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In grand unified theories with gauge groups larger than SUð5Þ, the multiplets that contain the known

quarks and leptons also contain fermions that are singlets under the standard model gauge group. Some of

these could be the dark matter of the Universe. Grand unified theories can also have accidentalUð1Þ global
symmetries (analogous to B� L in minimal SUð5Þ) that can stabilize dark matter. These ideas are

illustrated in an SUð6Þ model.
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I. INTRODUCTION

It seems a strange coincidence that the cosmic densities of
dark matter and ordinary baryonic matter are of the same
order of magnitude, given that in most theoretical scenarios
they are generatedby unrelatedmechanisms involving differ-
ent particles, forces, and parameters. This coincidence sug-
gests that the darkmatter and baryonicmattermay have been
‘‘cogenerated’’ in the early Universe, i.e. that the darkmatter
is a product of the same processes that created the cosmic
baryon asymmetry. There is a rapidly growing literature
studying various ways that this might have happened [1–5].

The first papers to propose this possibility [1] were
based on the idea that primordial asymmetries in baryon
and lepton number (B, L) were partially converted into an
asymmetry in some other global quantum number (call it
X) by sphaleron processes [6] when the temperature of the
Universe was above the weak interaction scale MW .
Assuming X to be conserved (or nearly so) at low tempera-
tures, the lightest particles carrying this quantum number
would be stable and could play the role of dark matter.
What would result from such a scenario is ‘‘asymmetric
dark matter’’ [7]. Many other scenarios for generating
asymmetric dark matter have been proposed [2–5]. In
some of these scenarios, ordinary matter and dark matter
are converted into each other by perturbative processes
involving higher-dimension operators [2]; and in others
by sphalerons (or by both sphalerons and higher-dimension
operators) [3]. In some scenarios, the dark matter carries
baryon number which compensates for the nonzero baryon
asymmetry of ordinary matter [4]. Many papers propose
still other mechanisms [5].

What we suggest here is the possibility that not only are
dark matter and ordinary matter cogenerated but that they
are ‘‘unified’’ in the sense of grand unification. The point is
that grand unification naturally supplies several of the
ingredients needed for the generation of asymmetric dark
matter. First, grand unification based on groups larger than
SUð5Þ involves fermion multiplets that contain non-
Standard-Model fermions that could play the role of dark
matter. In particular, in SUðNÞ with N > 5, the quark-
lepton multiplets contain several fields that are singlets

under the standard model group GSM ¼ SUð2ÞL �
SUð3Þc �Uð1ÞY . In SUð6Þ or SUð7Þ models with three
families of quarks and leptons, for example, anomaly-
free sets of fermion multiplets must contain at least six
standard-model-singlet fermions. For larger groups, the
number grows rapidly.
Second, it is not uncommon in simple unified models for

there to be global quantum numbers that are ‘‘acciden-
tally’’ (or ‘‘automatically’’) conserved, just as B� L is
accidentally conserved in the simplest SUð5Þ model. Such
quantum numbers could play the role of X that stabilizes
the dark matter particles. We shall illustrate these ideas in a
simple SUð6Þ � ZN grand unified theory.
Another interesting feature of large unified groups is that

they can contain additional non-Abelian factors at low
energies (besides those of GSM), whose sphalerons could
convert baryons and leptons into dark matter particles; but
we shall not explore that possibility in this paper. The illus-
trative model that we shall describe uses perturbative pro-
cesses to convert matter and dark matter into each other [2].

II. AN SUð6Þ MODEL

We shall now present the details of the model. Its
symmetry group is SUð6Þ � ZN , where N may be any
integer greater than 4. The fermions of each quark-lepton
family consist of the anomaly-free set of SUð6Þ multiplets
15þ �6þ �6 plus three SUð6Þ singlets. These are shown in
the left columns of Table I. The fundamental indices of
SUð6Þ are denoted by the capital latin letters, A, B, C, etc.,
which run from 1, . . ., 6. Here and throughout the paper, we
suppress family indices. For those fermion multiplets that

TABLE I. The fermions of a family, and the Higgs fields.

Fermion field SUð6Þ ZN Higgs field SUð6Þ ZN

�½AB� 15 1 �½AB� 15 1

�A
�6 1 �A

�6 1

� 1 1 HA
�6 !

c 0
A

�6 !�

� 1 ! �A
B 35 !�

� 1 !2
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contain the known quarks and leptons we use capital �.
The fermion multiplets denoted by the letters c and � and
� contain only new fields.

The right columns of Table I show the Higgs fields and
their SUð6Þ � ZN transformation properties. The known
fields all transform trivially under ZN . The gauge symme-
try breaking occurs in three stages:

(1) At the unification scale MGUT, SUð6Þ is broken to
½SUð3Þc � SUð2ÞL �Uð1ÞY� �Uð1Þ6 (which is
contained in the SUð5Þ �Uð1Þ6 subgroup of
SUð6Þ). This breaking is done by an adjoint Higgs
field �A

B, whose vacuum expectation value (VEV)
points in a direction that is a linear combination of
the weak hypercharge generator Y=2 ¼
diagð12 ; 12 ;� 1

3 ;� 1
3 ;� 1

3 ; 0Þ and the Uð1Þ6 generator

T6 ¼ diagð� 1
5 ;� 1

5 ;� 1
5 ;� 1

5 ;� 1
5 ; 1Þ. We shall al-

ways denote an SUð5Þ index (which takes values
1,2,3,4,5) by �, �, etc.; an SUð2ÞL index (which
takes values 1,2) by i, j, etc.; and an SUð3Þc index
(which takes values 3,4,5) by a, b, etc. Thus, for
example, c A ¼ ðc �; c 6Þ ¼ ðc i; c a; c 6Þ.

(2) The Uð1Þ6 is broken at a scale M0, which is some-
what larger than a TeV, by the fundamental Higgs
multiplet HA, whose VEV points in the 6 direction,
i.e. hH6i �M0. We assume that the mass of H6 is of
order M0, but that its other components all have
mass of order MGUT. (This is the usual kind of
split-multiplet problem of GUTs, analogous to the
well-known ‘‘doublet-triplet splitting problem.’’)
Below M0, the gauge group is just the standard
model group GSM ¼ SUð3Þc � SUð2ÞL �Uð1ÞY .
There is, of course, a Z0 gauge boson whose mass
is of order M0 that couples to T6.

(3) The electroweak breaking is done by the two Higgs
multiplets denoted by �, which contain the SUð2ÞL
doublets �i and ��

i6. We assume that one linear

combination of these two doublets is tuned to be
light (i.e. of order the weak scale in mass) and is the
standard model Higgs doublet �i that obtains a
VEV, while all the other components of �A and

�½AB� have superheavy mass. (In particular, the col-
ored components, which can mediate proton decay,
have mass of order MGUT.)

Under the subgroup SUð5Þ � SUð6Þ, the nonsinglet fer-
mions of Table I decompose as follows:

�½AB� ! �½��� þ ��6

15 ! 10 þ 5

�A ! �� þ �6
�6 ! �5 þ 1

c 0
A ! c 0

� þ c 0
6

�6 ! �5 þ 1

(1)

The standard model quarks and leptons are the�½��� ¼ 10
and�� ¼ �5. The extra �5þ 5 pair of SUð5Þ will ‘‘mate’’ to

get OðM0Þ masses. Specifically, the 5 ¼ �½�6� will obtain
mass with �5 ¼ c 0

� through a term ð�½�6�c 0
�ÞhH6i, as will

be seen. There are also two SUð5Þ-singlet (and thus
GSM-singlet) fermions in the multiplets shown in Eq. (1).
In order for these to get mass, we introduce gauge-singlets
fermions denoted � and � that will mate with them to get
Dirac masses.
The most general renormalizable Yukawa couplings

allowed by SUð6Þ � ZN are of the following forms (we
suppress family indices):

LYukawa ¼ LSM þLF �F þLsinglet

LSM ¼ Yuð�½AB�CDÞ�EF� þ Ydð�½AB��AÞ�B

þ Y�ð�A�Þ��A þMRð��Þ
LF �F ¼ f1ð�½AB�c 0

AÞHB

Lsinglet ¼ f2ð�A�ÞH�A þ f3ðc 0
A�ÞH�A þ f4ðc 0

A�Þ��A:

(2)

The first three terms inLSM have the effect of coupling the
standard model Higgs doublet (which is a mixture of �i

and ��
i6) to the known quarks and leptons (which, as noted

above, are contained in the multiplets that are denoted by

capital �’s). The term LF �F ¼ f1ð�½AB�c 0
AÞHB gives

OðM0Þ mass to the ‘‘extra’’ 5þ �5 pair of fermions, as
already mentioned. The terms in Lsinglet couple the

standard-model-singlet fermions �6 and c 0
6 (see Eq. (1))

to the gauge-singlet fermions denoted � and � so that all
the singlet fermions can get mass. All these Yukawa terms
and the masses that come from them will be examined in
more detail shortly.
The most general Yukawa terms allowed by SUð6Þ � ZN

[shown in Eq. (2)] and the most general Higgs potential
allowed by SUð6Þ � ZN (which, incidentally, includes
terms such as �AB�AHC�

C
B) happen accidentally to be

invariant under a global Uð1Þ symmetry, whose generator
we will call T. The T charges of the various multiplets in

the model are as follows (given in parentheses): �½AB�ð1Þ,
�Að� 1

2Þ, �ð0Þ, c 0
Að� 7

2Þ, �ð3Þ, �ð6Þ, �½AB�ð�2Þ, �Að� 1
2Þ,

HAð52Þ, and �A
Bð0Þ. This Uð1ÞT symmetry is unbroken by

grand unified theory-scale VEVs, but is spontaneously
broken at the scale M0 by hH6i, which also breaks the
gauge group Uð1Þ6, leaving an unbroken global symmetry
Uð1ÞX, whose generator is given by

X ¼ 1
3T þ 5

6T6: (3)

This generator X will play a crucial role in what follows as
the quantum number that stabilizes dark matter. It is analo-
gous to the conserved global symmetry B� L in minimal
SUð5Þ models, where B� L is a linear combination of a
global charge that is accidentally conserved by the Yukawa
couplings and a gauge generator (specifically, the weak
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hypercharge Y). Here, both X and B� L are conserved by
low-energy couplings and VEVs.

All the Higgs fields in Table I have OðMGUTÞ masses
except (a) the standard model doublet�i, which is a linear
combination of the doublets �i and ��

½i6�, and has mass of

order 100 GeV, and (b) the standard-model-singlet Higgs
H6, which has mass of order M0 > 1 TeV. We will call �i

and H6 ‘‘light Higgs fields’’ to distinguish them from
‘‘superheavy Higgs fields’’. It is easy to check explicitly
that the light Higgs fields�i andH6 are neutral under X (as
must be the case, of course, if X is left unbroken by their
VEVs). Therefore, when fermions absorb or emit these
light Higgs fields they do not change their X charge. The
same is true of the emission and absorption of light gauge
bosons (i.e. those of SUð3Þc � SUð2ÞL �Uð1ÞY �Uð1Þ6).

In other words, except through extremely slow processes
mediated by bosons with superheavy masses, fermions do
not change their values of X. It is therefore very useful to
classify the fermions of this model by their X charges. This
is done in Table II.

Note that Table II also lists quantum numbers called B0,
L0, B1, L1, L2. These are defined as follows: Bn � B�jXjn,
Ln � L�jXjn. In other words, we define separate baryon

and lepton numbers for each jXj sector. For example, a
lepton with X ¼ �2 has L2 ¼ 1, but L0 ¼ L1 ¼ 0. (It
should be noted that B ¼ B0 þ B1, L ¼ L0 þ L1 þ L2,
and X ¼ 3B1 � L1 � 2L2.) The reason for defining these

baryon and lepton numbers is that the emission and ab-
sorption of ‘‘light Higgs fields’’ and ‘‘light gauge bosons’’
do not change the values of B, L, and X of a fermion and
therefore also separately conserve the quantum numbers
Bn and Ln. This will be important in our later analysis.
Later we shall introduce four-fermion operators, generated
by the exchange of very heavy bosons, that conserve B, L
and X but violate Bn and Ln. Such processes will be needed
to redistribute particle asymmetries, i.e. convert a primor-
dial asymmetry in one global charge into the other global
charges, so that matter and dark matter asymmetries will
end up being related to each other.
Observe that the fermions with X ¼ 0 are just the known

quarks and leptons of the standard model. Since the light
Higgs fields have X ¼ 0, their Yukawa couplings only
couple these standard model fermions to each other and
give them Dirac masses with each other. These couplings
come from the terms LSM in Eq. (2). Specifically, the Yu

term gives mass to up-type quarks via Yuð�½ab��½c1�Þ�
h�½26�i / YuðucuÞv. The Yd term gives mass to down-type

quarks and charged leptons via Ydð�½a2��a þ�½21��1Þ�
h�2i / Ydðddc þ ‘þ‘�Þv. The Y� term gives the Dirac
neutrino masses via Y�ð�2�Þh��2i / Y�ð�NcÞv. And the
MR term gives the superlarge Majorana masses to the right-
handed neutrinos: MRð��Þ ¼ MRðNcNcÞ.
As can be seen from Table II, the sector of fermions with

X ¼ �1 contains (for each family) a 5 and �5’s of SUð5Þ,

TABLE II. The fermions and Higgs fields, classified by their X values (0, �1, �2), where X ¼ 1
3T þ 5

6T6. The baryon and lepton
numbers are defined by Bn � B�jXjn; Ln � L�jXjn.

Field X T T6 B0 L0 B1 L1 L2

�½��� ! �½ab� ¼ uc 0 1 � 2
5 � 1

3 0 0 0 0

! �½ai� ¼ Q 0 1 � 2
5

1
3 0 0 0 0

! �½12� ¼ lc 0 1 � 2
5 0 �1 0 0 0

�� ! �a ¼ dc 0 � 1
2

1
5 � 1

3 0 0 0 0

! �i ¼ L 0 � 1
2

1
5 0 1 0 0 0

� ! � ¼ Nc 0 0 0 0 �1 0 0 0

�½�6� ! �½a6� 1 1 4
5 0 0 1

3 0 0

! �½i6� 1 1 4
5 0 0 0 �1 0

c 0
� ! c 0

i �1 � 7
2

1
5 0 0 � 1

3 0 0

! c 0
i �1 � 7

2
1
5 0 0 0 1 0

�6 �1 � 1
2

�1 0 0 0 1 0

� 1 3 0 0 0 0 �1 0

c 0
6 �2 � 7

2
�1 0 0 0 0 1

� 2 6 0 0 0 0 0 �1

�� ! �i 0 � 1
2

1
5 0 0 0 0 0

�½�6� ! �½i6� 0 �2 4
5 0 0 0 0 0

H6 0 5
2

�1 0 0 0 0 0
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namely �½�6� and c 0
�. These mate to obtain masses of

OðM0Þ via the Yukawa term in LF �F, which gives

f1ð�½�6�c 0
�ÞhH6i.

The X ¼ �1 sector also contains (for each family) the
singlet fermions�6 with X ¼ �1, and � with X ¼ 1. The
term f2ð�6�ÞH�6 in Lsinglet couples them together into

massive Dirac particles. (Note that the gauge-singlet fer-
mions � have been introduced into the model just to give
mass to�6, which otherwise would remain massless.) The
term f4ðc 0

6�Þ��6 in Lsinglet has the effect of mixing these

singlet fermions with neutrinos in the 5þ �5, so that the
neutral fermions in the X ¼ �1 sector actually have a
2� 2mass matrix (actually 6� 6 if one takes into account
that there are three families) of the following form:

ðc 0
2;�6Þ f1hH6i f4h��2i

0 f2hH�6i
� �

�½26�
�

 !
: (4)

If all the Yukawa couplings in Eq. (4) were of order 1, then
all the masses of the fermions in the X ¼ �1 sector would
be of OðM0Þ. There have to be, however, some particles to
play the role of dark matter. Since in this scenario the
present number densities of dark matter particles and bary-
ons will turn out to be of the same order of magnitude, the
massmDM of the dark matter particles should be roughly of
order 1 GeV. There are various ways this can be the case.
One simple way is that the Yukawa couplings that we have
denoted f2 in Eqs. (2) and (4) are of order ð1 GeVÞ=
M0 < 10�3. We shall assume this to be true and also
assume that the Yukawa couplings denoted f1 and f3 are
significantly larger than f2. In that case, the lightest X � 0
fermions are the Dirac fermions made up of the gauge
singlets �6 and �. These will be the dark matter particles

of the model. We will denote these dark matter particles
sometimes as ð�6; �Þ. (As noted, and as can be seen from
Eq. (4), these mix with angle Oðv=M0Þ with weak-doublet
neutrinos of mass OðM0Þ. Thus the dark matter particles

have Oðð vM0Þ2 f2
f1
Þ couplings to the standard model Z boson.)

We come, finally, to the X ¼ �2 sector of fermions.
This consists (for each family) of a standard-model-singlet
fermions with X ¼ �2 (namely, c 0

6), and with X ¼ þ2
(namely �). The term f3ðc 0

A�ÞH�A inLsinglet couples these

together to make massive Dirac particles. (Note that the
gauge-singlet fermions denoted by the letter � have been
introduced into the model just to give mass to the X ¼ �2
fermions.)

III. THE PROCESSES THAT REDISTRIBUTE
ASYMMETRIES

As noted before, there must be processes that conserve X
and B� L but violate Bn and Ln in order to redistribute
asymmetries in quantum numbers and thus relate the mat-
ter and dark matter asymmetries. Such processes are
needed for other reasons as well. For example, they are
needed to allow the colored X � 0 particles (i.e. those with
B1 � 0) to decay. (Such particles if stable and light would
have been seen at accelerators, and if stable and heavy
would contribute too much to the dark matter density of the
Universe.) These �B1 � 0 decays can be relatively slow,
as long as they occur early enough not to interfere with
primordial nucleosynthesis.
The processes that we postulate to violate Bn and Ln are

very simple. They are given by four-fermion operators of

the form ð �c 0Ac 0
BÞð ���AÞ, and more precisely by

O1 ¼ ðM1Þ�2ð �c 06c 0
iÞð ��i�6Þ; �ðB0; L0; B1; L1; L2Þ ¼ ð0;�1; 0; 2;�1Þ;

O2 ¼ ðM2Þ�2ð �c 06c 0
aÞð ��a�6Þ; �ðB0; L0; B1; L1; L2Þ ¼

�
1
3 ; 0;� 1

3 ; 1;�1

�
;

O3 ¼ ðM3Þ�2ð �c 0ac 0
iÞð ��i�aÞ; �ðB0; L0; B1; L1; L2Þ ¼

�
� 1

3 ;�1; 13 ; 1; 0

�
:

(5)

It is easy to check that these conserve B ¼ B0 þ B1, L ¼
L0 þ L1 þ L2 and X ¼ 3B1 � L1 � 2L2. These operators
can arise in a simple way from integrating out heavy fields
as follows. Suppose there is a boson ~�A and gauge-singlet
fermions ~� and ~�. Suppose ~�A,

~�, and ~� have the same
SUð6Þ � ZN , quantum numbers as the particles �A, c and
�, respectively. We assume that ~�� and ~� have mass of a
scale we will call M�, where M� 	 M0, and that ~�6 has
mass of order 1 to 10 GeV, while ~� is massless. (It is also
assumed that ~�A has vanishing VEV.) With these quantum
numbers, these particles have the Yukawa couplings

L � ¼ fð�A
~�Þ ~��A þ f0ðc 0

A ~�Þ ~��A: (6)

Note the similarity to the terms in Eq. (2) with coeffi-
cients Y� and f4. We can ensure that these are the only

Yukawa couplings that ~�A,
~�, and ~� possess, either by

assigning them suitable ZN charges, or, even more simply,

by positing another ZM symmetry under which ~�A ! z ~�A,
~� ! z ~�, and ~� ! z~�, while all other fields transform

trivially. (We can assign the massless fermion ~� lepton

numbers L0 ¼ 0, L1 ¼ 1, L2 ¼ 0, with the light boson ~�6

having all baryon and lepton numbers zero.)
Then the box diagram shown in Fig. 1 gives rise to the

operators in Eq. (5), with M1;M2;M3 �M�. Note that the

operator O3 directly gives the decay c 0
a ! �a þ ��2 þ

c 0
2. The initial particle is an X ¼ �1 antiquark with mass
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of OðM0Þ. The first two final state particles are ordinary
standard model particles, namely, an antiquark (dcL) and a
lepton (�L). The third final state particle is c 0

2, which
mixes with the dark matter particles ð�6; �Þ as can be
seen from Eq. (4). In fact, the operators in Eq. (5) allow
all fermions of the model with masses of orderM0 to decay
ultimately to ordinary quarks and leptons and the dark
matter particles ð�6; �Þ.

IV. THE COSMOLOGICAL SCENARIO

Now let us outline the sequence of events in the early
Universe that generate the current baryon and dark matter
abundances in this model.

Stage 1, which happens when the Universe is above a
superlarge temperature TLG, is the genesis of an asymmetry
in lepton number. Often this is assumed to happen through
the decays of superheavy right-handed neutrinos (here
called �) [8]. However, as will be seen, this will not lead
to the generation of any dark matter asymmetry in the
present scenario, since the right-hand neutrinos have
X ¼ 0. We will therefore assume that the primordial asym-
metry is of fermions that carry both L and X. In particular,
we shall look at the case in which an asymmetry of the
fermions � is generated. How this might happen will be
discussed later.

Stage 2 is the period T� < T <M�, during which both
SUð2ÞL sphaleron processes and the scattering processes
involving the operators O1, O2 and O3 are in equilibrium.
The freeze-out temperature T� of those scattering pro-

cesses is given roughly by T� �M�ð16�g1=2M�

MP‘
Þ1=3, where

g is the effective number of massless particle species at T�.
We shall assume thatM� is large enough that T� >M0, the
scale at which Uð1Þ6 breaks and the non-Standard-Model
quarks and leptons get their mass. During stage 2, the
initial asymmetry in � (and thus in L and X) is reshuffled
by sphalerons and scattering processes among the various
particle types, leading to asymmetries in all of the quantum
numbers B0, L0, B1, L1, and L2 that are of the same order.
These will be computed shortly.

Stage 3 is the period Tdec < T < T�, where Tdec is the
temperature at which the particles with mass of OðM0Þ
decay. When the temperature falls below T�, the relative
values of B0, L0, B1, L1, and L2 freeze. Sphaleron pro-
cesses continue until some temperature Tsph � 200 GeV,

but do not affect these ratios, which change again only
when the fermions with mass of order OðM0Þ decay (out of
equilibrium) via the operators O1, O2, and O3 at Tdec �
M0ð M03

96�2T3
�

Þ1=2. It should be noted that when T falls below

M0 (which happens during stage 3, since Tdec <M0 < T�),
annihilations (mediated by SUð3Þc � SUð2ÞL �Uð1ÞY �
Uð1Þ6 gauge interactions wipe out almost all the particles
of OðM0Þ except for the asymmetric components. (For
example, if the asymmetry in B1 is positive, the density
of B1 < 0 particles will be driven to a value much less than
that of B1 > 0 particles.)
Stage 4 is the period when T < Tdec. At this point, the

particles with mass of OðM0Þ decay out of equilibrium via
the operatorsO1,O2, andO3. These decays violate B0, L0,
B1, L1, and L2, and so again reshuffle the ratios of these
quantum numbers. In particular, they set B1 and L2 to zero;
but they leave a nonzero L1 in the form of the dark matter
particles ð�6; �Þ, which we will compute below. At this
point, the only remaining fermions are the known standard
model quarks and leptons, the dark matter particles

ð�6; �Þ, and the massless ~� particles (whose contribution
to the radiation density at the time of nucleosynthesis is
equivalent to less than half of a neutrino species).
We assume that Tdec >mDM � 1 GeV. (This means, for

example, that if M0 � 1 TeV, then T� must be also be of
order 1 TeV, while if M0 � 10 TeV, then T� must be less
than about 100 TeV.) When T falls below mDM the dark
matter particles ð�6; �Þ start to annihilate with their anti-
particles through the diagrams shown in Fig. 2. Since the
~�6 have been assumed to be light (of order 1 to 10 GeV)
these annihilations efficiently reduce the number of dark
matter antiparticles to much below the number of dark
matter particles. That is, the dark matter is asymmetric.

V. COMPUTING THE RELATIVE ASYMMETRIES

We now calculate the matter and dark matter asymme-
tries that result in this model. During stage 2, all of the
fermions of the model except � and ~� are relativistic, so
we can neglect their masses. Call the fermion chemical
potentials 	q0 , 	‘0 , 	q1 , 	‘1 , and 	‘2 , for the quarks and

leptons having various values of X. From the fact that
the sphaleron processes and the scattering processes that

FIG. 2. The diagram by which dark matter particles and anti-
particles can annihilate into massless fermion antifermion pairs:

�6 þ ��6 ! ~�þ �~�.

FIG. 1. The diagram that gives the operators O1 (if A ¼ 6 and
B ¼ i), O2 (if A ¼ 6 and B ¼ a), and O3 (if A ¼ a and B ¼ i).
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involve the operators O1 and O3 are in equilibrium, one
has the following relations:

sphaleron: 0 ¼ 3	q0 þ	‘0 ;
O1: 0 ¼ 	‘0 � 2	‘1 þ	‘2 ;
O3: 0 ¼ 	q0 þ	‘0 �	q1 �	‘1 :

(7)

The equilibrium of the scattering processes involving O2

does not give an independent relation. From Table I, it can
be seen that the number of species of fermions of each type
(i.e. the statistical weight), counting the number of fami-
lies, colors, and polarizations, is given by gðq0Þ ¼ 3 
 3 

4 ¼ 36, gð‘0Þ ¼ 3 
 1 
 3 ¼ 9, gðq1Þ ¼ 3 
 3 
 2 ¼ 18,
gð‘1Þ ¼ 3 
 1 
 6þ 1 ¼ 19, and gð‘2Þ ¼ 3 
 1 
 2 ¼ 6.

(The extra 1 appearing in gð‘1Þ is due to the fermion ~�.)
In a comoving volume of the Universe, the asymmetries in
the quantum numbers are related to the chemical potentials
by the relation Ni / gi	iT

2RðTÞ3, where RðTÞ is the scale
factor of the Universe when the temperature is T.
Therefore, one has

B0 ¼ 1

3
Q0 ¼ 12	q0K; L0 ¼ 9	‘0K;

B1 ¼ 1

3
Q1 ¼ 6	q1K; L1 ¼ 19	‘1K;

L2 ¼ 6	‘2K;

(8)

where K depends on the temperature and volume.
Therefore, from Eqs. (7) and (8), one has that during
stage 2

0 ¼ 1

4
B0 þ 1

9
L0;

0 ¼ 1

12
B0 þ 1

9
L0 � 1

6
B1 � 1

19
L1;

0 ¼ 1

9
L0 � 2

19
L1 þ 1

6
L2:

(9)

We assume that during stage 1, primordial asymmetries
were generated in the quantum numbers X and B� L.
After stage 1, however, these quantum numbers are con-
served. Thus we have two further relations,

X ¼ 3B1 � L1 � 2L2 ¼ a;

B� L ¼ B0 þ B1 � L0 � L1 � L2 ¼ b;
(10)

where a and b are constants. Equations (9) and (10) can be
solved to obtain

B0 ¼ � 4

9 
 119 ð37a� 61bÞ; L0 ¼ 1

119
ð37a� 61bÞ;

B1 ¼ 4

9 
 119 ð83a� 50bÞ; L1 ¼ � 19

3 
 119 ðaþ 8bÞ;

L2 ¼ 1

3 
 119 ð�86aþ 26bÞ: (11)

In stage 4, after T has fallen below Tdec, the particles
with mass of order M0 decay into the ordinary quarks and

leptons of the standard model, plus the dark matter fields
�6. We will assume for ease of discussion that the heaviest
OðM0Þ particles are those with B1 � 0 followed by those
with L2 � 0. Then the B1 � 0 particles will decay via the
operator O3. From Eq. (5) one sees that these decays will
change the particle asymmetries in the proportions �B0 ¼
��B1, �L0 ¼ �3�B1, and �L1 ¼ 3�B1. Therefore, if
B1 ! B0

1 ¼ B1 þ�B1 ¼ 0, one has

B0
0 ¼ B0 þ �B0 ¼ 2

119
ðaþ 8bÞ;

L0
0 ¼ L0 þ �L0 ¼ 1

3 
 119 ð277a� 283bÞ;

L0
1 ¼ L1 þ �L1 ¼ 1

3 
 119 ð�185a� 52bÞ;

L0
2 ¼ L2 þ �L2 ¼ 1

3 
 119 ð�86aþ 26bÞ:

(12)

The L2 � 0 particles decay via the operator O1, changing
the asymmetries in the proportions �L0 ¼ �L2 and
�L1 ¼ �2�L2, as can be seen from Eq. (5). Therefore,
if L2 ! 0, one ends up with the final values of the quantum
numbers being

B0f¼ 2

119
ðaþ8bÞ; L0f¼ 1

119
ð121a�103bÞ;

L1f¼�a:

(13)

It should be noted that the final symmetry in L1 is in the
form of the massive dark matter particles ð�6; �Þ, and not

in the form of the massless fermions ~�. (It is easily shown

in the following way that there is no asymmetry in ~�. One

can assign an exactly conserved quantum number Z to ~�

and ~�6, with both these particles having Z ¼ 1 and all
other particles having Z ¼ 0. By conservation of Z, and the
fact that no asymmetry of Z existed initially, one has that

N ~� � N ~�6
¼ 0. But eventually all the ~c 6 and their anti-

particles decay by ~�6 ! �6 þ ~�, which drives N ~�6
and

thus N ~� to zero.)

Let us suppose that the primordial asymmetry generated
during stage 1 is in the number of � particles. Since these
have X ¼ 2 and B� L ¼ 1, it follows that a ¼ 2b. From
this and Eq. (13), one has that

L1f

B0f
¼ � 119

10
: (14)

This is the present ratio of the number of dark matter
particles to the number of baryons in the Universe. It is a
rather remarkable feature of models of this type [1–3] that
this ratio is predicted, and therefore that the mass of the
dark matter particle is predicted. Of course, different grand
unified models would give different predictions.
Finally, we come to the question of the primordial

asymmetry generated during stage 1. One could imagine
that this asymmetry was in ordinary leptons, from the
decay of superheavy right-hand neutrinos �, as has been
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much studied [8]. However, that would give a ¼ 0 and
b � 0, which would yield no dark matter asymmetry,
according to Eq. (13). But asymmetries in other species
of particle can be generated in an analogous manner. For
example, suppose that the discrete ZN symmetry in Table I
is Z8 and there exist complex scalar fields S which are
SUð6Þ singlets and transform under Z8 as S ! !4S ¼ �S.
Then, by Table I, one sees that the S can have the Yukawa
coupling ��S and also have explicit superheavy masses
from terms of the form M2

SS
�S and �2

SSSþ H:c: The out-
of-equilibrium decays of the superheavy S particles can
generate a � � �� asymmetry.

We conclude by observing that the model presented here
is not unique, but is meant to illustrate the general point

that grand unification, especially with large unitary groups,
entails the existence of standard-model-singlet fermions
that could be the dark matter. Such dark matter particles
would be very difficult to detect. For example, in the model
presented here, the dark matter particles have no standard
model couplings except Oðv2=M02Þ couplings to the Z
boson through the mixing shown in Eq. (4). It is character-
istic of these scenarios that there will be extra Z bosons at
energies near the weak scale, and that the dark matter will
couple to these extra Z bosons. Indeed, the primary means
by which the dark matter particles would be produced in
accelerators would be via the production of extra Z bosons
and their subsequent decay into dark matter particle-
antiparticle pairs.
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