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We study the effect of the quadratic field strength correction to the usual Maxwell field on the

holographic dual models in the backgrounds of AdS black hole and AdS soliton. We find that in the black

hole background, the higher correction to the Maxwell field makes the condensation harder to form and

changes the expected relation in the gap frequency. This effect is similar to that caused by the curvature

correction. However, in the soliton background we find that, unlike the curvature effect correction, the

correction to the Maxwell field does not influence the holographic superconductor and insulator phase

transition.
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I. INTRODUCTION

As the most remarkable discovery in string theory, the
anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence states that a string theory on asymptotically
AdS spacetimes can be related to a conformal field theory
on the boundary [1–3]. Recently, this principle has been
employed to study the strongly correlated condensed mat-
ter physics from the gravitational dual (for reviews, see
[4–6]). It was shown that the instability of the bulk black
hole corresponds to a second-order phase transition from
normal state to superconducting state which brings the
spontaneous U(1) symmetry breaking [7]. Because of
the potential applications to the condensed matter physics,
the gravity models with the property of the so-called holo-
graphic superconductor have been studied extensively; see,
for example, [8–29] and references therein.

Recently, motivated by the application of the Mermin-
Wagner theorem to the holographic superconductors, there
has been a lot of interest in exploring the effect of the
curvature correction on the (3þ 1)-dimensional supercon-
ductor [30] and higher-dimensional ones [31] by examin-
ing the charged scalar field together with aMaxwell field in
the Gauss-Bonnet-AdS black hole background
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with the curvature correction that reads

L R2 ¼ ~�ðR����R
���� � 4R��R

�� þ R2Þ; (2)

where ~� is the Gauss-Bonnet coupling constant with di-
mension ðlengthÞ2. It was observed that the higher curva-
ture correction makes the condensation harder to form and
causes the behavior of the claimed universal ratio !=Tc �
8 to become unstable [30–43].
As a matter of fact, in the low-energy limit of heterotic

string theory, the higher-order correction term appears also
in the Maxwell gauge field [44]. Thus, in order to under-
stand the influences of the 1=N or 1=� (� is the ’t Hooft
coupling) corrections on the holographic superconductors
[30], it is interesting to consider the high-order correction
related to the gauge field besides the curvature correction
to the gravity. In this work, in order to grasp the influence
of the correction to the gauge field, we will turn off the
curvature correction and study in a pure Einstein gravity
background for simplicity. We will consider a gauge field
and the scalar field coupled via a generalized Lagrangian
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where LF4 is determined by a quadratic field strength
correction to the usual Einstein-Maxwell field [45–49]

L F4 ¼ c1ðF��F
��Þ2 þ c2F��F

��F��F
��; (4)

with the real numbers c1 and c2. When c1 and c2 are zero, it
reduces to the models considered in [8–10]. Interestingly,
just as is shown in the following discussion, the constraint
can be relaxed to the case 2c1 þ c2 ¼ 0 where the model
(3) reduces to the standard holographic superconductors
studied in [8–10].
Recently the solutions of electrically charged black hole

with the higher correction term in the Maxwell field have
been discussed widely [45–48]; it is interesting to study the
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coupling of the scalar field with the higher-order corrected
Maxwell field, explore the effect of the higher correction in
the Maxwell field on the scalar condensation, and compare
it with the effect of the curvature correction.

Besides the black hole background, we will also extend
our discussion to the AdS soliton background. There has
been a lot of work discussing the holographic insulator and
superconductor phase transitions in the five-dimensional
AdS soliton background [50–57]. The discussion with the
curvature correction in the Ricci flat AdS soliton in Gauss-
Bonnet gravity was discussed in [31,57]. It would be of
great interest to examine the influence of the correction to
the Maxwell field on the holographic insulator and super-
conductor system. In this work, we will compare the
correction to the gauge field with the correction to the
curvature on the condensation in the AdS soliton
background.

In order to extract the main physics, in this work we will
concentrate on the probe limit to avoid the complex com-
putation. The organization of the work is as follows. In
Sec. II, we will study the holographic superconductor
models with F4 corrections in the Schwarzschild-AdS
black hole background. In Sec. III we will extend our
discussion to the Schwarzschild-AdS soliton background.
We will conclude in the last section of our main results.

II. HOLOGRAPHIC SUPERCONDUCTING
MODELS WITH F4 CORRECTIONS

We consider the background of the d-dimensional planar
Schwarzschild-AdS black hole

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2dxidx
i; (5)

where

fðrÞ ¼ r2

L2

�
1� rd�1þ

rd�1

�
; (6)

L is the AdS radius and rþ is the black hole horizon. The
Hawking temperature can be expressed as

T ¼ ðd� 1Þrþ
4�L2

; (7)

which can be interpreted as the temperature of the CFT.
Taking the ansatz c ¼ jc j, At ¼ 	 where c , 	 are

both real functions of r only, we can obtain the equations of
motion from the action (3) in the probe limit

c 00 þ
�
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f
	 ¼ 0;

(9)

where we have set " ¼ 8ð2c1 þ c2Þ which can be used to
describe the F4 correction to the usual Maxwell field.
Obviously, Eqs. (8) and (9) reduce to the standard holo-
graphic superconductor models discussed in [8–10] when
" ¼ 0.
The equations of motion (8) and (9) can be solved

numerically by doing integration from the horizon out to
the infinity. At the horizon r ¼ rþ, the regularity gives the
boundary conditions

c ðrþÞ ¼ f0ðrþÞ
m2

c 0ðrþÞ; 	ðrþÞ ¼ 0: (10)

At the asymptotic AdS boundary r ! 1, the solutions
behave like

c ¼ c�
r��

þ cþ
r�þ

; 	 ¼ �� 


rd�3
; (11)

where � and 
 are interpreted as the chemical potential
and charge density in the dual field theory, respectively,

and �� ¼ 1
2 ½ðd� 1Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ2 þ 4m2L2

p �. It should be

noted that the coefficients c� and cþ both multiply
normalizable modes of the scalar field equations and they
correspond to the vacuum expectation values hO�i ¼ c�,
hOþi ¼ cþ of an operator O dual to the scalar field
according to the AdS/CFT correspondence. Just as in
Refs. [8,9], we can impose a boundary condition so that
either cþ or c� vanishes.

A. The condensation of the scalar operators

In order to discuss the effects of the F4 correction terms
" on the condensation of the scalar operators, we will solve
the equations of motion (8) and (9) numerically. Since we
focus on the effects of the F4 corrections, we will set d ¼ 4
and m2L2 ¼ �2 for concreteness. As a matter of fact, the
other choices of the dimensionality of the spacetime and
the mass of the scalar field will not qualitatively modify our
results. It should be noted that, unlike the Gauss-Bonnet
holographic superconductors which should be in 3þ 1
dimensions at least, we can even construct (2þ 1)-
dimensional holographic superconducting models with
F4 corrections.
In Fig. 1 we present the condensates of the scalar op-

erators O� and Oþ as a function of temperature with
various correction terms " for the mass of the scalar field
m2L2 ¼ �2 in d ¼ 4 dimension. Obviously, the curves in
the right panel of Fig. 1 have similar behavior to the BCS
theory for different ", where the condensate goes to a
constant at zero temperature. However, the curves for the
operator O� will diverge at low temperature, which are
similar to those for the usual Maxwell electrodynamics in
the probe limit, neglecting backreaction of the spacetime
[8]. The behaviors of the condensates for the scalar opera-
tors O� and Oþ show that the holographic superconduc-
tors still exist even we consider F4 correction terms to the
usual Maxwell electrodynamics.

QIYUAN PAN, JILIANG JING, AND BIN WANG PHYSICAL REVIEW D 84, 126020 (2011)

126020-2



From Fig. 1, we see the higher correction term " makes
the condensation gap larger for both scalar operators O�
and Oþ, which means that the scalar hair is harder to be
formed when adding F4 corrections to the usual Maxwell
field. In fact, the Table I shows that the critical temperature
Tc for the operatorsO� andOþ decreases as the correction
term " increases, which agrees well with the finding in
Fig. 1. This behavior is reminiscent of that seen for the
Gauss-Bonnet holographic superconductors, where the
higher curvature corrections make condensation harder,
so we conclude that the F4 corrections to the usual
Maxwell field and the curvature corrections share some
similar features for the condensation of the scalar
operators.

B. Conductivity

Now we are in a position to investigate the influence of
the F4 correction term on the conductivity. Since the con-
densation gap and the critical temperature depend on the
correction term ", which is similar to the Gauss-Bonnet
correction term in the holographic superconductor, we
want to know whether the correction term " will change
the expected universal relation !g=Tc � 8 in the gap

frequency [10] as the Gauss-Bonnet term did.
Considering the perturbed Maxwell field �Ax ¼

AxðrÞe�i!tdx, we obtain the equation of motion for �Ax,
which can be used to calculate the conductivity

A00
x þ

�
d� 4

r
þ f0

f
þ 2"	0	00

1þ "	02

�
A0
x

þ
�
!2

f2
� 2c 2

fð1þ "	02Þ
�
Ax ¼ 0: (12)

We still restrict our study to d ¼ 4 for simplicity. Though
the above equation is more complicated than that in usual
Einstein-Maxwell electrodynamics, the ingoing wave
boundary condition near the horizon is still given by

AxðrÞ � fðrÞ�ði!=3rþÞ; (13)

and in the asymptotic AdS region

Ax ¼ Að0Þ þ Að1Þ

r
: (14)

Thus, we can obtain the conductivity of the dual supercon-
ductor by using the AdS/CFT dictionary [8,9]

� ¼ � iAð1Þ

!Að0Þ : (15)

For different values of F4 correction term ", one can obtain
the conductivity by solving the Maxwell equation numeri-
cally. We will focus on the case for the fixed scalar mass
m2L2 ¼ �2 in our discussion.
In Fig. 2 we plot the frequency dependent conductivity

obtained by solving the Maxwell Eq. (12) numerically for
" ¼ �0:01, 0, 0.01, 0.05, 0.1 and 0.2 at temperatures

TABLE I. The critical temperature Tc for the operators O� and Oþ with different values of " for d ¼ 4 and m2L2 ¼ �2. We have
set 
 ¼ 1 in the table.

" �0:01 �0:001 0 0.001 0.01 0.1 0.2 0.3

O� 0.2260 0.2256 0.2255(4) 0.2255(0) 0.2251 0.2219 0.2189 0.2163

Oþ 0.1233 0.1188 0.1184 0.1181 0.1151 0.0993 0.0900 0.0836
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FIG. 1 (color online). The condensates of the scalar operatorsO� andOþ as a function of temperature for the mass of the scalar field
m2L2 ¼ �2 in d ¼ 4 dimension. The four lines from bottom to top correspond to increasing correction term, i.e., " ¼ �0:01 (red and
dashed), 0.01 (blue), 0.1 (green) and 0.2 (black and dashed), respectively.
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T=Tc � 0:2. The blue (solid) line and red (dashed) line
represent the real part and imaginary part of the conduc-
tivity �ð!Þ respectively. We find a gap in the conductivity
with the gap frequency!g. For the same mass of the scalar

field, we observe that with the increase of the F4 correction
term ", the gap frequency !g becomes larger. Also, for

increasing F4 correction term, we have larger deviations
from the value !g=Tc � 8. This shows that the high F4

corrections really change the expected universal relation in
the gap frequency, which is similar to the effect of the
Gauss-Bonnet coupling.

III. HOLOGRAPHIC SUPERCONDUCTOR/
INSULATOR TRANSITIONS WITH F4

CORRECTIONS

In Refs. [31,57], we discussed the holographic dual to
Gauss-Bonnet-AdS soliton in the usual Maxwell electro-
dynamics. It shows that although the Gauss-Bonnet term
has no effect on the Hawking-Page phase transition be-
tween AdS black hole and AdS soliton, it does have an
effect on the scalar condensation and conductivity in
Gauss-Bonnet-AdS soliton configuration. In this section
we will examine the effect of F4 correction in the
Schwarzschild-AdS soliton background and explore its
influence on the insulator and superconductor phase
transition.

A. Superconductor/insulator phase in the AdS soliton

Making use of two wick rotations for the AdS
Schwarzschild black hole given in (5), we can obtain the
d-dimensional AdS soliton

ds2 ¼ �r2dt2 þ dr2

fðrÞ þ fðrÞd’2 þ r2dxjdx
j; (16)

with

fðrÞ ¼ r2

L2

�
1� rd�1

s

rd�1

�
: (17)

Note that there does not exist any horizon in this solution

and r ¼ rs is a conical singularity. Imposing a period � ¼
4�L2

ðd�1Þrs for the coordinate ’, we can remove the singularity.

Beginning with the generalized Lagrangian (3), we can
get the equations of motion for the scalar field and gauge
field in the probe limit

c 00 þ
�
d� 2

r
þ f0

f

�
c 0 þ

�
	2

r2f
�m2

f

�
c ¼ 0; (18)

�
1þ 3"f
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	02

�
	00 þ

�
d� 4

r
þ f0

f
þ "

�
2f0

r2
� f

r3

�
	02

�
	0

� 2c 2

f
	 ¼ 0: (19)

Using the shooting method, we will solve these two equa-
tions numerically with appropriate boundary conditions at
r ¼ rs and at the boundary r ! 1. At the tip r ¼ rs, the
solutions behave like

c ¼ ~c 0 þ ~c 1ðr� rsÞ þ ~c 2ðr� rsÞ2 þ . . . ;

	 ¼ ~	0 þ ~	1ðr� rsÞ þ ~	2ðr� rsÞ2 þ . . . ;
(20)

where ~c i and ~	i (i ¼ 0; 1; 2; . . . ) are integration constants,
and we impose the Neumann-like boundary condition to
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FIG. 2 (color online). Conductivity of (2þ 1)-dimensional superconductors with the F4 corrections for the fixed mass of the scalar
field m2L2 ¼ �2 and different correction terms, i.e., " ¼ �0:01, 0, 0.01, 0.05, 0.1 and 0.2.
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keep every physical quantity finite [50]. Obviously, we can
find a constant nonzero gauge field 	ðrsÞ at r ¼ rs. This is
in strong contrast to the AdS black hole, where 	ðrþÞ ¼ 0
at the horizon. Near the AdS boundary r ! 1, the solu-
tions have the same form just as Eq. (11). For clarity, we
will take d ¼ 5 and still use the probe approximation in our
calculation.

It is well-known that the solution is unstable and a hair
can be developed when the chemical potential is bigger
than a critical value, i.e., �>�c. However, the gravita-
tional dual is an AdS soliton with a nonvanishing profile for
the scalar field c if �<�c, which can be viewed as an
insulator phase [50]. Thus, around the critical chemical
potential �c there is a phase transition between the insu-
lator and superconductor phases. We will examine the
effect of the F4 correction term on �c numerically.

In Fig. 3, we plot the condensations of scalar operators
Oþ andO� with respect to the chemical potential� in the
5-dimensional AdS Soliton for different F4 correction
terms with the fixed scalar mass m2L2 ¼ �15=4. From

this figure, we find that the critical chemical potential�c is
independent of the correction term ". As a matter of fact,

selecting the mass of the scalar field in the range� ðd�1Þ2
4 <

m2L2 <� ðd�1Þ2
4 þ 1 for d ¼ 5 where both modes of the

asymptotic values of the scalar fields are normalizable, we
obtain �c� and �cþ for scalar operators hO�i and hOþi
with different values of m and " respectively

�c� ¼ 0:409 and �cþ ¼ 2:261;

for m2L2 ¼ �13=4 and 8 ";

�c� ¼ 0:598 and �cþ ¼ 2:099;

for m2L2 ¼ �7=2 and 8 ";

�c� ¼ 0:836 and �cþ ¼ 1:888;

for m2L2 ¼ �15=4 and 8 ": (21)

It is shown the critical chemical potentials �c� and �cþ
are independent of the correction term " for the fixed mass
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FIG. 3 (color online). The condensates of the scalar operators Oþ and O� with respect to the chemical potential � for the mass of
the scalar field m2L2 ¼ �15=4 in d ¼ 5 dimension. In each panel, the four lines from bottom to top correspond to increasing
correction term, i.e., " ¼ �0:5 (red and dashed), 0.0 (blue), 0.5 (green) and 1.0 (black and dashed), respectively.
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FIG. 4 (color online). The charge density 
 as a function of the chemical potential � with fixed mass of the scalar field m2L2 ¼
�15=4 when hOþi � 0 (left) and hO�i � 0 (right). Their derivatives jump at the phase transition points. In each panel, the four lines
from bottom to top correspond to increasing correction term, i.e., " ¼ �0:5 (red and dashed), 0.0 (blue), 0.5 (green) and 1.0 (black and
dashed), respectively.
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of the scalar field, which is in contrast to the case of
considering the Gauss-Bonnet correction term [31,57].
However, the critical chemical potentials �c� and �cþ
depend on the mass of the scalar field, i.e., �c� for the
scalar operator O� becomes smaller with the increase of
the scalar field mass, but larger scalar field mass leads to
higher �cþ for the scalar operator Oþ, which is in agree-
ment with the results in Refs. [31,50].

In Fig. 4, we plot the charge density 
 as a function of
the chemical potential � when hOþi � 0 (left) and
hO�i � 0 (right) for m2L2 ¼ �15=4. For each chosen ",
we see that when� is small, the system is described by the
AdS soliton solution itself, which can be interpreted as the
insulator phase [50]. When � reaches�c� or �cþ, there is
a phase transition and the AdS soliton reaches the super-
conductor (or superfluid) phase for larger �. Still, we can
find that the correction terms " do not have any effect on
the critical chemical potentials �c� and �cþ for the fixed
mass of the scalar field.

B. Analytical understanding of the superconductor/
insulator phase transition

Here we will apply the Sturm-Liouville method [26] to
analytically investigate the properties of holographic insu-
lator/superconductor phase transition with F4 corrections.
We will analytically calculate the critical chemical poten-
tial which can accommodate the phase transition.

Introducing a new variable z ¼ 1=r, we can rewrite
Eqs. (18) and (19) for d ¼ 5 into

c 00 þ
�
f0

f
� 1

z

�
c 0 þ

�
	2

z2f
� m2

z4f

�
c ¼ 0; (22)

ð1þ 3"fz6	02Þ	00 þ
�
1

z
þ f0

f
þ "z5ð7fþ 2zf0Þ	02

�
	0

� 2c 2

z4f
	 ¼ 0; (23)

where the prime denotes the derivative with respective to z.
At the critical chemical potential �c, the scalar field

c ¼ 0. Thus, near the critical point Eq. (23) reduces to

ð1þ3"fz6	02Þ	00 þ
�
1

z
þf0

f
þ"z5ð7fþ2zf0Þ	02

�
	0 ¼0:

(24)

With the Neumann-like boundary condition (20) for the
gauge field 	 at the tip r ¼ rs, we can obtain the physical
solution 	ðzÞ ¼ � to Eq. (24) when �<�c. Considering
the asymptotic behavior given in Eq. (11), close to the
critical point �c, this solution indicates that 
 ¼ 0 near
the AdS boundary z ¼ 0, which agrees with our previous
numerical results.

As � ! �c, the scalar field Eq. (22) reduces to

c 00 þ
�
f0

f
� 1

z

�
c 0 þ

�
�2

z2f
� m2

z4f

�
c ¼ 0; (25)

which is the master equation to give the critical chemical
potential �c in the Sturm-Liouville method.
Before going further, wewould like to comment Eq. (25).

Although Eq. (24) for 	 depends on ", but the correction
terms " are absent in the master Eq. (25). Thus, we can
immediately conclude that the F4 correction term do not
have any effect on the critical chemical potential�c for the
fixed mass of the scalar field. However, for the black hole
background, due to the difference of boundary conditions at
the horizon, the physical solution	ðrÞ of Eq. (9) depends on
", this results in the appearance of the correction term " in
the master equation derived from Eq. (8). Thus, in this case
the F4 correction terms do have effect on the critical tem-
perature Tc for the AdS black hole, which agrees well to the
numerical results.
Still, we will work on Eq. (25) to understand the depen-

dence of the critical chemical potential on the mass of the
scalar field analytically. As in [26], we introduce a trial
function FðzÞ near the boundary z ¼ 0 which satisfies

c ðzÞ � hOiiz�iFðzÞ; (26)

with i ¼ þ or i ¼ �. Note that the function FðzÞ has the
boundary condition Fð0Þ ¼ 1 and F0ð0Þ ¼ 0 [26]. So the
equation of motion for FðzÞ is

F00 þ
�
2�i

z
þ

�
f0

f
� 1

z

��
F0 þ

�
�ið�i � 1Þ

z2
þ �i

z

�
f0

f
� 1

z

�

þ 1

z4f
ð�2z2 �m2Þ

�
F ¼ 0: (27)

Defining a new function

TðzÞ ¼ z2�i�3ðz4 � 1Þ; (28)

we can rewrite Eq. (27) as

ðTF0Þ0 þ T

�
�ið�i � 1Þ

z2
þ �i

z

�
f0

f
� 1

z

�

þ 1

z4f
ð�2z2 �m2Þ

�
F ¼ 0: (29)

According to the Sturm-Liouville eigenvalue problem [58],
we obtain the expression which will be used to estimate the
minimum eigenvalue of �2

�2 ¼
R
1
0 TðF02 �UF2ÞdzR

1
0 VF

2dz
; (30)

with

U ¼ �ið�i � 1Þ
z2

þ �i

z

�
f0

f
� 1

z

�
� m2

z4f
; V ¼ T

z2f
:

(31)
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In the following calculation, we will assume the trial
function to be FðzÞ ¼ 1� az2, where a is a constant.

For clarity, we will take i ¼ þ and one can easily extend
the study to the case of i ¼ �. From Eq. (30), we obtain
the expression for i ¼ þ

�2 ¼ �ða; �Þ
�ða; �Þ ; (32)

with

�ða;mÞ¼� 4a2

12þm2þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p

�8þm2þ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p

2

�
�

1

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p � 2a

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p þ a2

4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
�
;

�ða;mÞ¼� 1

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
Þþ

a

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p

� a2

2ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
Þ : (33)

For different values of the mass of scalar field, we can get
the minimum eigenvalue of �2 and the corresponding
value of a, for example, �2

min ¼ 5:121 and a ¼ 0:361 for

m2L2 ¼ �13=4,�2
min ¼ 4:416 and a ¼ 0:348 form2L2 ¼

�14=4, and �2
min ¼ 3:574 and a ¼ 0:330 for m2L2 ¼

�15=4. Then, we have the critical chemical potential
�c ¼ �min [55], i.e.,

�c ¼ 2:263; for m2L2 ¼ �13=4;

�c ¼ 2:101; for m2L2 ¼ �7=2;

�c ¼ 1:890; for m2L2 ¼ �15=4:

(34)

Comparing with numerical results in Eq. (21), we find that
the analytic results derived from Sturm-Liouville method
are in good agreement with the numerical calculation.

Thus, we conclude that, unlike the holographic super-
conductor models, the holographic superconductor/

insulator transitions is not affected by the F4 correction
terms but only depends on the mass of the scalar field.

IV. CONCLUSIONS

We have investigated the behavior of the holographic
superconductors in the presence of the a quadratic field
strength correction F4 to the usual Maxwell field. Different
from the same order curvature correction in the Gauss-
Bonnet holographic dual models which only appears in
spacetime with dimension higher than 3þ 1, F4 correction
can appear basically in all dimensions. We found that
similar to the curvature correction, in the black hole back-
ground, the higher F4 correction term can make the con-
densation harder to form and result in the larger deviations
from the universal value !g=Tc � 8 for the gap frequency.

Thus, the F4 corrections and the Gauss-Bonnet corrections
share some similar features for the holographic supercon-
ductor system. However, the story is completely different if
we study the holographic superconductor/insulator transi-
tions with the F4 correction. In contrast to the curvature
correction effect, we observed in the AdS soliton back-
ground that the critical chemical potentials are independent
of the F4 correction term, which tells us that the correction
to the Maxwell field will not affect the properties of the
holographic superconductor/insulator phase transition. We
confirmed our numerical result by using the Sturm-
Liouville analytic method and concluded that different
from the AdS black hole background, the corrections to
the gravity and gauge field do play different roles in the
holographic superconductor and insulator phase transition.
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