

��1 ��2 ��3

��1 ��2 ��3

0
BB@

1
CCA

¼
argðVe2V

�
e3Þ argðVe3V

�
e1Þ argðVe1V

�
e2Þ

argðV�2V
�
�3Þ argðV�3V

�
�1Þ argðV�1V

�
�2Þ

argðV�2V
�
�3Þ argðV�3V

�
�1Þ argðV�1V

�
�2Þ

0
BB@

1
CCA; (A8)

from which we can easily obtain the � matrix defined in
Eqs. (9) and (10) by using the relation of Eq. (20). Follow
the same procedure as that in above section, we can obtain
the jVj matrix and the Jarlskog J from the � matrix. Two
extra Majorana phases can also be deduced from the �
matrix itself.
For a specific parametrization of V, for example, the

standard parametrization

V ¼
ei�

ei�

ei�

0
BB@

1
CCA

c12c13 s12c13 s13e
�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA

ei�

ei�

1

0
BB@

1
CCA; (A9)

three mixing angles and the Dirac phase � can be determined from the jVj matrix and the Jarlskog J :

sin�13 ¼ jVe3j; (A10)

DIRAC LEPTONIC ANGLE MATRIX VERSUS MAJORANA . . . PHYSICAL REVIEW D 85, 013006 (2012)

013006-17



tan�12 ¼ jVe2j=jVe1j; (A11)

tan�23 ¼ jV�3j=jV�3j; (A12)

sin� ¼ J ð1� jVe3j2Þ=jVe1jjVe2jjVe3jjV�3jjV�3j; (A13)

cos� ¼ ðjVe1j2jV�1j2 � jVe2j2jV�2j2ÞjV�3j2 � ðjVe1j2jV�1j2 � jVe2j2jV�2j2ÞjV�3j2
jVe1jjVe2jjVe3jjV�3jjV�3j : (A14)

Both the absolute value and the quadrant of � can be determined by Eqs. (A13) and (A14). Two Majorana phases � and �
can also be easily obtained through

� ¼ ���e2; (A15)

� ¼ �e1 � �: (A16)
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