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Earlier Kostelecky et al. [A. Kostelecky, N. Russell, and J. Tasson, Phys Rev Lett 100, 111102 (2008).]

have obtained torsion bounds from Lorentz violation, where torsion components are taken from the axial

part of torsion. In this brief report it is shown that more stringent bounds may be obtained by using nearly

minimal magnetogenesis torsion trace instead of the minimal coupling between photons and axial torsion

used by Kostelecky and his group. Just for comparison, in Kostelecky et al., the most stringent limit is

estimated to be 10�31 GeV while here one obtains 10�33 GeV. This estimate is obtained by constraining

the torsion to galactic astronomy data. From the point of view of magnetogenesis, an interesting physical

consequence is that dynamo action is obtained when the torsion trace background is negative, while the

magnetic field energy decays when torsion is positive. Polarization of radio-galaxies can be used to obtain

an even more stringent limit of T � 1:7� 10�46 GeV to Lorentz violation. Using WMAP, Kostelecky and

Mewes [A. Kostelecky and M. Mewes, Astrophys. J. 689, L1 (2008)] have found limits of the order of

10�43 GeV. These results are obtained by making use of flat torsion modes [L. Garcia de Andrade, Phys

Lett B 696, 1 (2011)], but may easily be extended to Riemann-Cartan spacetime.
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I. INTRODUCTION

Previously, Turner and Widrow [1] have investigated the
electrodynamic coupling with gravity as a nonminimal
coupling of the Lagrangian type L� R�F2, where F2 ¼
F��F

�� (� ¼ 0, 1, 2, 3), is the electromagnetic invariant

and F�� ¼ 2@½�A�� is the electromagnetic field tensor.

Here, R� is the Riemannian-Ricci scalar. They considered
just the Riemannian geometry of general relativity. One of
the drawbacks of this sort of Riemannian coupling was that
in vacuum it is trivial or its contribution to the Lagrangian
is nil. Recently [2], one used a QED-coupled Lagrangian,
where photons A� and torsion are nonminimally coupled
or, as Prokopec et al. [3] prefer to say, nearly minimal,
since they only couple through the presence of torsion in
the curvature. One of the big differences between that
approach and the one we adopt in this brief report is that
here we extend the Turner-Widrow Lagrangian by mini-
mally replacing the Riemannian-Ricci scalar by the
Riemann-Cartan-Ricci one, while previously we consid-
ered a Lagrangian of the type R����F

��F��, where the

electromagnetic field couples to the Riemann-Cartan [4]
curvature R����. In this brief report, we consider nearly

minimal coupling in the language of Prokopec et al. to
show that the magnetic field amplification or dynamo
effect is possible when the torsion trace is negative, while
the magnetic field energy density decays when the torsion
is positive. The paper is organized as follows: In Sec. II we
review the basic relation between dynamos and Lorentz
violation as given by Campanelli et al. [5], where general
electric and magnetic fields are considered and where,
contrary to their work, torsion is already introduced.

Some few new results are discussed concerning torsion
effects on Lorentz violation (LV). In Sec. III we consider
the derivation of the magnetic energy in terms of torsion
trace from the Ricci-Cartan scalar Lagrangian, and derive
the estimates of the LV from astronomical data, while in
Sec. IV, making use of negative torsion, we compute the
LV from polarization of radio-galaxies, computed by
Ruzmaikin et al. [6] to be �B

B � 1:7. In this section, stronger

assumptions are made about the homogeneity of the mag-
netic field as well as the absence of electric fields. The
basic difference between our result and Kostelecky and
Mewes [7] is that they used a Chern-Simmons Lagrangian
while our Lagrangian is simpler. Sec. V contains conclu-
sions and discussions.

II. COSMOLOGICAL MAGNETIC HELICITY,
DYNAMOS AND BIREFRIGENCE FROM

SEMIMINIMAL TORSION-PHOTON
COUPLING

Since torsion effects are highly suppressed in compari-
son with the curvature effects of the Einstein gravity sector,
here we only consider Minkowski space. The Turner and
Widrow Lagrangian [1] is

S ¼ 1

m2

Z
d4xð�gÞð1=2Þ

�
� 1

4
½1� 4Rð�Þ�F2�

�
; (1)

where � is the Riemann-Cartan connection. Euler-
Lagrange equations yields the following field equations:
The Maxwell equations

@�F
�� ¼ F��

@�R

ð1� RÞ ; (2)

the Bianchi identities*garcia@dft.if.uerj.br
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@½�F��� ¼ 0; (3)

and the torsion trace T� ¼ T�
��. Here we shall assume

that only the time component of the torsion trace survives.
This time component is represented simply by T. Thus the
torsion trace equation is

hT � T ¼ @�ðE2 � B2Þ; (4)

where � is the conformal coordinate of Minkowski space
given by the line element

ds2 ¼ a2ð�Þðd�2 � dx2Þ: (5)

By assuming the following ansatz

Bk ¼ B0e
!B�; (6)

Ek ¼ E0e
!E�; (7)

and

Tk ¼ T0e
!T�; (8)

Fourier-transforming the torsion equation and substitution
of the last three equations yields

Tk ¼ 2!ðE2
0 � B2

0Þ
ð1þ k2 þ 4!2Þ e

2!�; (9)

where ! ¼ !B ¼ !E ¼ 1
2!T is a kind of degeneracy in

the frequency. Let us now consider the Maxwell equations
in the form

@�Bþr� E ¼ 0 (10)

@�Eþr�B ¼ _R

ð1� RÞE (11)

r:B ¼ 0 (12)

r:E ¼ 0: (13)

Taking the curl of Eq. (10) and substitution of Eq. (9)
yields

� @2�Bþr2B ¼ � _R

ð1� RÞ@�B: (14)

Computing the Fourier spectrum one obtains

@�
2Bk þ k2Bk ¼

_R

ð1� RÞ@�Bk: (15)

By considering the plasma effects, one has for the electri-
cal conductivity

� ¼ _R

ð1� RÞ : (16)

Note that in the early Universe, where torsion or curvature
effects are strong, the electrical conductivity is negative

and the effective conductivity decreases, which means
more electric resistivity in the cosmic plasma due to torsion
effects. By making use of the above ansatz for the magnetic
field and substituting into expression (10), one obtains

!2 þ k2 � _R

ð1� RÞ! ¼ 0: (17)

Since the phase velocity is given by vph ¼ !
k , the disper-

sion relation (16) shows the well-known result that the
photons propagated with two distinct polarization states.
Dobado and Maroto [8] have proven this in the axial
torsion context, and birefrigence is also present here.
Nevertheless, they worked out in the fermionic sector of
QED and our approach is in the photonic sector of the QED
with torsion. They also consider a tiny torsion to explain
birefrigence. This fact allow us a simple interpretation of
Lorentz violation associated with the torsion theory here as
done previously by Kostelecky et al. [9]. The dispersion
relation yields

!� ¼ @�R

½1� R� � ik: (18)

Note that this result reduces to the vacuum Maxwell
equation one when the Ricci-Cartan scalar vanishes. The
helicity expression is

H k ¼ k2

2�2
ðjBþ

k j2 � jB�
k j2Þ: (19)

Recently, Semikoz and Sokoloff [10] have discussed and
contested the paradigm that the weak field that seeds the
magnetic galactic dynamo being weak necessarily implies
a weak helicity. Let us now consider the computation of the
last expression of helicity in terms of torsion, to check if
the flat torsion modes induce a weak or strong helicity.
Before computing the helicity, let us consider the comov-
ing dissipation length

	2diss ¼
Z d�

�
: (20)

For modes well within the horizon, kj�j>>> 1 then the
expression

@2�Bk þ k2Bk ¼ �@�Bk (21)

reduces to

k2Bk � �@�Bk: (22)

A simple solution of this equation is given by

B�
k � B�0

k exp

�Z
d�

k2

�

�
: (23)

From the definition of dissipation length above
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B�
k � B�0

k exp½�	2k2�: (24)

Since the dissipation length 	2diss � 1
�H , where H is the

Hubble constant, �� 1
H . The magnetic helicity is then

given by

H k � exp½�	2k2�: (25)

Therefore, unless R � >k� or the torsion is extremely
strong, the magnetic field helicity is washed out and the
magnetic field presents a fast decay and the cosmological
magnetic field is not strong enough to seed galactic dyna-
mos. Note that the dynamo equation can be obtained from
the expression

r2Bk � �@�Bk ¼ 0: (26)

The power spectra of the magnetic field

P k ¼ k3

2�2
ðjBþ

k j2 þ jB�
k j2Þ; (27)

which shows that power spectra decay fast unless the
torsion is extremely strong such as in black holes or in
the very early Universe.

III. FLAT TORSION MAGNETOGENESIS
AND LV VIOLATION

Only local spacetime is endowed with torsion trace
T� ¼ T�

�
� and the Minkowski flat metric is considered.

Here T��� is the torsion tensor of 24 components. Photon-

torsion semiminimal coupling is given by Lagrangian

L �
Z
d4xð�gÞð1=2Þ

�
�1

4
F2½1�4Rð�Þ�þJ�A

�

�
; (28)

where now we have introduced the current photon interac-
tion last term. In the Minkowski metric a ¼ 1 and the
Ricci-Cartan scalar

R ¼ g��R
�� ¼ R� þ 2r�T

� � T2 (29)

may be substituted into the Lagrangian, where the field
equations are obtained from the Euler-Lagrange equations

d

dt

@
ffiffiffi
g

p
L

@ _A�

� @
ffiffiffi
g

p
L

@A�

¼ 0 (30)

d

dt

@
ffiffiffi
g

p
L

@ _T
� @

ffiffiffi
g

p
L

@T
¼ 0 (31)

here T ¼ T0. Since our Riemannian space is flat, the Ricci
scalar vanishes which greatly simplifies our computations.
Let us start from the last equation to determine the time
component Tof torsion trace in terms of the magnetic field.
To achieve this goal let us express the electromagnetic
invariant as F2 ¼ E2 �B2 where E and B represent,
respectively, the electric and magnetic fields. In principle,
one adopts here the condition E:B ¼ 0. To simplify

matters one considers that the electric field vanishes.
This yields

dtB
2 þ 2TB2 ¼ 0 (32)

@�F
�� ¼ J�: (33)

The first equation describes the constraint between the
magnetic field and torsion [4], while the second set of field
equations describes the usual Maxwell’s equation in cos-
mic plasma spacetime. It is easily shown that in the ab-
sence of cosmic plasma, free flat space homogeneous
magnetic fields imply that torsion vanishes in the absence
of electric fields. This can be seen by expanding the
expression (32) as

@tB
2 þ v:rB2 þ 2TB2 ¼ 0: (34)

From the Maxwell’s equations in vector form

r�E ¼ �@tB: (35)

Since the electric field vanishes, the right-hand side of the
last equation also vanishes and Eq. (34) reduces to

v :rB2 þ 2TB2 ¼ 0; (36)

which, in the absence of cosmic plasma, where v vanishes,
the last expression reduces to

2TB2 ¼ 0; (37)

which implies that either the magnetic field energy or
torsion vanishes. Since magnetic fields exist by assump-
tion, the only option is that the trace of the torsion vanishes.
Therefore, this reasoning leads us to the need of a cosmic
plasma background for electromagnetism and torsion.
Also, this is useful when one considers MHD dynamos,
which of course do not take place in empty space. Now let
us solve the Eq. (32), which yields

B2 ¼ c0 exp½�2
Z

Tdt�; (38)

where c0 is an integration constant. By considering a
constant torsion background and assuming that the product
T�t is very weak, one may write down this solution as

B2 ¼ c0½1� 2T�t�: (39)

From expression (38), one immediatly sees that the mag-

netic energy density B2

8� grows (dynamo action) when torsion

scalar T is negative T¼�T0, and this allows us to write

B2
torsion � T0�t: (40)

This expression shall be used in this section to estimate the
value of torsion trace and Lorentz violation in some specific
situations. For example. imagine that one imposes the con-
straint that the magnetic field might satisfy the astronomical
observation of the galactic magnetic field of micro-Gauss at
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just beyond where structure formation starts, at�t� 1013s.
Substitution of these data into expression (40) yields

T � 10�33 GeV; (41)

where one has already changed the units s�1 to cm�1, which
in turn changes to GeV, where 1 cm�1 � 10�24 GeV.
Expression (15) is 2 orders of magnitude more stringent
than the estimate of 10�31 GeV obtained by Kostelecky
et al. [7], making use of a fermionic sector of a LV with a
many terms fermionic Lagrangian and axial torsion. Thus, to
summarize this section, we showed that for torsion contri-
bution to be able to amplify the magnetic field to observed
values, it might be 2 orders of magnitude lower than the LV
torsion trace value obtained in the fermionic sector [7].

IV. POLARIZATION IN RADIO-GALAXIES AND LV

In this section, we will estimate torsion trace bounds
based on the equation of the last section, with a different
coinstraint, namely, the one that comes from the polarization
of radio-galactic sources. Ruzmaikin et al. [5] have com-
puted the contrast ofmagnetic field as �BB � 1:7. To be able to

use this data, wewill make use of expression (39) in the form

B � B0½1� T�t�: (42)

A simple manipulation of this formula yields

�B

B
� B� B0

B0

� T0�t: (43)

By choosing the�t� 1014s, one obtains 10�46 GeV, which
is 3 orders of magnitude lower than the value obtained by
Kostelecky and Mewes [7] using WMAP data.

V. DISCUSSION AND CONCLUSIONS

In Sec. II of this paper, a general framework of the
introduction of torsion to dynamo and LV problems was
addressed in detail and four important physical quantities
were computed, namely, the cosmological magnetic helic-
ity, birefrigence, and the power spectrum, as well as the
setup used in general to obtain the dynamo equation in the
cosmic plasma. In Sec. III, these ideas underwent stronger
assumptions, such as the existence only of magnetic fields

and the time component of torsion and the fact that only
homogeneous component of the magnetic field were con-
sidered. From these strong assumptions, torsion bounds
were obtained in two important physical cases by making
use of a constant torsion which induces LV in the field
equations, as happens in Dirac equation. The purpose of
the paper was to make a comparison between our esti-
mates, considered by using a photonic sector of the
Lagrangian semiminimally coupled to the trace of torsion,
and values previously obtained by Kostelecky et al. , using
a fermionic sector coupled also with torsion. In their case,
it is important to say that use was also made of the torsion
trace. We have found out that there is a significantly more
stringent limit of 2 or 3 orders of magnitude lower than the
values obtained in laboratory and in the astrophysical case.
The cosmic radio sources therefore prove to be an interest-
ing source for testing LV in the realm of cosmic physics. As
a by-product, we use the idea that negative torsion does
amplify cosmological magnetic fields, while positive tor-
sion trace imposes a decay on the magnetic field and
therefore forbids an effective dynamo action for the am-
plification of these magnetic fields. CP-violating dynamos
can also be used to place bounds on torsion [11]. The basic
idea here is that lowering the orders of magnitude of
torsion seems to increase the possibility of getting ampli-
fication of magnetic fields, which would motivate to de-
velop more sensitive lab tests to improve torsion trace
sensitivity for the time component TT [12]. Another im-
portant conclusion of our study here is that torsion compo-
nents used by Kostelecky et al. [9] are given by axial
components which range from 10�27 GeV to 10�31 GeV
lowest limit, while our limits here for LV are used from
torsion trace and are definitely more stringent limits.
Another important issue of higher-order Lorentz violation
[13] terms in terms of torsion may be addressed elsewhere.
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