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Although finding numerically the quasinormal modes of a nonrotating black hole is a well-studied

question, the physics of the problem is often hidden behind complicated numerical procedures aimed at

avoiding the direct solution of the spectral system in this case. In this article, we use the exact analytical

solutions of the Regge-Wheeler equation and the Teukolsky radial equation, written in terms of confluent

Heun functions. In both cases, we obtain the quasinormal modes numerically from spectral condition

written in terms of the Heun functions. The frequencies are compared with ones already published by

Andersson and other authors. A new method of studying the branch cuts in the solutions is presented—the

epsilon method. In particular, we prove that the mode n ¼ 8 is not algebraically special and find its value

with more than 6 firm figures of precision for the first time. The stability of that mode is explored using the

�method, and the results show that this new method provides a natural way of studying the behavior of the

modes around the branch cut points.
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I. QUASINORMAL MODES
OF BLACK HOLES

The study of quasinormal modes (QNMs) of a black
hole (BH) has long history [1–7]. The reason behind this
interest is that the QNMs offer a direct way of studying the
key features of the physics of compact massive objects,
without the complications of the full 3D general relativistic
simulations. For example, by comparing the theoretically
obtained gravitational QNMs with the frequencies of the
gravitational waves, one can confirm or refute the nature of
the central engines of many astrophysical objects, since
those modes differ for the different types of objects—black
holes, superspinars (naked singularities), neutron stars,
black hole mimickers, etc. [8–13].

To find the QNMs, one needs to solve the second-order
linear differential equations describing the linearized per-
turbations of the metric: the Regge-Wheeler equation
(RWE) and the Zerilli equation for the Schwarzschild
metric or the Teukolsky radial equation (TRE) for the
Kerr metric and to impose the appropriate boundary con-
ditions—the so-called black hole boundary conditions
(waves going simultaneously into the horizon and into
infinity) [1,3]. Additionally, one requires a regularity con-
dition for the angular part of the solutions. And then, one
needs to solve a connected problem with two complex
spectral parameters—the frequency ! and the separation
constant E (E ¼ lðlþ 1Þ—real for a nonrotating BH, with
l the angular momentum of the perturbation). This system
was first solved by Chandrasekhar & Detweiler [1] and
Teukolsky & Press [14] and later developed through the

method of continued fractions by Leaver [15]. For more
recent results, see also Refs. [4–7].
Because of the complexity of the differential equations,

until now, those equations were solved either approxi-
mately or numerically meeting an essential difficulty [1].
The indirect approaches like the continued fractions
method have some limitations and are not directly related
with the physics of the problem. The RWE, the Zerilli
equation and TRE, however, can be solved analytically in
terms of confluent Heun functions, as done for the first time
in Refs. [16–19]. Imposing the boundary conditions on
those solutions directly (see [13,17]) one obtains a system
of spectral equations (1) and (2) featuring the confluent
Heun functions which can be solved numerically.
In this article, for the first time we present finding l

and ! directly in the case for gravitational perturbation
s ¼ �2 in a Schwarzschild metric, i.e. we solve the RWE
and TRE analytically in terms of confluent Heun func-
tions, and we use a newly developed method (the two-
dimensional generalization of theMüller method described
in the internal technical report [20]) to solve the system of
two transcendental equations with two complex variables.
Then, we use the epsilon method to study the stability of
the solutions with respect to small variations in the phase
condition.
The results are compared with already-published ones

and are found to coincide with at least 8 digits for the RWE
and 6 digits for the TRE. For the first time, the so-called
algebraically special mode n ¼ 8 is evaluated with preci-
sion of more than 6 digits, and it is shown to have a nonzero
real part. This firmly refutes the hypothetical relation of
this mode with the algebraically special once. Also dem-
onstrated is the nontrivial dependence on � of the first
11 modes in both cases.
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II. GENERAL FORM OF THE EQUATIONS

The angular equation for both cases is the solution of
the Teukolsky angular equation when there is no rotation
(a ¼ 0):

Sð�Þ ¼ ðcosð�Þ � 1Þðcosð�Þ þ 1ÞLegendrePðl; 2; cosð�ÞÞ
¼ 0; (1)

where � 2 ½0; �� is the angle. The results for the QNMs
should be independent of the choice of � in the spectral
conditions. In our numerical experiments, we use
� ¼ �� 10�7.

The general form of the radial equations is obtained
from the solutions of the RWE and TRE written in terms
of the confluent Heun functions according to Ref. [16], on
which the black hole boundary conditions have been im-
posed. The choice of the local solution in terms of the
Heun function takes into account the boundary condition
on the horizon. Then, it remains to impose the following
boundary condition on the space infinity (for details see
Refs. [13,16]):

R ¼ rp1HeunCð�;�; �; �; �; 1� r1Þ ¼ 0; (2)

where HeunC is the confluent Heun functions as defined in
MAPLE, and the parameters �, �, �, �, �, and p differ for

the two equations. The values of the parameters when the
BH mass is M ¼ 1=2 and, if we choose jr1j ¼ 20 which
turns out to be large enough to simulate numerically the
actual infinity, are [16,19]:

(1) for the solutions of the Regge-Wheeler equation:

� ¼ �2i!; � ¼ 2i!; � ¼ 4;

� ¼ �2!2; � ¼ 4� l� l2 þ 2!2;

r1 ¼ 20e�ið1=2ð1þ�Þ�þargð!ÞÞ; p ¼ 3;

(2) for the solutions of the Teukolsky radial equation:

� ¼ �2i!; � ¼ 2þ 2i!; � ¼ 2;

� ¼ �4i!� 2!2; � ¼ 2!2 þ 4i!� A;

r1 ¼ 20e�ið1=2ð1þ�Þ�þargð!ÞÞ; p ¼ 5;

where A ¼ lðlþ 1Þ � sðsþ 1Þ is the separation constant.
The parameters were obtained by solving the Teukolsky
radial equation and substituting a ¼ 0, and they are clearly
different from those in the Regge-Wheeler case. Hence, it
is important to check whether both methods give the same
results for QNM and with what precision.

III. THE EPSILON METHOD

For values of the parameters �, �, �, �, � of general
type, the confluent Heun function HeunCð�;�; �; �; �; zÞ
has branching points in the complex z-plane at the singular
points z ¼ 1 and z ¼ 1. In the MAPLE package, as a branch

cut is chosen the semi-infinite interval (1, 1) on the real
axis. The presence of the branch cut may lead to the
disappearance of some modes or their translation, since
by changing the phase of the complex variable r, we may
make a transition to another sheet of the multivalued
function. To avoid this, we use the epsilon method, with
which one can find the correct sheet and remain on it. This
is done by introducing a small variation (j � j <1) in the
phase condition argðrÞ þ argð!Þ ¼ ��=2 (defined by the
direction of steepest descent, see Ref. [17]), with which
one can move the branch cuts farther from the roots and
thus avoid the jump discontinuity in the function. For more
information on the epsilon method and the numerical
procedures, see Ref. [20].

IV. NUMERICAL RESULTS

From the angular equation (1), it is clear that it can be
solved explicitly without solving the system (1) and (2),
and the values of l are known: l ¼ 2; 3; . . . . In this paper,
only the first value, l¼2, is used to find the QNMs with
both radial equations. One can then either solve only the
radial equations or solve the systems (1) and (2) with the
appropriate values of the parameters. If one solves the pro-
blem as a two-dimensional system, making calculations
with 15 digits of precision (and 32 software floating-point
digits), one obtains as expected l ¼ 1:99ð9Þ þ 1� 10�17i,
with the first digit different from digit 9 being the 17th.
The numerical results for the frequencies are summed in

Table I.
From the table, one can see that the frequencies from the

two types of equations coincide with at least 6 digits. A
comparison between the RWE frequencies and the ones
published by Andersson [21], published in Ref. [20] shows
that the difference between the two results is smaller than
5� 10�8 in most cases and is due to the numerical reasons.
There are two important results from this study. First,

as seen from Table I for both the RWE and the TRE, the
mode number 8 has a small but nonzero real part.
According to Leaver’s evaluations, this mode should be
equal to 0þ 3:998000i [15], with an exactly zero real part,
if it is to correspond to the so-called algebraically special
mode.
Algebraically special (AS) modes have a special place in

the QNM studies [1]. The Andersson method is not appli-
cable for them, and these are excluded from his considera-
tion. Berti, Cardoso and Starinets [4,5] make a review on
the results so far concerning these modes. Theoretically,
the 9th mode (n ¼ 8) should be purely imaginary with
value 4i, if it indeed corresponds to the AS case. In our
results, even though purely imaginary modes do not pose a
problem for the method, the real part of the 9th mode is
distinctly not zero, and it has at least 7 stable digits when
changing � in the interval discussed below for both RWE
and TRE. This clearly shows that this mode does not agree
with the hypothesis for the AS mode, which is to be
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expected since the AS mode should correspond to different
boundary conditions—those of the so-called totally trans-
mission modes [22].

The second important result is the dependence of the
frequencies !n on �. The direction of steepest descent is
supposed to be the optimal direction in which the solutions
satisfy the black hole boundary conditions on infinity in the
first term approximation for asymptotic series for the Heun
functions [17]. The validity of steepest descent method in
its simplest form for the radial equations (2) in both cases
under variations in this condition, however, is still an open
problem studied here for the first time.

Using the � method, one can explore the intervals for �
in which each mode can be found. The results for both
RWE and TRE, as expected, coincide. Generally, the in-
tervals into which each mode can be found narrow down
when increasing n. While for the first 5 modes it is possible
to find !n ¼ �j<ð!nÞj þ =ð!nÞi for positive and nega-
tive values of � in a certain interval,1 for n > 4 (but n � 8),
the modes with a positive real part can be found only
for negative values of �, and the dependency becomes
!nð�Þ ¼ �sgnð�Þj<ð!nÞj þ =ð!nÞi.

For n ¼ 8, the mode has different behavior with res-
pect to �—for � 2 ½�0:75;�0:1�, one finds a mode
with a negative real part and vice versa: (!n¼8 ¼
sgnð�Þ0:030649006þ 3:996823690i).

The so-found relation !nð�Þ needs to be examined fur-
ther. For the case n ¼ 8, similar (to some extent) behavior
was mentioned also in Refs. [22,23] (and discussed in [5]).
It was suggested that there are two AS modes which are

symmetrical to the imaginary axis and perhaps may be
related with the branch cut in the asymptotic of the RWE
potential when ! is purely imaginary. Using the � method
applied on the asymptotics of the confluent Heun func-
tions, one can directly obtain the place of the branch cut on
the real axis as a function of �, and they can be easily
visualized plotting the solution R�. Therefore, the use of

(a) (b)

(c) (d)

FIG. 1 (color online). Complex plots of the scaled QNMs
from the two equations in the appropriate intervals for �:
a) RWE n ¼ 0 . . . 3, b) TRE n ¼ 0 . . . 3, c) RWE n ¼ 4 . . . 10,
and d) TRE n ¼ 4 . . . 10. Clearly, while for n ¼ 0 . . . 3 the
QNMs from the two equations give similar results, for n > 4,
the variations in the frequencies from TRE happen on a much
smaller scale and appear chaotic.

TABLE I. A list of the frequencies obtained for the QNMs of Schwarzschild black hole using
the Regge-Wheeler equation and the Teukolsky equation. The modes with n < 5 are found for
� ¼ 0 and modes from n � 5 with � ¼ �0:3. The first 5 frequencies (n ¼ 0� 4) were obtained
also by Fiziev in Ref. [17] using exact solutions of RWE in terms of the Heun functions.

n ! from the Regge-Wheeler Eq. ! from the Teukolsky Eq.

0 0:7473433688þ 0:1779246316i 0:7473433676þ 0:1779246260i
1 0:6934219937þ 0:5478297504i 0:6934219698þ 0:5478298839i
2 0:6021069092þ 0:9565539668i 0:6021069568þ 0:9565538786i
3 0:5030099245þ 1:4102964056i 0:5030097036þ 1:4102966442i
4 0:4150291600þ 1:8936897821i 0:4150291670þ 1:8936897747i
5 0:3385988052þ 2:3912161094i 0:3385987682þ 2:3912160831i
6 0:2665046794þ 2:8958212549i 0:2665047149þ 2:8958212406i
7 0:1856446653þ 3:4076823515i 0:1856446394þ 3:4076823843i
8 �0:0306490371þ 3:9968237195i �0:0306490242þ 3:9968236554i
9 0:1265269702þ 4:6052896060i 0:1265270059þ 4:6052895329i
10 0:15310679658þ 5:1216534769i 0:1531069231þ 5:1216532271i

1The ranges where each mode is found depend on � as follows:
for n ¼ 0, � 2 ½�0:8;�0:75�; for n ¼ 1, � 2 ½�0:8;�0:45�;
for n ¼ 2, � 2 ½�0:8;�0:25�; for n ¼ 3, � 2 ½�0:8;�0:1�;
for n ¼ 4, � 2 ½�0:8; 0�, where the first sign corresponds to
frequencies with a positive real part and the second sign to those
with negative real parts. The imaginary parts for each mode n
coincide.
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the confluent Heun functions and the � method offers a
direct way to examine the solutions and their properties in
relation to the branch cut in the complex r-plane, some-
thing that cannot be readily done in the continued-fractions
method generally used to obtain the QNMs.

Further exploration of the dependence <ð!nÞð�Þ (or
=ð!nÞð�Þ) in the intervals mentioned above shows that,
for both the RWE and the TRE, it is approximately a
periodic function with amplitude A and period L which
change with n in a nontrivial way (Figs. 1 and 2). For
n < 4, from the RWE and the TRE, one obtains ATRE �
10�6 � 103 � ARWE, LRWE � LTRE � 0:4, and those
values remain approximately constant with respect to n
(n < 4). For n � 4, the dependence of A and L on n
becomes more pronounced: the amplitudes and the periods

of the RWE increase with n until they reach ARWE � 10�6,
LWRE � 0:6 for n ¼ 10. For the TRE, the amplitude and
the period decrease to ATRE � 10�8, LTRE � 0:05. For
n ¼ 8, the two periodic behaviors have approximately
equal amplitudes� 10�7. Those results hint that, although
the so-obtained frequencies are stable with at least 6 digits
with respect to �, there is also some finer dependence, the
origin of which should be carefully investigated.

V. CONCLUSION

In this paper, were presented the QNMs for a
Schwarzschild BH obtained from the RWE and the TRE,
by solving the differential equations analytically in terms
of confluent Heun functions. The QNMs from the TRE for
the case s ¼ �2were calculated for the first time and were
found to coincide with the well-known QNMs from the
RWE with precision of 6 digits.
We demonstrated a new method for studying the stabil-

ity of the QNM calculations. The results show nontrivial
dependence on small variation in the phase condition (the �
method) which requires additional investigation.
For the first time, the mode n ¼ 8 was obtained directly

from the spectral condition on the exact analytical solu-
tions of RWE and TRE and was found to have a nonzero
real part, which proves that this mode is not the algebrai-
cally special mode. The mode in question is stable with
6 digits of significance with respect to changes in �, which
proves that its real part is indeed not zero.
Those results presented here show the strength of using

confluent Heun functions to find QNMs of nonrotating
BHs and are encouraging in continuing this work in finding
QNMs of rotating BHs.
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