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We explore 1=4-BPS objects in the Coulomb phase of the ADE-type 6-dim (2,0) superconformal

theories. By using the previous work on the junctions of strings in 5-dim gauge theories and 6-dim

superconformal theories, we count the number of 1=4-BPS objects, which are made of waves on self-dual

strings and junctions of self-dual strings, and show that for all cases the number matches exactly one-third

of the anomaly constant cG ¼ dGhG which is the product of dimension dG and dual Coxeter number hG.

This suggests the long sought after N3 degrees of freedom are these 1=4-BPS objects at least in the

Coulomb phase.
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I. INTRODUCTION

The 6-dim (2,0) superconformal field theories form an
important cornerstone for the M-theory structure and for
the whole hierarchy of supersymmetric field theories. They
come as the ADE type and are realized as the low energy
dynamics of type IIB string theory on ADE-type singular-
ities [1]. The AD-type theories are also realized as the low
energy dynamics on parallel M5 branes, maybe with OM5
orientifold. These theories are purely quantum and the
exact nature of its nonabelian description is not well-
understood. It is known from gravity dual that the entropy
scales like N3 for AN�1 ¼ SUðNÞ theory [2,3]. In the
generic Coulomb phase, there exist obviously 1=2-BPS
self-dual strings whose multiplicity is of order N2.
Sometime ago it has been suggested that the additional
degrees of freedom could manifest in the Coulomb phase
as 1=4-BPS three self-dual string junctions [4]. We want
here to make further developments and elaborations on
this idea.

A finer counting of the degrees of freedom was proposed
by the anomaly calculation under the global SOð5Þ R-
symmetry of the (2,0) theories [5–7]. This has been further
supported by recent works on M5 branes via the conformal
field theory [8,9]. The anomaly coefficient for the ADE
type is the product cG ¼ dG � hG of dimension dG and dual
Coxeter number hG. The number cG for the ADE-type
group is divisible by 6. In this work, we explore the
1=4-BPS objects in the generic Coulomb phase of the
(2,0) theories of ADE type. Irreducible 1=4-BPS objects
consist of BPS waves on self-dual strings and junctions
made of three self-dual strings. By irreducible we mean
that they are the simplest and indivisible 1=4-BPS objects.
While a self-dual string can turn to its anti-self-dual string

by a spatial rotation, these 1=4-BPS objects and its anti-
objects are distinguishable. In this work we count the
number of 1=4-BPS objects and its anti-objects by consid-
ering their charges only, and found the number is exactly
cG=3 for all ADE-type theories. Our counting suggests that
there may be no further degrees of freedom to account.
In Ref. [4], it has been argued that there are further less

supersymmetric nonplanar BPS webs of self-dual strings.
Their basic elements are 1=4-BPS junctions and so it may
be not necessary to count them as the fundamental degrees
of freedom. The key for these BPS webs of strings is the
locking of the internal SOð5Þ R-symmetry with the spatial
SOð5Þ rotational symmetry. In Ref. [7], the SOð5ÞR anom-
aly is studied in the Coulomb phase by the Wess-Zumino-
Witten term for the five scalar fields, where self-dual
strings appear as skyrmions with the topology �4ðS4Þ ¼
Z. Our counting suggests that there may be a way to
include 1=4-BPS junctions to this argument. (See [10] for
the anomaly analysis for the monopole strings in 5-dim
gauge theory.) One can take a somewhat different approach
in the Coulomb phase. One can ask for the Wilsonian
effective Lagrangian for the abelian modes, which would
be expressed in terms of the derivative expansion. The
contributions to higher order derivative terms would con-
tain various bubbles of BPS and anti-BPS objects. It would
be great if one can obtain these terms and identify the
contributions. The quantum bubbles of junctions and
anti-junctions may have contributed to these effective
Lagrangian.
Another approach to the 6-dim (2,0) theory is to com-

pactify them on a circle of radius R6. The resulting theory
in the low energy limit becomes the 5-dim maximally
supersymmetric Yang-Mills theory with the dimensionful
coupling of order R6. Surprisingly, instanton solitons
in this 5-dim theory play the role of the Kaluza-Klein
modes of the underlying (2,0) theory [11]. While the
5-dim theory is weakly coupled in the low energy, it has
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the dimensionful coupling constant and so is nonrenorma-
lizable theory. It is presumably divergent in ultraviolet
region, and so UV incomplete in perturbative sense. As
the 6-dim (2,0) theory, even after the circle compactifica-
tion, is expected to be complete. If the instantons represent
all KK modes of the 6-dim theory, the 5-dim theory would
be complete by its own if one keeps all nonperturbative
effects [12,13].

Since the 5-dim gauge theory entropy scales like N2, at
least at small energy or perturbative regime, the N3 states
must be hidden in someway. Our paper is in part stimulated
by these recent conjectures althoughwewill not rely directly
on them in our arguments. So what could be the possible
solutions to the N3 problem? We can divide the possible
solutions in two categories: (I) The fundamental degrees of
freedom are not present in the 5d description at all. They
must thus be in the extra KKmodes and not accessiblewhen
the temperature is small. (II) The fundamental degrees of
freedom are already there but hidden in some way.

There are some reasons to be skeptical about option (I).
In this case we would be forced to consider two different
kind of fundamental degrees of freedom, those of the 5d
theory and theN3 ones in higher KKmodes. But instantons
of the 5d theory are KK modes. There may be more KK
modes besides those captured by instantons, but there is no
concrete evidence for that yet. The naive counting of BPS
instantons does not generate N3. Classically they have
many zero modes, but quantum mechanically one expects
that there is only single threshold bound state for each
instanton number besides the spin counting. There is a
proposal that instantons are made of N instanton partons
of mass 1=ðNR6Þ and instanton partons fall to the adjoint
representation [14,15]. The number of instanton partons
would then lead to the N3 counting. Recently we have
proposed more concrete realization of this instanton par-
tons [16], but there is no evidence yet that instanton partons
are in adjoint representation. Especially the instanton par-
tons are intrinsically related to the compactification as they
are presumably arising from a single M5 brane wrapping
the compactification circle N times. It remains to see
whether instanton partons play any role in counting N3

degrees of freedom. (For a somewhat completely different
approach to introduce N3 d.o.f. in 3,4 dim, see Ref. [17].
Also for somewhat interesting approach to nonabelian
tensor field, see Ref. [18].)

Option (II) sounds better but still requires some further
specifications. Additional states could be formed as a
bound or confinement of BPS objects, for example, dyonic
instantons. When temperature goes up, the bound states
would be broken to their fundamental components.
However the N3 entropy is what we see even at arbitrary
high temperature. Furthermore we should also have a good
reason to selectN3 instead ofN4 orN5. Bounded states can
be created with any number of legs and so there seems to be
no criterion to prefer N3.

We thus conclude that N3 states if they emerge from
somewhere must be strange, at least at first glance. First
they must have three legs, and being absolutely stable, no
matter what the energy is. Higher leg object could exists,
but they must be just composite of the three leg ones.
Second they cannot be states with finite energy. This could
sound in contrast with the fact that the entropy counts the
number of states up to a certain energy, and infinite energy
objects are not counted.
One way out is that these states could be confined

objects like quarks or gluons in QCD. The transition
from N2 to N3 of the entropy, as the temperature increases
in 5-dim gauge theories, is analogous to the deconfinement
transition in UðNÞ QCD where the entropy jumps from
order N0 to order N2. The energy of a single quark is
divergent in the confined phase. The free energy of a single
quark becomes instead finite when the temperature reaches
the deconfinement transition and so they can count in the
entropy. Actually the gluons dominate in the count because
they are of order N2.
Infinite energy objects with three legs have been found

in Ref. [4] as 1=4-BPS junctions of monopole strings in the
Coulomb phase of the 5-dim theories. The junctions have
all the requirements we are looking for to be a good
candidate for the N3 degrees of freedom. They are already
present in the 5d theory. Each junction has three legs and
absolutely stable, and then BPS objects with more legs are
just composite objects of the junctions. They have infinite
energy due to the string legs. As one needs half of each
monopole string to make the junction, it is absolutely
stable once the boundary configurations are fixed. Our
approach in this work can be regarded as a refined point
of view of the pant diagrammade byM2 branes connecting
three M5 branes [19]. The pant diagram can be regarded as
a bound state of junction and anti-junction.
Still many questions remain to be answered though.

What is the exact nature of this deconfinement phase
transition? The flat direction disappears in any finite tem-
perature, leading to the gauge symmetry restoration. At
zero temperature, a junction and its anti-junction are
bounded by a linear potential and so confined. An interest-
ing problem which we do not attempt here is to count the
number of independent unstable massive mesons in the
Coulomb phase of 5d theories or 6d theories. They would
contribute to the scattering amplitude and the high deriva-
tive low energy effective Lagrangian for the abelian de-
grees of freedom.
The anomaly polynomial under the general background

of the SOð5ÞR gauge field strength F and graviational
curvature R for a single M5 brane [20] is

I8ð1Þ ¼ 1

48

�
p2ðFÞ � p2ðRÞ þ 1

4
ðp1ðFÞ � p1ðRÞÞ2

�
; (1)

where pk is the k-th Pontryagin class. The similar anomaly
polynormial for the 6-dim (2,0) theories of the group G is
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calculated for AD-type and also conjectured for the E-type
to be [5–7]

I8½G� ¼ rGI8ð1Þ þ cG � p2ðFÞ
24

; (2)

where rG is the rank of the group and cG is the anomaly
coefficient. The anomaly coefficient cG is the product of
the dimension dG of the group and the dual Coxeter
number hG so that

cG ¼ dG � hG: (3)

Table I enlists all rG, dG, hG and cG=3 for the ADE-type
groups.

More recently there were several works exploring the
M5 branes wrapped on a certain kind of 4-dim manfolds,
resulting in 2d (2,0) superconformal field theory with Uð1Þ
R-symmetry. The central charge of the Toda theory of
similar gauge group takes a similar structure [8,9] as it is
given as

cToda½G� ¼ rG þ cGQ
2; (4)

where Q ¼ ð�1 þ �2Þ2=ð�1�2Þ if the 6-dim theory is com-
pactified on R4 with equivariant parameters �1;2.

The plan of the paper is as follows. In Sec. II, we first
review the BPS junctions in 5-dim gauge theories. In
Sec. III, we count 1=4-BPS objects and anti-objects in
the (2,0) theories of ADE types. Finally in Sec. IV, we
close with some concluding remarks.

II. 5-DIM GAUGE THEORIES AND JUNCTIONS

Let us start with the (2, 0) AN�1 ¼ SUðNÞ superconfor-
mal theory in 5þ 1 which describes the low energy phys-
ics ofN M5 branes. Upon compactification on a circle with
x5 � x5 þ 2�R5, the physics below KK scale is described
by the 5-dim maximally supersymmetric SUðNÞ Yang-
Mills theory. This in turn is the description of the low
energy dynamics of parallel N D4 branes. This 5d theory
has the coupling constant

8�=g25 ¼ 1=R6: (5)

The theory has 16 supercharges and consist of a gauge
multiplet, which is composed of the gauge field, AM, M ¼
0, 1, 2, 3, 4, the scalar field �I, I ¼ 1, 2, 3, 4, 5 and the
gaugino spinor field �. The bosonic part of Lagrangian is

LB¼ 1

2g25
trð�FMNF

MN�2DM�ID
M�Iþ½�I;�J�2Þ: (6)

We have three main topological charges in the Coulomb
phase: the electric charge QE, the magnetic charge QM of
monopole strings and the instanton charge QI . The super-
symmetry transformation for the gaugino field in 10-dim
notation is

��¼1

2
�MNFMNþ�MðIþ4ÞDM�I� i

2
�ðIþ4ÞðJþ4Þ½�I;�J�;

(7)

where �M,M ¼ 0; 1; . . . ; 9 is the 10-dim gamma matrices.
Under the SOð5Þ R-symmetry, the spinor transforms as 4
and �4 and the scalars transform as 5. In the Coulomb phase,
the scalar field takes a nonzero expectation value and the R
and gauge symmetries are spontaneously broken. The di-
agonalized scalar vacuum expectation values denote the
position of M5 or D4 branes in normal R5 space modulo
string scale. Massive W-bosons, monopole strings, and
instantons are 1=2-BPS objects.
Let us consider first the simplest case: the SUð2Þ group

with the scalar field expectation h�5i ¼ ðv;�vÞ=2. There
exist nonlocal 1=2-BPS monopole strings, corresponding
to D2 branes connecting two D4 branes. Monopole strings
lying along x4 axis are described by the self-dual equation

Fij ¼ �ijkDk�5; i; j; k 2 f1; 2; 3g; (8)

and the unbroken susy parameter satisfies

�1239� ¼ �: (9)

The tension of a single monopole string is

Ts ¼ 4�v

g25
: (10)

Interestingly anti-monopole strings are equivalent to
monopole strings. A rotation x3, x4 axis by 180 degrees
flips the sign of the supersymmetric condition (9). This is
related to the fact that a single monopole string can make a
closed loop of trivial quantum number. In the strong cou-
pling limit, the monopole strings would become 1=2-BPS
self-dual strings once we keep v=g25 constant, which char-

acterizes the relative position of two M5 branes.
There exists one 1=2-BPS massless vector multiplet for

the unbroken abelian subgroup Uð1Þ. For example, we can
choose the momentum direction along x4 axis, and the
conserved supersymmetry would be fixed by the condition

�04� ¼ �: (11)

There are also one 1=2-BPS massive charged vector mul-
tiplet and instanton multiplet whose supersymmetric con-
ditions are, respectively,

�09� ¼ �; �1234� ¼ �: (12)

The 5-dim massive W-bosons are interpreted as self-dual
strings wrapping the compactified circle, and the 5-dim
instanton solitons are just KK modes along x5 direction.
There are 1=2-BPS dyonic strings which are monopole

TABLE I. rG, dG, hG and cG=3 for simple-laced groups ADE.

Group rG dG hG cG=3

AN�1 ¼ SUðNÞ N � 1 N2 � 1 N 1
3NðN2 � 1Þ

DN ¼ SOð2NÞ N Nð2N � 1Þ 2ðN � 1Þ 2
3Nð2N � 1ÞðN � 1Þ

E6 6 78 12 312

E7 7 133 18 798

E8 8 248 30 2480
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strings with uniform electric charge density. These dyonic
strings describe the self-dual strings which are tilted in,
say, x4, x5 plane and so are wrapping x5 circle but are
extended along x4 axis.

Let us now consider the 1=4-BPS objects in the 5-dim
SUð2Þ gauge theory. Dyonic instantons [21,22] are
1=4-BPS objects with their supersymmetric parameters
satisfying both conditions in Eq. (12). Similarly, one could
have 1=4-BPS objects made of massless waves on mag-
netic monopole strings lying along, say, x4 axis. Their
supersymmetric parameter satisfies

�1239� ¼ �; �04� ¼ ��: (13)

Depending on the sign of the second condition above, the
massless wave on the string would left or right moving. A
way to approach the wave on monopole strings is to con-
sider the zero modes of BPS monopoles, and lift them to
the zero modes of monopole strings. Instead of the position
and phase of BPS monopoles, we would get the massless
modes along monopole strings.

Both dyonic instantons and waves on monopole strings
get lifted to the same kind of 1=4-BPS objects in 6-dim:
massless waves on self-dual strings. The self-dual strings
with left and right moving waves form 1=4-BPS objects
and anti-objects. For the SUð2Þ case, there exists no more
1=4-BPS objects and so the number of 1=4-BPS object in
the 6-dim theory is 2 ¼ cA1

=3.

Let us now consider the 5-dim theory with AN�1 ¼
SUðNÞ gauge group. There exist 1=2-BPS monopole
strings for any root, say, � ¼ ei � ej, in the generic

Coulomb phase which correspond to the D2 branes con-
necting i-th D4 brane to j-th D4 branes. As none of three
D4 branes are lined up in the generic Coulomb phase, there
would be only four zero modes for each 1=2-BPS mono-
pole strings. The tension of the 1=2-BPS monopole strings
would be proportional to the distance between two D4
branes so that

T� � 1

g25
j� ��Ij: (14)

The string for the opposite �� root is again obtained just
by a spatial rotation. Lifting to the 6d (2,0) theories in the
generic Coulomb phase, there exist 1=2-BPS self-dual
strings with four zero modes and the same tension.

From our understanding of the left and right moving
waves on monopole strings and also dyonic instantons, one
sees that the 1=4-BPS moving waves on self-dual strings
could have a finite transverse energy profile. As the wave is
moving with speed of light, the profile of the wave is
stationary and has no dissipation. Figure 1 shows two kinds
of representations for both left and right moving waves on
the self-dual string corresponding to the root � ¼ ei � ej.

To see less supersymmetric BPS objects in 5-dim theory,
let us recall the minimally supersymmetric, or 1=16, BPS
webs of monopole strings arise from the locking of the

spatial SOð4Þ rotation to SOð4Þ of SOð5Þ R-symmetry. In
5d Yang-Mills theory, the BPS equation for the BPS dyonic
webs of monopole strings [4,23] is

Fab � �abcdDc�d þ i½�a;�b� ¼ 0;

Da�a ¼ 0;

Fa0 ¼ Da�5; D
2
a�5 � ½�a; ½�a;�5�� ¼ 0;

(15)

where a, b, c, d ¼ 1, 2, 3, 4 and the Gauss law is used with
the gauge A0 ¼ �5.
Besides the 1=2-BPS monopole strings, the simplest

ones are 1=4-BPS planar junctions of monopole strings
[4], which can exist when N � 3. One needs generic scalar
expectation value so that any given three D4 branes char-
acterized by indices i, j, k are not aligned. Three corre-
sponding roots � ¼ ei � ej, � ¼ ej � ek, � ¼ ek � ei
have the vanishing sum. There are 1=2-BPS self-dual
strings for each root defined by a pair of D4 branes.
Once three strings are on the plane and form a junction
such that the junction form a dual lattice to the triangle
defined by � ��I, � ��I, � ��I, the tension of self-dual
string gets balanced and the junction becomes 1=4-BPS
[4]. If the string junction lies on x3, x4 plane with �3, �4

involved, the preserved supersymmetric parameter satisfies

�1238� ¼ �1247� ¼ � (16)

The BPS equation for the 1=4-BPS junction becomes

F12¼D3�4�D4�3�i½�3;�4�; F23¼D1�4;

F31¼D2�4; F14¼D2�3; F42¼D1�3;

D3�3þD4�4¼0:

(17)

Anti-junction has the opposite charge orientation. Figure 2
shows both such 1=4-BPS junctions and anti-junctions.
Dyonic string webs would be also 1=4-BPS as they can
be obtained from the self-dual string webs tilted along x5

direction and stacked periodically along x5 direction.
Before we count the 1=4-BPS objects in the (2,0) theo-

ries, let us consider an important issue of the energy scales
of the theory in the Coulomb branch of the 5-dim theory.
What follows is summarized in Fig. 3. The Coulomb
branch becomes quantitative tractable when the brane
separation is big enough so that

v 	 1=g25: (18)

j

α

αi

j
i

FIG. 1 (color online). Two representations of 1=4 left and right
moving BPS waves on a self-dual string.
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At low energies the theory is 5-dim abelian gauge theory. At
the KK scale 1=R6 � 1=g25, the theory becomes 6-dim but

still abelian. Strings junctions are confined in the Coulomb
phasewith linearly divergent energy due to the three infinite
strings attached. Only junction and anti-junction bound
states can have finite energy and thus contribute to the
entropy counting. With the monopole string tension Ts �
v=g25, the region from

ffiffiffiffiffi
Ts

p
to v is our sweet spot. In this

region, the theory is still weakly coupled and since there is a
parametric separation between the string scale

ffiffiffiffiffi
Ts

p
and the

UV completion scale v we can treat the string as if it were
fundamental and quantize it. For a quantum free string the
exponential growth of the number of state with the energy
level sets a superior limit for the possible temperature,
the so called Hagedorn temperature given by scale set by
the tension

ffiffiffiffiffi
Ts

p
. At this temperature the free energy of the

string F ¼ E� TS becomes zero. The reason is that both
entropy S and energy E are linearly growing with the
length, and so at the right temperature the entropy term
dominates over the energy term. For a interacting string,
with parametrically suppressed thickness, the Hagedorn
temperature clearly can be crossed as the energy density
becomes bigger than the UV completion scale v. Above
this limit the underling UV completion should dictate the
phase of the theory. So it is now important to stress that
from the string perspectivewewill never be able to tell what
is above the Hagedorn temperature. But we can infer in-
directly that the strings is not in the fundamental degrees of
freedom, because its partition function would diverge, and
thus we can think of it as deconfining. (In QCD something
similar happens, although without parametric suppression
we do not have a range of parameters in which we can
quantitatively treat the string as fundamental. But the quali-
tative relation between Hagedorn transition and deconfine-
ment should remain true.)

Another way to approach the nonabelian degrees of
freedom is to find the 5d low energy effective Lagrangian
for the abelian degrees of freedom. While there is the usual
perturbative contributions by W-boson loops, one expects
also the nonperturbative contributions by instanton loops,
self-dual string virtual bubbles and also by junction bub-
bles. The ultraviolet completeness of the 5d theories, if it is
true, should include all these nonperturbative effects.

III. COUNTING 1=4-BPS OBJECTS IN
ADE-TYPE (2,0) THEORIES

We now start to count the number of 1=4-BPS objects
characterized by what kinds of charge they carry. Let us
recall how to count the degrees of freedom for the 4-dim
SUðNÞ gauge theory onN D3 branes in the Coulomb phase
in the weak coupling limit. First of all the SUðNÞ gauge
symmetry is spontaneously broken in the Coulomb phase
to Uð1ÞN�1. For each pair of distinct branes we have a
charged W-boson and anti W-boson, which count as
NðN � 1Þ. For each brane we have a photon which count
as N � 1, subtracting the global Uð1Þ. Total light 1=2-BPS
object is N � 1þ NðN � 1Þ ¼ N2 � 1, corresponding to
the adjoint representation.
Let us now consider the (2,0) theory in the generic

Coulomb phase with gauge group AN�1 ¼ SUðNÞ. The
NðN � 1Þ root vectors of the Lie algebra AN�1 can be
represented by ei � ej, where ei with i ¼ 1; � � �N are

N-dim orthonormal vectors. There are 1=2-BPS N � 1
massless particles or waves corresponding to the Cartan
elements of the Lie algebra and there are 1=2-BPS
NðN � 1Þ=2 self-dual strings. 1=2-BPS massless particles
of N � 1 kinds have finite energy, but 1=2-BPS strings
of NðN � 1Þ=2 kinds have infinite energy. It is difficult to
say they together form an adjoint representation.
Let us turn our attention to the 1=4-BPS objects in the

generic Coulomb phase. There are 1=4-BPS objects made
of left and right moving waves on 1=2-BPS self-dual
strings. As there are left and right moving waves for a
given self-dual string, there exist 2� NðN � 1Þ=2 ¼
NðN � 1Þ such objects. The 1=4-BPS junctions can exist
for any three choice of M5 branes, or any three roots �, �,
� such that their sum vanishes. One way to represent such
roots is � ¼ ei � ej, � ¼ ej � ek, � ¼ ek � ei. The junc-

tion and its anti-junction for such three roots are shown in
Fig. 4. The total number of junctions and anti-junctions
would be 2�NðN�1ÞðN�2Þ=6¼NðN�1ÞðN�2Þ=3.
The total number of 1=4-BPS objects in the 6d (2,0) theory
of the AN�1 ¼ SUðNÞ gauge is then

NðN�1Þþ1

3
NðN�1ÞðN�2Þ¼1

3
NðN2�1Þ¼1

3
cAN�1

:

(19)

This number matches exactly one-third of the anomaly
coefficient cAN�1

. We would readily admit that this count-

ing is naive at best as we have ignored the spin and other

α

I
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FIG. 2 (color online). Triangle and 1=4-BPS junction and
anti-junction.
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FIG. 3 (color online). Energy scale in the Coulomb phase.
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structures of these object. Also we have ignored additional
degeneracy for the wave structure. But it is not implausible
to think that this additional factors should be the same for
all 1=4-BPS objects and thus contribute as an overall
multiplicative factor.

The counting of 1=4-BPS objects in the (2,0) theory of
DN ¼ SOð2NÞ gauge group goes quite similarly. The root
vectors are �ðei � ejÞ or �ðei þ ejÞ where i � j and

i; j ¼ 1; 2; � � �N. There are N 1=2-BPS massless particles
and thus NðN � 1Þ 1=2-BPS self-dual strings. Now the
number of the 1=4-BPS waves on self-dual strings would
be 2NðN � 1Þ. The counting of junctions and anti-
junctions is a bit more complicated. At the junction, the
sum of the root should vanish. The Fig. 5 shows the types
of junctions and anti-junctions in this theory. As shown in
this figure, there are eight types of junctions for a given
i � j � k � i, leading to the total number of 1=4-BPS
junctions to be 8� NðN � 1ÞðN � 2Þ=6 ¼ 4NðN � 1Þ�
ðN � 2Þ=3. The total number of the 1=4-BPS objects in the
6d (2,0) theory of DN ¼ SOð2NÞ gauge algebra in the
generic Coulomb phase is then

2NðN � 1Þ þ 4

3
NðN � 1ÞðN � 2Þ

¼ 2

3
NðN � 1Þð2N � 1Þ

¼ 1

3
cDN

: (20)

Again it matches one-third of the anomaly coefficient.

The root diagram of E6 is made of the roots

ei � ej; ði; j ¼ 1; 2; . . . 6Þ of A5 ¼ SUð6Þ, � ffiffiffi
2

p
e7 and

1
2 ð�e1 � e2 � e3 � e4 � e5 � e6Þ � e7=

ffiffiffi
2

p
with the num-

ber of plus sign for e1 � � � e6 being three. Note that dE6
¼

78 and hE6
¼ 12 and so cE6

=3 ¼ 312. The number of the

1=4-BPS objects of SUð6Þ is 70. The number of the addi-
tional 1=4-BPS objects for waves on self-dual strings is 42.
The number of additional 1=4-BPS junctions with one end
being e7 is 20. Finally the number of additional 1=4-BPS
junctions with one end of type ei � ej is 180. The total

1=4-BPS object is then

70þ 42þ 20þ 180 ¼ 312 ¼ 1

3
cE6

: (21)

Figure 6 shows two types of additional junctions besides
those from A5. Note that the sum of the roots for these
junctions vanishes.
The root diagram of E7 is made of the roots

ei � ej; ði; j ¼ 1; 2 . . . 8Þ of A7 ¼ SUð8Þ, and the roots

ð�e1 � e2 � � � � e8Þ=2 with four plus and four minus
signs. The number of 1=4-BPS objects from A7 ¼ SUð8Þ
is 168. The number of additional 1=4-BPS objects for
waves on self-dual strings is 70. The number of additional
1=4-BPS junction is ð8 � 7=2Þ � 2 � 1=2 � ð6 � 5 � 4=6Þ ¼
560. The total number of 1=4-BPS objects is

168þ 70þ 560 ¼ 798 ¼ 1

3
cE7

: (22)

Figure 7 shows an example of additional junctions of E7

case besides those from A7.
The root system of E8 is made of the roots�ei � ej ði �

j; 1; 2 � � � 8Þ of D8 ¼ SOð16Þ, and 1
2 ð�e1 � e2 � � � � e8Þ

with the product of the signs being plus one. The number
of 1=4-BPS objects from D8 ¼ SOð16Þ theory is 560. T
he number of 1=4-BPS objects for waves on additional

i
j

k

i
j

k

FIG. 4. A-type junction and anti-junction.
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FIG. 5. D-type junctions and anti-junctions.
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self-dual strings is 128. The number of additional junction
is 8 � 7=2 � 28=2=2 ¼ 1792. Thus, the total number of 14
BPS objects for E8 case is

560þ 128þ 1792 ¼ 2480 ¼ 1

3
cE8

; (23)

which is exactly the number we expect. Figure 8 shows two
examples of additional junctions besides those from A7.

So far our counting of 1=4-BPS objects has been some-
what naive as we did not include the additional degrees of
freedom living on the junctions. For example, magnetic
monopole strings would have the N ¼ ð4; 4Þ world sheet
supersymmetries on the string. The 1=2-BPS self-dual
strings would have the N ¼ ð4; 4Þ world sheet supersym-
metries with torsion so that the left and right complex
structure being different for two parallel identical strings.
1=4-BPS junctions would have more complicated spin
structure, which is beyond the scope of the current work.
There is a classification for the representation of this super-
algebra in terms of superfields [24]. This could be a starting
point and we hope to return to this issue in future.

We would like to add some further comments on the
mathematical structure behind our observation. By defini-
tion, the Coxeter number hG is the number of roots
dG�rG divided by the rank rG, and so dG¼ðhGþ1ÞrG.
Note that Coxeter number and dual Coxeter number coin-
cide for simple-laced group. Our relation for ADE type
theories is then translated into

1

3
cG ¼ hGrG þ 1

3
rGhGðhG � 2Þ: (24)

The first term of RHS represents the 1=4-BPS objects
for waves on strings, and the second term of RHS represents
the 1=4-BPS junctions and anti-junctions. The number
of independent BPS junctions and anti-junctions is
twice the number of embeddings SUð3Þ roots to the
simple-laced group and is given by the last number [25].
We make a further observation in relation to the central
charge (4) of the Toda models for the simple-laced group
[26] where it appears via the Freudenthal and de Vries’
strange formula,

1

3
cA ¼ 1

3
hVGdG ¼ 4�2; (25)

with the Weyl vector

� ¼ 1

2

X
�>0

� (26)

being the sum over the positive root with the convention that
the length square of a long root is two. Thus we get

1

3
cA ¼ X

�>0

�2 þ X
�;�>0;���

� � �: (27)

Note that the first term of RHS counts the number of roots
hGrG as �2 ¼ 2 and so the second term of RHS should
count twice the number of SUð3Þ root embedding, or the
number of junctions and anti-junctions.

IV. CONCLUDING REMARKS

Let us conclude with some remarks. We have identified
all 1=4-BPS objects and anti-objects in the 6d (2,0) super-
conformal theories in a generic point on the Coulomb
phase. These 1=4-BPS objects consist of waves on self-
dual strings and (anti)-junctions of self-dual strings. The
total number of 1=4-BPS objects and anti-objects is exactly
one-third of the anomaly coefficient cG for all (2,0) theo-
ries. For AN , DN type theories, cG � N3 for large N, which
suggest that these 1=4-BPS objects may be fundamental
ones in the (2,0) theories, even if they appear as infinite
energy states in the Coulomb phase. For example, after
local heating of M5 branes in Coulomb phase there could
be ‘‘generalized Hagedorn phase transition’’ which not
only release self-dual string loops but also junctions and
anti-junction nets or more complicated webs of strings.
While the numbers cG=3 for AD-type theories coincide
with the dimensions of some representations, it is not the
case for E type theories. This seems to imply that the
number cG=3 cannot be represented as some objects of
irreducible representation of the group G in general.
Further studies are needed to relate precisely these
1=4-BPS objects to the anomaly calculation.
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