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We study time-dependent perturbations to a family of five-dimensional black hole spacetimes

constructed as a holographic model of the QCD phase diagram. We use the results to calculate two

transport coefficients, the bulk viscosity and conductivity, as well as the associated baryon diffusion

constant, throughout the phase diagram. Near the critical point in the T �� plane, the transport

coefficients remain finite, although their derivatives diverge, and the diffusion goes to zero. This provides

further evidence that large-Nc gauge theories suppress convective transport. We also find a divergence in

the low-temperature bulk viscosity, outside the region expected to match QCD, and compare the results to

the transport behavior of known R-charged black holes.
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I. INTRODUCTION AND SUMMARY

The phase diagram of quantum chromodynamics (QCD)
is of great interest. At vanishing chemical potential for
baryon number, the theory is expected to evolve from a gas
of hadrons at low temperature to a plasma of liberated
quarks and gluons at high temperature. Were chiral sym-
metry exact, this evolution would progress through a true
phase transition; given the breaking of chiral symmetry by
quark masses, however, it is predicted by lattice gauge
theory instead to be a smooth but rapid crossover (for
recent lattice results, see [1–3]). The results of heavy ion
experiments at the Relativistic Heavy Ion Collider (RHIC)
and now at the Large Hadron Collider (LHC) are consistent
with such a picture (see for example [4]). However, near
the critical temperature, a gas of quarks and gluons is not
observed: instead, the physics is well described by the
hydrodynamics of a near-perfect fluid, with no apparent
quasiparticle description. Such a fluid is a good candidate
to be modeled by a gravity dual via the AdS/CFT corre-
spondence (for reviews, see [5–7]), and indeed the ob-
served very small ratio of shear viscosity to entropy
density [8] is a generic feature of such models [9,10].

For QCD at nonzero chemical potential, it is expected
that the crossover sharpens into a line of true first-order
phase transitions, ending on a critical point. The
temperature-baryon chemical potential (T ��) phase dia-
gram is illustrated in Fig. 1; for reviews, see [11–13].
Based on dimensionality and symmetry, this critical point
is expected to be in the universality class of the three-
dimensional Ising model, like the liquid-gas transition of
an ordinary fluid. Although it has not been accessed ex-
perimentally so far, the critical point could be probed in
future heavy ion experiments at RHIC, LHC or the pro-
posed fixed-target Compressed Baryonic Matter (CBM)
project at the Facility for Antiproton and Ion Research
(FAIR) [14,15]. It is difficult, however, for lattice gauge
theory techniques to be used at nonvanishing chemical

potential, due to the sign problem of the fermion determi-
nant. While various lattice techniques such as reweighting
[16,17] and imaginary chemical potential [18] have been
employed, and other methods such as Nambu–Jona-
Lasinio models have been used [19–21], another theoreti-
cal approach would be welcome, and the AdS/CFT corre-
spondence offers such an approach.
In [22], we constructed a holographic model of the QCD

critical point. A bottom-up method was used: the gravity
dual was constructed using the minimal set of fields that
captured the essential dynamics. These fields were a metric
tensor characterizing the geometry, a scalar field to encode
the running of the gauge coupling, and a gauge field dual to
the Uð1Þ current for baryon number, to provide the chemi-
cal potential; note that from the AdS/CFT point of view,
going to nonzero chemical potential involves merely add-
ing one new field. Points in the phase diagram correspond
to black hole solutions with varying Hawking temperature
and electric charge.
The resulting five-dimensional gravitational theory con-

tained some freedom: the scalar potential and the gauge
kinetic function, both of which were arbitrary functions of
the scalar field. To capture the behavior of QCD, these
functions were chosen to make the zero-chemical potential
thermodynamics, including quark number susceptibility,
match the crossover behavior predicted by lattice QCD,
building on work in [23,24]; a related body of work in-
cludes [25,26] and the review [27]. While the potentials
used in our work do not come from any known string
theory construction, they were chosen as combinations of
exponentials to match the qualitative features of five-
dimensional supergravity.
Having thus completely constrained the theory by

matching to lattice QCD on the T-axis, ensembles of
charged black holes were obtained numerically to fill out
the phase diagram in the T �� plane. As anticipated, the
crossover indeed sharpens into a line of first-order phase
transitions at finite �; black holes corresponding to both
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phases as well as the intermediate thermodynamically
unstable configuration were found. Moreover, the static
critical phenomena of the critical point were studied, and
the critical exponents were found to be consistent with the
Ising mean field values ð�;�; �; �Þ ¼ ð0; 1=2; 1; 3Þ. The
location of the critical point in this model was predicted
to be ðTc;�cÞ ¼ ð143 MeV; 783 MeVÞ. Thus a realistic,
consistent holographic realization of the low-� QCD
phase diagram emerged.1

It is interesting to move beyond static phenomena, and to
study dynamics. Time-dependent critical behavior includes
transport properties, relaxation times and the response to
time-dependent perturbations, all necessary for the under-
standing of a heavy ion collision evolving near the critical
point. There are three relevant transport coefficients: the
shear and bulk viscosities associated to the traceless and
trace perturbations of the energy-momentum tensor, �� and
� respectively,2 and the conductivity � of the Uð1Þ baryon
density. The ratio of shear viscosity to entropy density is
known to be universal ��=s ¼ 1=4	 in all two-derivative
gravity models [9,10], but � and � are expected to depend
nontrivially on the location in the phase diagram.
Moreover, the dynamic critical exponent z controls the
phenomenon of critical slowing down, where the equili-
bration time 
 grows with the correlation length � as 
�
�z; this behavior is expected to determine how close to
criticality a heavy ion collision can approach in the limited

time available before freeze-out and hadronization, as � <

ðtimeÞ1=z [29,30].
Static critical phenomena are sorted into universality

classes by properties such as their dimensionality and
symmetry of the order parameter. This concept was ex-
tended to dynamic critical phenomena by Hohenberg and

Halperin [31], who classified various universal ‘‘models’’
based on their conserved quantities, which manifest as
hydrodynamic modes, and the Poisson brackets between
them and with the order parameter; dynamic universality
classes are then determined by these models as well as the
static class. Son and Stephanov argued that in QCD, only
one combination of the baryon density and the chiral
condensate survives as a hydrodynamic mode, and thus
having this single conserved mode as well as conserved
energy-momentum, the theory should fit into dynamic
model H [32].
The response of a fluid to charge inhomogeneities is

controlled by the diffusion constant D, associated to the
dispersion relation ! ¼ �iDk2. The diffusion constant is
related to the conductivity � and the charge susceptibility
� by

D ¼ �

�
; (1)

and at a critical point, D tends to zero while � diverges.
The behavior of � near the critical point, however, depends
on the dynamic universality class. Hydrodynamic models
neglecting nonlinear interactions predict that � remains
finite at criticality; this is characteristic of Hohenberg
and Halperin’s model B, where the single hydrodynamic
mode is taken to be a conserved density. The only kind of
conduction possible in such a model is via diffusion. Model
B predicts the dynamic critical exponent

z ¼ 4� �; (2)

where � is the usual static exponent giving the anomalous
dimension of the density two-point function. In model H,
on the other hand, the inclusion of energy and momentum
as hydrodynamic modes makes convective conductivity
possible, and this new channel naively dominates. In model
H, the conductivity � and shear viscosity �� diverge at the
critical point,

�� jT � Tcjx� ; ��� jT � Tcjx� ; (3)

with exponents x� and x� which are related to the static

exponent � by

x� þ x� ¼ 4� d� �; (4)

where d is the spatial dimensionality. In the 3D Ising
model, � and x� are close to zero, giving x� close to 1

[32]. The critical exponent z when convection dominates
takes the value

z ¼ 4� �� x�; (5)

and is thus moved from z � 4 in model B to z � 3 in
model H. Note that even in models where � diverges, �
always diverges faster, so D still goes to zero [31].
The expected behavior of bulk viscosity near the liquid-

gas critical point was investigated by Onuki [33], who
predicted a divergence also depending on z,

FIG. 1 (color online). The expected phase diagram of QCD.
The line ending in a star is the first-order chiral transition and its
critical endpoint. Below is the nuclear matter transition. At lower
right are color superconducting phases, color-flavor locked and
otherwise.

1Expected color superconducting phases at high chemical
potential cannot appear in this simple model, and are an inter-
esting task for the future; for progress, see for example [28].

2In keeping with the literature, we denote the shear viscosity ��
to avoid confusion with the critical exponent �.
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� � jT � Tcj�zþ� (6)

where  > 0 and � are static exponents; for several other
predictions for bulk viscosity at a critical point, see for
example [34].

Work has been done applying the AdS/CFT correspon-
dence to dynamic critical phenomena in various models.
Bulk viscosity for the models we consider has been com-
puted at vanishing chemical potential in [24,35]. Maeda,
Natsuume and Okamura calculated the conductivity in the
‘‘one-charge black hole’’ model dual to N ¼ 4 Super-
Yang Mills with a chemical potential—hereafter the one-
charge N ¼ 4 black hole—and found it to stay finite at
the critical point, identifying the result with model B
despite the presence of conserved energy and momentum
[36]. The natural speculation is that the nonlinear interac-
tions responsible for the convective component in the
conductivity in model H are suppressed by the large num-
ber of colors Nc, and in [37] Natsuume and Okamura
argued that large-Nc counting indeed enhances the diffu-
sive over the convective conductivity, reducing model H to
an effective model B. Meanwhile, the bulk viscosity was
studied in a mass deformation of the one-charge N ¼ 4
black hole by Buchel [38] and in the N ¼ 2� model by
Buchel and Pagnutti [39,40]. In both cases, the bulk vis-
cosity was also found to be finite at the critical point, in
contradiction with expectations from (6). It is natural to
speculate that again the large-Nc limit suppresses the di-
vergence in the transport coefficient. The dynamic critical
exponent z has also been studied directly, yielding the
mean-field model B value z ¼ 4 for the deformed one-
charge black hole [38] and z ¼ 0 for N ¼ 2� [41].

Dynamic universality classes depend not just on the
conserved quantities and their Poisson brackets, but also
on the static universality class. The work described in the
previous paragraph shares the list of conserved quantities
with QCD, but differs in the static critical exponents. It is
natural to wish to extend the study of holographic dynamic
critical phenomena to a model that shares the static uni-
versality class with QCD as well. In this paper, we begin
the investigation of the dynamic critical phenomena in the
QCD-like holographic critical point of [22], by studying
finite-! fluctuations around those black hole backgrounds.
With these fluctuations, we are able to calculate the trans-
port coefficients � and �, and the associated diffusion D.

In keeping with the other AdS/CFT cases, we find the
transport coefficients remain finite at the critical point, and
the diffusion constant goes to zero. Thus these models
share the apparent suppression of the convective contribu-
tion to transport by the large-Nc limit [37], and behave
effectively as model B.

Furthermore, the behavior of � and � as functions of T
and � near the critical point is quite similar to that of the
entropy and baryon densities s and �: all are smooth
approaching the critical point in the T �� plane along
the axis defined by the first-order line, but develop infinite

slopewhen approaching off-axis. Similar behavior arises in
the one-charge N ¼ 4 black hole, where the critical ex-
ponent controlling all these divergent slopes is the same,

�� �c � s� sc � �� �c � jT � Tcj1=�; (7)

with � ¼ 2; the corresponding exponent in the QCD-like
case, � � 3, is consistent with our results for �� �c and
� � �c. This suggests that in the vicinity of the critical
point, the deviations of the conductivity and bulk viscosity
from their critical values can be thought of as depending
smoothly on the deviations of the densities from theirs.
From these results, we can estimate the dynamic critical

exponent z assuming a mean-field value of �; a precise
determination of z and � requires finite-k fluctuations,
which we leave for future work. Given the model B be-
havior and the mean field exponents, using the mean field
value � ¼ 0 in (2), we can estimate

z � 4: (8)

Another feature of the behavior of the transport coefficients
in the phase diagram is worth pointing out. In [22,23], the
potential and gauge kinetic function in the Lagrangian
were only constrained to lattice QCD results over certain
ranges of temperature, corresponding to certain values of
the scalar field. In principle, one could imagine modifying
these functions such that the matched region is not af-
fected, while results change elsewhere; thus the application
of these models to QCD should only be trusted in a certain
band of temperatures. This is not unreasonable, since the
gravity dual picture is only expected to apply in a certain
range near the critical temperature where there is no qua-
siparticle description.
However, phenomena outside the region designed to

match QCD may be interesting in their own right. We
find that as the temperature decreases, both the bulk vis-
cosity and conductivity begin to rise. In fact, the bulk
viscosity has a divergence at a temperature around half
the crossover temperature on the T-axis, outside the region
matched to QCD, and this divergence extends out into the
plane. Unlike the phenomena at the critical point, this
divergence in the transport coefficient is not associated
with any feature in the thermodynamics of � or s. From
the gravity point of view, it can be understood as the place
where the fluctuation solutions develop a node, but the field
theory interpretation is unclear. Whether the conductivity
also has a pole at a still lower temperature is outside the
range accessible to our numerical solutions. We note that a
similar divergence appears for the conductivity of the
thermodynamically unstable branch of the one-charge
black hole, as the ‘‘superstar’’ limit [42] is approached.
The summary of the remainder of the paper is as follows.

In Sec. II, we discuss the Lagrangian, equations of motion
and gauge symmetries of our class of models, and construct
the gauge-invariant fluctuations around the black hole
backgrounds. The fluctuation equations and the Kubo
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formulae for extracting the transport coefficients are pre-
sented in Sec. III. In Sec. IV, we review the one-charge
N ¼ 4 black hole solutions and solve for the conductivity
both analytically and numerically, checking our method
and pointing out several features that will have analogs in
the QCD-like black holes; the analytic calculation was
previously worked out in [36,43]. In Sec. V, we present
the calculations of the transport coefficients for the QCD-
like black holes. We conclude in Sec. VI. Results for the
conductivity and diffusion of another model, the two-
charge N ¼ 4 black hole, are given in the Appendix.

II. BLACK HOLE BACKGROUNDS

In this section, we review the five-dimensional gravity
ansatz that applies both to the QCD-like holographic criti-
cal models of [22] and the one-charge N ¼ 4 black hole,
present the resulting equations of motion and symmetries,
and construct the gauge-invariant fluctuations around these
backgrounds with nonzero frequency.

A. Lagrangian and ansatz

We consider five-dimensional gravitational theories
containing a metric g�, a vector field A�, and a scalar

�, with Lagrangian

L ¼ 1

2�2

�
R� fð�Þ

4
F2
� � 1

2
ð@�Þ2 � Vð�Þ

�
: (9)

The relevant solutions to these theories are asymptotically
AdS black three-brane solutions with radial profiles for the
electric potential and scalar field,

ds2 ¼ e2AðrÞð�hðrÞdt2 þ d~x2Þ þ e2BðrÞ

hðrÞ dr
2;

A�dx
� ¼ �ðrÞdt; � ¼ �ðrÞ;

(10)

and the equations of motion resulting from this ansatz are

A00 � A0B0 þ 1

6
�02 ¼ 0

h00 þ ð4A0 � B0Þh0 � e�2Afð�Þ�02 ¼ 0

�00 þ ð2A0 � B0Þ�0 þ d logf

d�
�0�0 ¼ 0

�00 þ
�
4A0 � B0 þ h0

h

�
�0 � e2B

h

@Veff

@�
¼ 0;

(11)

where

Veffð�; rÞ � Vð�Þ � 1

2
e�2A�2Bfð�Þ�02; (12)

along with the zero-energy constraint

ð24A02 ��02Þ þ 6A0h0 þ 2e2BVð�Þ þ e�2Afð�Þ�02 ¼ 0:

(13)

Asymptotically AdS solutions may be written in coordi-
nates that as r ! 1 approach

ds2 ! e2r=Lð�dt2 þ d~x2Þ þ dr2;

�ðrÞ ¼ �ð0Þ þ�ð2Þe�2r=L þ . . . ;

�ðrÞ ¼ �ð4��Þeð��4Þr=L þ . . .þ�ð�Þe��r=L þ . . . :

(14)

Black brane backgrounds have a horizon r ¼ rH defined
by the largest solution to the vanishing of the horizon
function hðrHÞ � 0. The temperature T and entropy den-
sity s can be calculated as

T ¼ 1

4	
h0ðrHÞeAðrHÞ�BðrHÞ; s ¼ 2	

�2
e3AðrHÞ; (15)

while the chemical potential � and Uð1Þ density � can be
read off from the near-boundary expansion of �ðrÞ,

� ¼ �ð0Þ
L

; � ¼ ��ð2Þ
�2

: (16)

B. Gauge symmetries

The gauge symmetries of the theory are Uð1Þ gauge
transformations of the vector field given by �ðxÞ, and
general coordinate transformations given by ��ðxÞ, with
the general transformation of the fields

�A� ¼ @��þ �@A� þ ð@��ÞA;

�g� ¼ ��@�g� þ ð@���Þg� þ ð@��Þg��;

�� ¼ ��@��:

(17)

To stay consistent with the ansatz (10), one may still make
transformations with a general �rðrÞ as well as �0ðtÞ, �ið ~xÞ,
and �ðtÞ obeying

@t�
0ðtÞ ¼ const:;

@i�jð ~xÞ þ @j�ið ~xÞ ¼ const:� �ij;

@t�ðtÞ ¼ const:

(18)

One may use �rðrÞ to choose the metric function BðrÞ
arbitrarily. In the gauge BðrÞ ¼ 0, which we use for the
QCD-like holographic critical black holes, the remaining
coordinate transformations (18) may be used to set any two
of the zero point of AðrÞ and the overall scales of hðrÞ and
�ðrÞ:

ðr; xi; tÞ ¼
�
�~r; �~xi;

�

�
~t

�
! ~h ¼ 1

�2
h;

~A ¼ Aþ log�; ~� ¼ �

�
�;

(19)

while the gauge transformation � can fix the zero point of
�ðrÞ. The remaining transformations are constant shifts of
all variables (of which shifts of t and xi are trivial, while
shifts of r will change the form of the various functions),
and the manifest SOð3Þ symmetry acting on xi.
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C. Fluctuations and gauge-invariant quantities

We are interested in studying small fluctuations around
the background (10) of the form

ds2 ¼ ½g0� þ Refe2AðrÞe�i!th�ðrÞg�dx�dx;
A�dx

� ¼ �ðrÞdtþ Refe�i!ta�ðrÞgdx�;
� ¼ �ðrÞ þ Refe�i!t ~�ðrÞg;

(20)

where g0� is the background metric, and we have assumed

plane-wave dependence in the time direction. This ansatz
preserves the SOð3Þ rotating the spatial directions together.
From here on, we will omit the instruction to take the real
part and work directly with complexified perturbations, on
the understanding that appropriate superpositions of com-
plexified perturbations will be real.

Certain combinations of the fluctuations will be gauge
degrees of freedom. These correspond to gauge transfor-
mations at linear order in the small parameter associated to
the fluctuations; gauge transformations at zeroth order act
on the background. Gauge transformations preserving the
ansatz (20) for the time dependence of the fluctuations also
take a plane wave form,

��ðt; ~x;rÞ¼e�i!t��ðrÞ; �ðt; ~x;rÞ¼e�i!t�ðrÞ: (21)

We can then calculate the transformation of the fluctua-

tions h�, a�, ~� under the gauge transformations. Here,

we record only the results for modes with no index in the
r-direction; all independent fluctuating modes come from
this set of fields. For the metric, we have

�htt ¼ �ðh0 þ 2A0hÞ�r þ 2i!h�0;

�hti ¼ �i!�ij�
j; �hij ¼ 2A0�r�ij;

(22)

for the gauge field,

�at ¼ �i!�þ �r�0 � i!��0; �ai ¼ 0; (23)

and for the scalar,

� ~� ¼ �r�0: (24)

We would like to construct gauge-invariant combinations
corresponding to the fluctuating modes of the theory. We
expect a total of nine such fluctuations: five modes from the
graviton, three from the gauge field and one from the
scalar. We immediately see eight such gauge-invariant
combinations: the three ai and the five traceless compo-
nents of hij. The trace of the spatial part of the graviton

transforms as

�

�
1

3
ðhxx þ hyy þ hzzÞ

�
¼ 2A0�r; (25)

and so we can construct the ninth gauge-invariant mode
involving the scalar fluctuation,

S � ~�� �0

2A0
1

3
ðhxx þ hyy þ hzzÞ: (26)

Thus, the nontrivial profile for the background scalar field
� ¼ �ðrÞ couples the scalar fluctuations to fluctuations of
the graviton trace; in the AdS limit, this reduces to just the

scalar fluctuation S ! ~� and the graviton trace becomes a
pure gauge mode. For a nonzero scalar profile, this is the
AdS/CFT encoding of the running coupling that breaks
scale invariance producing a nonzero trace of the energy-
momentum tensor.
While S is a natural definition for the fluctuation since it

has a smooth AdS limit and shares its possible asymptotic
behaviors with �, it will be useful for us to consider the
rescaled mode

H � � 2A0

�0 S ¼ 1

3
ðhxx þ hyy þ hzzÞ � 2A0

�0 ~�: (27)

This normalization is the natural one for thinking of the
mode as the graviton trace; for �0 � 0 one may pick a

gauge where ~� ¼ 0, where H is the trace precisely.
We see the fields organize themselves under SOð3Þ as a

singlet (the scalar S orH ), a triplet (the gauge field ai) and
a quintuplet (the traceless graviton hij), and since they are

in different representations they cannot mix at the linear-
ized level. Thus we expect each of these modes to satisfy a
decoupled fluctuation equation. Note this would not hold
for a nonzero spatial momentum; instead, a smaller SOð2Þ
symmetry group would organize the perturbations.

III. FLUCTUATION EQUATIONS AND
TRANSPORT COEFFICIENTS

The fluctuation equations of the nine modes H , ai and
hij can be obtained by linearizing the Einstein, Maxwell

and Klein-Gordon equations around the background (10).
In general, the various equations that result will also con-
tain the auxiliary quantities ar, h�r. By taking linear

combinations of the Einstein and Maxwell equations, these
can be eliminated, giving us nine differential equations in
nine unknowns.
The coefficients of the fluctuation equations include the

background fields A, B, h, �, and � and their derivatives.
These fields obey the background equations of motion,
which act as constraints on these coefficients. To exhaust
the constraints, we use the various background Eqs. (11) to
eliminate the second derivatives A00, �00, h00, and �00; in
addition, the zero-energy constraint (13) can be used to
eliminate the potential Vð�Þ, although derivatives of the
potential will still appear. In this way, we achieve a unique
presentation for each coefficient with no hidden constraints.
Each fluctuation equation can be used to calculate a

transport coefficient via a Kubo formula. These are asso-
ciated to the imaginary part of the corresponding Green’s
function, which comes from the ‘‘conserved flux’’ F for
each equation. For a differential equation of the form

y00ðrÞ þ pðrÞy0ðrÞ þ qðrÞyðrÞ ¼ 0; (28)
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Abel’s identity guarantees that for two solutions y1ðrÞ,
y2ðrÞ, the quantity

F � exp

�Z
pðrÞdr

�
Wðy1; y2Þ (29)

is independent of r, where Wðy1; y2Þ � y1y
0
2 � y2y

0
1 is the

Wronskian of the two solutions. As long as pðrÞ, qðrÞ are
real, for some complex solution yðrÞ its conjugate y�ðrÞ is
also a solution. Taking y1 ¼ y and y2 ¼ y�, our expression
for the conserved flux becomes

F � exp

�Z
pðrÞdr

�
Imðy�y0Þ (30)

up to an overall factor.

A. Near-horizon behavior and boundary conditions

Noting that h has a zero at the horizon, h ¼ h0ðrHÞ�
ðr� rHÞ þ . . . , while A and its derivatives are regular
there, all the fluctuation equations considered in this paper
have the same limit near the horizon,

X00 þ 1

r� rH
X0 þ !2e2BðrHÞ�2AðrHÞ

h0ðrHÞ2ðr� rHÞ2
X ¼ 0; (31)

where X is any of Z, a, S, or H (see the following
subsections), and we have assumed that the gauge degree
of freedom B is chosen so it and its derivatives do not
diverge at the horizon. Near the horizon, one may expand

XðrÞ ¼ ðr� rHÞ�ðx0 þ x1ðr� rHÞ þ . . .Þ; (32)

where we must choose the exponent � to be

� ¼ �i!
eBðrHÞ�AðrHÞ

h0ðrHÞ : (33)

In solving the fluctuation equations, we must impose two
boundary conditions. The first is the requirement of infal-
ling boundary conditions at the horizon: this corresponds to
solving for retarded Green’s functions, in accord with the
usual prescription for calculating transport coefficients.
This simply involves imposing that only the negative
sign solution in (33) contributes.

The second boundary condition must be imposed not at
the horizon, but at the boundary. Each mode has two
solutions near the boundary, one falling off more quickly
and corresponding to a vacuum expectation value defor-
mation of the dual field theory, and the other falling off
more slowly and corresponding to turning on a source. Our
prescription will be to normalize the coefficient of the
‘‘source’’ mode to unity.

Assuming we have imposed infalling boundary condi-
tions, a part of the conserved flux (30) simplifies,

Im ðX�X0Þ ¼ �!jx0j2eBðrHÞ�AðrHÞ; (34)

where we used the fact that � is pure imaginary. One
can evaluate the conserved flux at any r, but since one
boundary condition is at the horizon and the other at the

boundary, one must in general solve for the mode every-
where in order to do so. As we shall see, in some cases it is
possible to do this analytically in the ! ! 0 limit; in gen-
eral, we shall solve the fluctuation equations numerically.

B. Traceless graviton and shear viscosity

This case is well known, and the outcome, ��=s ¼ 1=4	,
is guaranteed by the general arguments of [9,10]. However,
it is useful to go through an explicit calculation as a warm-
up for the more difficult conductivity and bulk viscosity
cases, to be treated next.
Letting Z be any of the traceless hij, the corresponding

fluctuation equation is the massless scalar equation,

Z00 þ
�
4A0 � B0 þ h0

h

�
Z0 þ e2B�2A

h2
!2Z ¼ 0: (35)

The behavior of Z near the boundary is

Z ¼ Zð0Þ þ . . .þ Zð4Þe�4r=L þ . . . ; (36)

and so the proper boundary condition is simply to take
Zð0Þ ¼ 1. The associated conserved flux from Abel’s iden-

tity is

F Z ¼ he4A�B ImðZ�Z0Þ; (37)

and the Kubo formula for the corresponding transport
coefficient, the shear viscosity, is

�� ¼ � 1

2�2
lim
!!0

1

!
F Z: (38)

The simplicity of Eq. (35) in the! ! 0 limit allows one to
solve for the shear viscosity analytically; we take our
discussion from [24]. In the ! ! 0 limit the term with
no derivatives vanishes, and we are left with

@rðlogZ0Þ ¼ �@rð4A� Bþ loghÞ; (39)

which has the solution

Z ¼ a0 þ b0
Z 1

r
dr

e�4AþB

h
: (40)

The second term is technically not allowed at strict ! ¼ 0
due to a logarithmic divergence; it may be kept for very
small!, but for us it is enough to note that matching to the
near-horizon expansion

ZðrÞ � z0ðr� rHÞ� ¼ z0ð1þ � logðr� rHÞ þ . . .Þ; (41)

we have z0 ¼ a0; however as r ! 1 we see a0 ¼ Zð0Þ.
Thus the boundary condition Zð0Þ ¼ 1 imposes z0 ¼ 1 near
the horizon. Using (34) and (37), one can then evaluate �� at
the horizon,

�� ¼ 1

2�2
e3AðrHÞ; (42)

which using (15) implies for the shear viscosity to entropy
density ratio the familiar universal result,
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��

s
¼ 1

4	
: (43)

The other transport coefficients we consider will not be
universal in this way; from a practical standpoint, imposing
the boundary condition at infinity will not impose a uni-
versal constraint on the near-horizon behavior. A similar
technique to the one reviewed here will, however, be useful
in calculating the conductivity of the one-charge N ¼ 4
black hole of the next section.

C. Gauge field, conductivity and diffusion

Because of SOð3Þ symmetry, we can treat each of the
fluctuations ai separately: they cannot mix at linear order.
For notational simplicity, we will drop the index i alto-
gether and use a to denote one of the components of ai:,,
for example, a ¼ a1 to compute the conductivity in the x1

direction. The fluctuation equation is

a00 þ
�
2A0 � B0 þ h0

h
þ�0f0ð�Þ

f

�
a0

þ e�2A

h

�
e2B

h
!2 � fð�Þ�02

�
a ¼ 0; (44)

and the associated conserved flux is

F a ¼ hfð�Þe2A�B Imða�a0Þ: (45)

Near the boundary the gauge field fluctuation behaves as

a ¼ að0Þ þ að2Þe�2r=L þ . . . ; (46)

so the appropriate boundary condition is simply að0Þ ¼ 1.
The Kubo formula for this mode determines the (zero-
frequency) conductivity �,

� ¼ � L2

2�2
lim
!!0

1

!
F a: (47)

This quantity is related to the frequency-dependent com-
plex conductivity, defined as

� � � i

!

L

�2

að2Þ
að0Þ

(48)

by

� ¼ lim
!!0

Re�ð!Þ; (49)

which follows from (45) and (48) using the boundary
condition. The diffusion constant D is related to the con-
ductivity by

� ¼ D�; (50)

where the susceptibility is

� �
�
@�

@�

�
T
; (51)

leading to the Nernst-Einstein relation,

D� ¼ lim
!!0

Re�ð!Þ: (52)

Unlike the shear viscosity, the conductivity does not take a
universal value; notice that Eq. (44) still has a zero-
derivative term at ! ¼ 0. For the example of the next
section, however, we will be able to solve the ! ! 0 limit
and find an analytic solution for the conductivity.

D. Scalar fluctuation and bulk viscosity

Finally, the scalar equation is

S 00 þ
�
4A0 � B0 þ h0

h

�
S0 þ

�
e2B�2A

h2
!2 þ �ðrÞ

�
S ¼ 0;

(53)

where �ðrÞ is determined by the background:

�ðrÞ � e�2A

18fh2A02 ð�18hA02f02�02 � e2Afh2�04

þ 6fhA0�0½�2e2Aþ2BV 0 þ e2Ah0�0 þ f0�02�
þ 3fA02½8e2Ah2�02 þ 3h�02f00 � 6e2Aþ2BhV00�Þ:

(54)

The associated conserved flux is

F S ¼ he4A�B ImðS�S0Þ; (55)

and one may in principle calculate the bulk viscosity �
from this flux using the formula

� ¼ � 2

9�2
lim
!!0

1

!
FS; (56)

with S suitably normalized. Since a gauge may be chosen

where S ¼ ~�, it is evident that S has the same asymptotic
behavior as the scalar � itself,

S ðrÞ ¼ Sð4��Þerð��4Þ=L þ . . .þ Sð�Þe�r�=L þ . . . : (57)

Thus to calculate (55), one must properly normalize the
coefficient Sð4��Þ of the dying exponential. This is not as

straightforward numerically as normalizing an asymptotic
constant.
Since the bulk viscosity is a quantity extracted from

the trace of the energy-momentum tensor, and the
energy-momentum tensor couples to the graviton, it is
the mode H that we more naturally wish to canonically
normalize. The scaling of H depends on �ðrÞ via (27). If
the background scalar profile includes the source term

�ð4��Þ, we have A0=�0 � erð4��Þ=L and we end up with

the H scaling

H ðrÞ ¼ H ð0Þ þ . . .þH ð4�2�Þerð4�2�Þ=L þ . . . ; (58)
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and the suitable boundary condition to calculate the bulk
viscosity is H ð0Þ ¼ 1, an easier prescription to

implement.3

The fluctuation equation for H simplifies most when
we use the background equations of motion to eliminate V 0
and �02 in favor of �00 and A00:

H 00 þ
�
4A0 � B0 þ h0

h
þ 2�00

�0 � 2A00

A0

�
H 0

þ
�
e2B�2A

h2
!2 þ �H ðrÞ

�
H ¼ 0; (59)

with

�H ¼ h0

h

�
A00

A0 �
�00

�0

�
þ e�2A

h�0 ð3A0f0 � f�0Þ�02: (60)

One can check that the boundary behavior as described
above does indeed result from the asymptotic expansion of
(59), as it must. The coefficient of the first-derivative term
is again explicitly integrable, and it is then easy to use
Abel’s identity to show that the conserved flux is

F H ¼ e4A�Bh�02

4A02 ImðH �H 0Þ; (61)

where we chose the normalization so that this conserved
flux coincides exactly with FS (55) when one substitutes
(27)

F H ¼ FS

�
S ! ��0H

2A0

�
: (62)

Thus, the bulk viscosity may most easily be calculated as

� ¼ � 2

9�2
lim
!!0

1

!
FH ; (63)

with the boundary condition H ð0Þ ¼ 1.

E. Large-Nc counting

The various Kubo formulae are all proportional to the
five-dimensional gravitational constant 1=�2, since they all
come ultimately from evaluating the five-dimensional ac-
tion. The gravitational constant can be expressed in terms
of the AdS radius L and the underlying string coupling gs
and Regge slope �0 when an explicit string theory con-
struction is specified. For AdS5 � S5, the result is

1

�2
¼ L5

64	4g2s�
02 ; (64)

while the AdS radius is

L4 ¼ 4	gsNc�
02; (65)

with Nc the number of colors in the dual gauge theory (the
five-form flux from the gravity point of view). Field theory
quantities should not involve �0, which drops out of the
combination

L3

�2
¼ N2

c

4	2
; (66)

and all the Kubo formulae indeed result in this combination
on dimensional grounds. As a result, all three transport
coefficients go like N2

c in the large-Nc limit defined by the
dual gauge theory.
For AdS/CFT models not based on a known string

theory construction, the precise coefficient in (66) is not
determined. However, the N2

c dependence is expected to
remain the same for any gravity dual of a four-dimensional
gauge theory. For the QCD-like holographic critical mod-
els of Sec. V, we will use the formula (66) with the under-
standing that the overall normalization is not truly
determined, but the N2

c factor is expected to be robust.
Note too that the factor (66) cancels out of �=s and D, and
so will only be relevant for us in �=T.

IV. ONE-CHARGE N ¼ 4 BLACK HOLE

Before discussing our primary interest, the numerical
QCD-like critical black holes, we first consider a family of
black hole backgrounds where the thermodynamics are
known analytically, which we call the one-charge N ¼
4 black hole [44–49]. These geometries are known solu-
tions of string theory, coming most simply from a trunca-
tion of the maximally supersymmetric gauged supergravity
in five dimensions, which is in turn a truncation of the
dimensional reduction of type IIB string theory on AdS5 �
S5. The dual field theory configurations should be thought
of as states in N ¼ 4 super-Yang-Mills theory with a
temperature and a chemical potential for a Uð1Þ subgroup
of the SOð6Þ R-symmetry. In the Appendix, we discuss a
second family, the two-charge N ¼ 4 black hole, which
does not display finite-temperature critical phenomena.
Since the temperature and chemical potential are the

only massive parameters, dimensionless quantities can
only depend on their ratio; for this reason the phase dia-
gram is not truly two-dimensional, but is more properly
thought of as depending on this single ratio. The phase
diagram has the form of a semi-infinite line, ending on a
critical point.
Because the conformal invariance of the theory is not

broken explicitly, the bulk viscosity is identically zero. The
conductivity and associated diffusion have been calculated
by [36,43]. We reproduce the calculation for two reasons.
First, since it is analytically solvable, it allows us to check
our numerical methods against a known analytic solution;
and second, it exhibits several features that will persist to
the QCD-like black holes.

3The asymptotic scaling of H is different when the back-
ground scalar profile only contains the vacuum expectation value
term �ð�Þ but no source. However, in this case the conformal
invariance of the dual field theory is not explicitly broken, and
the bulk viscosity is identically zero.
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In this section, in keeping with the literature, we use� to
denote a parameter in the solutions, and thus use � for the
chemical potential. Also, it is inconvenient to set BðrÞ ¼ 0
for these solutions, so for this section (and the Appendix)
only we employ a radial coordinate where AdS space is
related to that given in (14) as expðrthere=LÞ ¼ rhere=L.

A. Thermodynamics and phase diagram
of the one-charge N ¼ 4 black hole

The one-charge N ¼ 4 black hole is a solution to the
Lagrangian (9)with the potential and gauge kinetic function,

Vð�Þ ¼ � 1

L2
ð8e�=

ffiffi
6

p
þ 4e�

ffiffiffiffiffiffi
2=3

p
�Þ;

fð�Þ ¼ e�2
ffiffiffiffiffiffi
2=3

p
�:

(67)

The solution takes the form

AðrÞ ¼ log
r

L
þ 1

6
log

�
1þQ2

r2

�
;

BðrÞ ¼ � log
r

L
� 1

3
log

�
1þQ2

r2

�
;

hðrÞ ¼ 1� �L2

r2ðr2 þQ2Þ ;

�ðrÞ ¼ �
ffiffiffi
2

3

s
log

�
1þQ2

r2

�
;

�ðrÞ ¼
ffiffiffiffi
�

p
Q

r2 þQ2
�

ffiffiffiffi
�

p
Q

r2H þQ2
;

(68)

and is characterized by the charge parameter Q, mass pa-
rameter�, and the asymptoticAdS scaleL. The horizon is at

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4�L2

q
�Q2Þ

s
; (69)

and in what follows wewill generally trade the parameter�
for rH. The temperature and chemical potential can be ex-
pressed as

T ¼ Q2 þ 2r2H

2	L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q ; � ¼ QrH

L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q : (70)

For fixedQ and L,� is only required to be nonnegative; the
limit � ! 0 corresponds to rH ! 0 but the temperature
approaches

Tð� ! 0Þ ! Q

2	L2
: (71)

This value is properly thought of as the limiting temperature
of a sequence of honest black holes with nonzero values of
�. The solutionwith strictly� ¼ 0 is not a black hole, as the
horizon function is trivial hðrÞ ¼ 1 and no horizon exists.
The� ¼ 0 solution is supersymmetric and has been dubbed
the superstar by Myers and Tafjord [42].

ChoosingQ to be positive along with rH, T, and� are in
general multivalued as functions of these parameters. The
transformation

rH ! Q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4r2H

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q ; Q ! rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 4r2H

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q ; (72)

maps pairs ðrH;QÞ to physically distinct pairs with the
same ðT;�Þ. The transformation takes

Q2

2r2H
! 2r2H

Q2
; (73)

which defines a fixed locus,

Q ¼ ffiffiffi
2

p
rH ! 	T ¼ ffiffiffi

2
p

�: (74)

Since dimensionless quantities like s=T3 and �=T2 will be
functions only of the dimensionless ratio �=T, we should
properly think of this system as a one-dimensional phase

diagram with this locus interpreted as a fixed point�=T ¼
	=

ffiffiffi
2

p
, rather than a fixed line. The models of the next

section add another massive parameter, with explicitly
breaks conformal invariance and leads to a true two-
dimensional phase diagram.
We notice that in general,

	2T2 � 2�2 ¼ ðQ2 � 2r2HÞ2
4L4ðQ2 þ r2HÞ

	 0; (75)

which establishes the minimum value of T for a given �
lies at the fixed point,

T 	
ffiffiffi
2

p
�

	
: (76)

Thus for 	T <
ffiffiffi
2

p
� there are no corresponding black

holes, at the fixed point 	T ¼ ffiffiffi
2

p
� there is one, and for

	T >
ffiffiffi
2

p
� there are two. The limit � ! 0 produces two

configurations dual under the transformation (72): the
superstar with rH ¼ 0, Q � 0, and an uncharged black
hole with Q ¼ 0, rH � 0.
Black holes on the two branches with the same ðT;�Þ

will not have the same values of other thermodynamic
quantities, and so are physically distinct. The entropy and
charge density in terms of Q and rH are

s ¼ 2	r2H
�2L3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q
; � ¼ QrH

�2L3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q
; (77)

which in terms of T and � can be written

s¼N2
cT

3

16	
ð3	
yÞ2ð	�yÞ; �¼N2

cT
2�

16	2
ð3	
yÞ2; (78)

where the top sign corresponds to the branch with
ffiffiffi
2

p
rH >

Q, the bottom sign to the branch with
ffiffiffi
2

p
rH < Q, and

where we have defined
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y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 2 ~�2

p
; (79)

with ~� � �=T. Note that the positivity of the quantity
inside the square root follows from (76).

The quantities s and � are the T and� derivatives of the
pressure,

p ¼ N2
cT

4

16	2

�
	4 þ 5	2 ~�2 �

~�4

2
� 	y3

�
: (80)

We note that the free energy density is f ¼ �p, so for

fixed ðT;�Þ the ffiffiffi
2

p
rH > Q branch has a lower free energy

and hence is thermodynamically preferred in the canonical
ensemble.

The Uð1Þ susceptibility for the two branches is

� ¼ N2
cT

2

8	2

�
5	2 � 3 ~�2 
 3	y� 6	 ~�2

y

�
; (81)

which diverges along the fixed line for y ¼ 0. The heat
capacity and off-diagonal susceptibility diverge as well.
Thus, the fixed point is a second-order phase transition.
The determinant of the matrix of susceptibilities S is

detS ¼ 3N4
cT

4

64	

�
4	4 � 22	2 ~�2 þ ~�4 � 4	3y

� 46	3 ~�2 � 11	 ~�4

y

�
; (82)

and while this is always positive for the thermodynami-

cally preferred branch
ffiffiffi
2

p
rH > Q, it is always negative for

the other; thus the nonpreferred branch is thermodynami-
cally unstable as well.

The exponents for this critical point have been calcu-
lated. The fundamental relation is the approach of the
density to the critical density, which for fixed T takes the
form

�� �c � j���cj1=2 � j���cj1=�; (83)

defining the critical exponent

� ¼ 2: (84)

An analogous relation holds for the approach to Tc with
fixed �, as well as for the entropy. The divergence of the
conductivity � (as well as the heat capacity C�) follows
from (83)

�� j���cj�1=2 � j���cj��; (85)

where the exponent4 � � 1� 1=� ¼ 1=2.

B. Conductivity and diffusion of the
one-charge N ¼ 4 black hole

We may now turn to solving for the conductivity. First,
we consider the gauge field fluctuation Eq. (44). This can
be solved exactly at ! ¼ 0, allowing an analytic determi-
nation of the conductivity and the associated diffusion
constant using similar techniques to those used for the
shear viscosity. We find the ! ¼ 0 solutions

aðrÞ ¼ C1

Q2 þ 2r2

ðQ2 þ 2ÞðQ2 þ r2Þ þ C2a2ðrÞ; (86)

where a2ðrÞ is a more complicated expression including
logðr� rHÞ whose explicit expression is unenlightening.
In order to determine C1 and C2, one may match the zero-
frequency solution (86) to the near-horizon solution

aðrÞ ¼ ðr� rHÞ�; (87)

where the exponent � from (33) corresponding to infalling
boundary conditions is

� ¼ � i!L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q
2Q2 þ 4r2H

: (88)

Then looking at the near-boundary behavior, we can de-
termine the series (46) and solve for the frequency-
dependent conductivity (48). For small !, we find the
result

� ¼ iQ2

2!�2L
þ LðQ2 þ 2r2HÞ2

8r2H�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ r2H

q þOð!Þ; (89)

which in terms of T and � can be written

�

T
¼ N2

c

4	2

�
i

2 ~!
ð2	2 � ~�2 
 2	yÞ þ 	2

	� y
þOð!Þ

�
;

(90)

where ~� ¼ �=T and ~! ¼ !=T. The 1=! pole in Im�
indicates by the Kramers-Kronig relations a delta-function
contribution to the real part, Re� / �ð!Þ, not visible in
our calculation. This infinite contribution is characteristic
of a translationally-invariant charged system [50]. Setting
aside the delta-function, we have the zero-frequency
conductivity [36]

� ¼ N2
cT

4ð	� yÞ : (91)

We also calculated this conductivity using the numerical
methods that will be employed in the next section, and find
excellent agreement.
Since y ! 0 at the critical point, the conductivity �

approaches the constant

�c � N2
cTc

4	
: (92)

4In the literature for critical phenomena, the well-known
exponent labels �, �, and � are often associated with behavior
approaching the critical point along the axis defined by the first-
order line. Since there is no first-order transition in this model,
we avoid these exponent names. � encodes the approach of � to
the critical point off the first-order axis.
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The conductivity not diverging is a sign of the large-Nc

domination of diffusive conduction (characteristic of
model B) over convective conduction (model H) [36,37].
However, the slope of � diverges as the critical point is
approached. One has

�� �c � ðT � TcÞ1=2: (93)

We note that the exponent is 1=�; this transport coefficient
has the same critical behavior as the thermodynamic quan-
tities s and �. We will find an analogous phenomenon for
the QCD-like black holes.

The diffusion D � �=� is given by

D ¼ 4	2

T

1

ð	� yÞð3	
 yÞð3	
 y� 4 ~�2=yÞ : (94)

Since the conductivity is constant at the critical point, while
the susceptibility diverges, the diffusion goes to zero.On the
stable branch at large temperature,D asymptotes to its AdS
value D ! 1=2	T. Because � on the unstable branch is
negative close to the critical point and passes through zero,
the diffusion on the unstable branch is negative and diverges
before returning from positive infinity.

Away from the critical point, an entirely distinct phenome-
non occurs in the superstar limit. Since as yð� ! 0Þ ! 	,

the conductivity ratio �=T approaches zero at the charged
black hole (the far end of the stable branch) and approaches
infinity in the superstar limit (the far end of the unstable
branch). The rate of approach to infinity in the superstar limit
becomes

�� 1

�2
: (95)

We will find a similar divergence in the bulk viscosity of the
holographic critical black holes of the next section, away
from the critical point and the region expected to be related to
QCD.The conductivity over temperature and diffusion times
temperature are displayed for the stable branch only in Fig. 2,
and for both branches in Fig. 3.

V. QCD-LIKE HOLOGRAPHIC
CRITICAL BLACK HOLES

We now turn to our primary interest, studying the trans-
port coefficients of the class of solutions designed to
emulate the thermodynamic and phase structure of QCD
[22]. These black holes are solutions to the Lagrangian
ansatz (9) with the potential
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0.00
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FIG. 2 (color online). The conductivity over temperature and diffusion times temperature for the one-charge black hole with� ¼ 1,
for the stable branch only. �=T approaches a finite value with an infinite slope at the critical point, while DT goes to zero.
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FIG. 3 (color online). The conductivity over temperature and diffusion times temperature for the one-charge black hole with� ¼ 1,
for both branches; the unstable branch is the thick red line. The approach to infinity at large T is the superstar divergence.
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Vð�Þ ¼ �12 cosh��þ b�2

L2
with

� ¼ 0:606 and b ¼ 2:057;
(96)

and the gauge kinetic function

fð�Þ ¼ sech½65 ð�� 2Þ�
sech 12

5

: (97)

The black hole solutions are of the form (10). For conve-
nience the gauge BðrÞ ¼ 0 was chosen, and the residual
coordinate transformations (19) and the freedom to shift r
were used to set

AðrHÞ ¼ 0; �ðrHÞ ¼ 0;

h0ðrHÞ ¼ 1=L; rH ¼ 0:
(98)

The solutions were characterized by two initial conditions
at the horizon, �0 � �ðrHÞ and �1 � �0ðrHÞ; the en-
semble of black holes was generated by numerically inte-
grating the Eqs. (11) from the horizon to the boundary for a
large set of distinct ð�0;�1Þ, and the thermodynamic
quantities of temperature T, entropy density s, chemical
potential � and baryon density � were obtained for each.

The functions (96) and (97) were chosen so that the
thermodynamics of the � ¼ 0 black holes reproduce lat-
tice results for the equation of state [23] and the quark
susceptibility [22], building into the model the rapid cross-
over that connects the hadron phase to the quark-gluon
phase in physical QCD with massive quarks; see Fig. 4.
Normalizations for the scales of T and� were also derived
from matching to the lattice results, allowing the thermo-
dynamic quantities to be expressed in MeV. The potential
(96) leads to the scalar mass,

m2
�L

2 � �0:293; (99)

with implies a dual operator that is barely on the relevant
side of marginal,

�� � 3:93; (100)

designed to emulate the slow running of the QCD coupling
constant somewhat above the confinement scale. The pro-
file of the scalar in the background includes a source term
that explicitly breaks conformal invariance.
At nonzero � for this ensemble of black holes, the

crossover sharpens into a line of first-order phase transi-
tions ending at a critical point, as is expected for QCD. The
region of the first-order line is characterized by the exis-
tence of two distinct phases, realized as distinct black hole
solutions at the same point in the phase diagram, as well as
a third black hole corresponding to the thermodynamically
unstable state lying in between the stable phases in the
Maxwell construction.
The first-order line ends on the critical point. For the

static critical exponents defined as

C� � T

�
@s

@T

�
�
� jT � Tcj��; along first order axis

��� ðTc � TÞ�; along first order line

� �
�
@�

@�

�
T
� jT � Tcj��; along first order axis

�� �c � j���cj1=�; for T ¼ Tc; (101)

this critical point was found numerically to have exponents
with values

� ¼ 0; � � 0:482;

� � 0:942; � � 3:035:
(102)

Sources of error for these measurements include the scatter
of the collection of numerical black holes around the ideal
thermodynamic axes, similar scatter around the directions
associated to the derivatives realized as finite differences,
as well an inherent error of the finite statistics in the chi-
squared fit of each power law, and from these sources we
expect errors on the order of �10% (except for �, which
shows no divergence and hence is exactly zero). Within
these accuracies, the result is consistent with the Ising
mean field values ð�;�; �; �Þ ¼ ð0; 1=2; 1; 3Þ. Matching
the temperature and chemical potential scales to that of

Blackhole fit
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FIG. 4 (color online). The normalized entropy s=T3 and quark susceptibility �̂2 � �2=T
2 at � ¼ 0, computed on the lattice and fit

by black holes in the gravity theory defined by our choices of Vð�Þ and fð�Þ (Eqs. (96) and (97)). Lattice data is taken from [1].
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the lattice data, the location of the critical point was found
to be

Tc ¼ 143 MeV �c ¼ 783 MeV: (103)

While these results generate a large phase diagram, the
applicability to QCD is expected to be limited to a band
surrounding the crossover and extending out into the plane,
for two reasons. First of all, the potential (96) and gauge
kinetic function (97) were only matched to lattice data over
a finite range. In principle, one can imagine varying the
functions so as to keep matching the data in the range
required, while changing the results elsewhere. The poten-
tial Vð�Þ was only matched up to about �0 � 7:5, corre-
sponding to Tmin � 135 MeV at � ¼ 0; the crossover is at
Tc � 175 MeV on the T-axis. Moreover, AdS/CFT is only
expected to provide a good description of QCD in the
region where no quasiparticle description is available;
both above and below the crossover such a description is
possible, with hadrons at lower T and quarks and gluons at
higher T. Thus we expect our geometries to be reasonable
potential models for QCD only near the crossover; and we
hypothesize that this applicability extends along with the
crossover out into the T �� plane to the critical point.

A. Boundary conditions

To calculate the correct transport coefficients (or ther-
modynamics for that matter) for these black holes, a tech-
nical detail must be taken into account. The numerical
integration beginning at the horizon produces solutions
that asymptote to AdS space, but in general in coordinates
that do not match standard AdS coordinates. In the gauge
BðrÞ ¼ 0, one usually uses the AdS coordinates (14), with

AðrÞ ! r=L and hðrÞ ! 1þOðe�4r=LÞ; however with the
coordinate choices (98) used for the numerical solution,
the horizon function in general approaches a nonunit

value h ! hfar0 , and the warp factor goes like AðrÞ !
r=ð

ffiffiffiffiffiffiffi
hfar0

q
LÞ þ Afar

0 . To calculate thermodynamic and hydro-

dynamic quantities using the usual formulae, it is necessary
to pass to a new set of coordinates that takes the usual AdS
form, with unit normalization for the horizon function and
A� r=L; this can be done by making a different rescaling
(19).

Moreover, the scalar field generically approaches � !
�Ae

�AðrÞ, with  � 4��� � 0:07. It is useful to rescale

the leading perturbation to the scalar to a standard magni-
tude �A ¼ 1, which can be achieved by adding a constant
to r. Fixing the value of �A is useful because turning on
this perturbation corresponds to deforming the ultraviolet
theory with an almost-marginal relevant operator, playing
the role of the running coupling, and hence changing the
theory. We want every point on the phase diagram to
correspond to the same theory, not different theories, and
hence we make �A identical in all of them. Put another
way, there are three massive parameters in the theory, T,�,

and �, where � is the scale associated with the scalar.
Normalizing�A ¼ 1 corresponds to measuring T and� in
units of �. The explicit breaking of conformal invariance
coming from � permits a nonzero bulk viscosity to be
present.
The desired coordinates are achieved by the transforma-

tion

~t ¼ �1=
A

ffiffiffiffiffiffiffi
hfar0

q
t; ~~x ¼ �1=

A ~x;

~r

L
¼ rffiffiffiffiffiffiffi

hfar0

q
L
þ Afar

0 � logð�1=
A Þ; (104)

which is a combination of a scale transformation associ-

ated to�1=
A and a time dilation by

ffiffiffiffiffiffiffi
hfar0

q
as well as a shift of

r, implying the relation of the functions,

~Að~rÞ ¼ AðrÞ � logð�1=
A Þ ~hð~rÞ ¼ 1

hfar0

hðrÞ

~�ð~rÞ ¼ 1

�1=
A

ffiffiffiffiffiffiffi
hfar0

q �ðrÞ:
(105)

Thermodynamic and hydrodynamic quantities are natu-
rally calculated in terms of the tilded coordinates because
of their standard near-AdS form. The black hole solutions
exist in the untilded variables, but as we now show it is
possible to compute certain ratios directly in the untilded
coordinates. One may also use the thermodynamic formu-
lae (15) and (16) in the untilded variables to calculate
‘‘horizon’’ quantities TH,�H, sH, and �H. The true entropy
and temperature are related to their horizon counterparts as

TsT ¼ 1

�1=
A

ffiffiffiffiffiffiffi
hfar0

q TH; s ¼ 1

�3=
A

sH; (106)

where the horizon quantities are constants independent of
the black hole considered,

TH ¼ 1

4	L
; sH ¼ 2	

�2
: (107)

Transforming from one set of coordinates to the other, and

using ! ¼ �1=
A

ffiffiffiffiffiffiffi
hfar0

q
~!, we have5

��¼ 1

�3=
A

��H; �¼ 1

�1=
A

�H; �¼ 1

�3=
A

�H: (108)

Thus, we can assemble the invariants

��H

sH
¼ ��

s
;

�H

s1=3H

¼ �

s1=3
;

�H
sH

¼ �

s
; (109)

5Although under this rescaling one has ~a ¼ a=�1=
A , we as-

sume the gauge field fluctuation is asymptotically normalized to
one in both coordinate systems before being plugged into the
Kubo formulae.
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and thus these ratios can be calculated directly in the
untilded variables.

With the gauge choices BðrÞ ¼ 0 and (98), the value of
the exponent � characterizing the near-boundary behavior
of the fluctuation equations is simply

� ¼ �iL!: (110)

As usual, one should choose the minus sign to impose
infalling boundary conditions at the horizon. The boundary
conditions at the boundary are that a and H approach
unity. As mentioned previously, if one employed S instead
ofH , it would be the coefficient of the e�r term that had
to be properly normalized; this is numerically more diffi-
cult. The results outlined in the following subsections were
obtained using the H equation, but the S method was
checked as well, and while the S calculation developed
numerical pathologies in certain (low-T) regions of the
phase diagram, the two methods agreed well in the regions
where both appeared reliable.

B. Bulk viscosity for the QCD-like
holographic critical black holes

The computation of the bulk viscosity for the QCD-like
black hole solutions is a straightforward application of the
Kubo formula (63). To construct the mode solutions to the
H fluctuation Eq. (59) we used a near-horizon series
expansion to seed a numerical integration routine which
propagates the mode solution out to close to the boundary.

Because the flux (61) satisfies Abel’s identity, it must be
independent of the radial location at which it is evaluated;
ascertaining that this holds is a check that the fluctuations
obtained indeed satisfy (59). After verifying that this re-
mains true in practice, we then evaluated the flux at a radial
location rT where the numerical solutions are particularly
robust. The black hole solutions are defined from r� 10�6

near the horizon out to r� 10, and we used a value around
rT � 10�4. With the fluctuation in hand, we normalized it
to one asymptotically and inserted it into (63) and used
(106) and (109) to calculate the bulk viscosity over entropy
density ratio �=s.6

The results of this calculation, when carried out for
many points on the T �� plane, are shown in Fig. 5 up
to � ¼ �c; in all figures in this section, we have used the
normalization of [22] to express T and � in MeV. Two
features are immediately apparent. One is the propagation
of a ‘‘bump’’ on the T-axis at the location of the crossover,
out into the plane toward the critical point. As the bump
moves into the plane, it becomes increasingly asymmet-
rical as the slope on the lower-T side becomes more
vertical. Precisely at the critical point, this slope diverges.
Constant-� plots of �=s for both � ¼ 0 and � ¼ �c are
given in Fig. 6. The result at vanishing � was obtained

previously in [24]. For �>�c, the peak ‘‘tips over’’ and
the plot of �=s becomes multivalued.
The first and more important conclusion from this criti-

cal behavior is that the bulk viscosity remains finite at the
critical point; it does not diverge as is predicted in a
number of models such as that of Onuki [33], given in
Eq. (6); see also [34].
Moreover, the way in which the quantity stays finite is

interesting. Approaching the critical point along the
‘‘crest’’ of the peak turns out to be equivalent to approach-
ing along the axis defined by the first-order line (but on the
other side of the critical point); along this path, the value of
�=s scarcely changes at all. On the other hand, approaching
the critical point from a direction other than the first-order
axis, for example, constant � ¼ �c as depicted on the
right of Fig. 6, �=s develops a divergent slope; the same
is true for constant T or any other direction of approach,
save only the first-order axis, where no such divergent
slope is seen.
The bulk viscosity is not the only quantity with this

property. It is common for thermodynamic functions to
behave differently depending on whether the approach to
the critical point is on the first-order axis or not. In [22], it
was found that the thermodynamic densities s and � also
behave smoothly approaching the critical point along the
first-order axis, but have divergent slope approaching off-
axis. Since the derivatives of these densities are the specific
heat and susceptibilities, these properties are characterized
by various static critical exponents: the smooth approach
along the first-order axis corresponds to the vanishing
� ¼ 0, while the divergent slope approaching off the axis
is encoded in the value of � � 3, giving an approach of the
susceptibility off the first-order axis as

��j���cj���jT�Tcj��; off first order axis; (111)

with

� � 1� 1

�
� 2=3: (112)

A natural guess is then that this behavior can be explained
by the hypothesis that the bulk viscosity is a smooth
function of the two densities: � ¼ �ðs; �Þ. Let us character-
ize the divergent slope of � by an exponent �� :

� � �c � j���cj1=�� � jT � Tcj1=�� : (113)

Then we would expect �� ¼ �. We analyzed the results

of numerics and found an exponent consistent with this
interpretation, although the strong sensitivity to the precise
value of �c, which is difficult to determine due to the
infinite slope, gave an uncertainty in the exponent in the
range of 0:1< 1=�� < 0:7. A similar argument can be

carried through more precisely for the zero-frequency
conductivity � of the one-charge N ¼ 4 black hole. In
this case, the result (93) shows that �� ¼ 2, in agreement
with � ¼ 2 for the one-charge model.6Since ��=s is a constant, �=s is simply proportional to �= ��.
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The second salient feature of the �=s on the phase
diagram is the strong rise at colder temperatures and
smaller chemical potential. This behavior is shown for
zero chemical potential in Fig. 7, which shows the same
thing as the left-hand side of Fig. 6 but including lower
values of T. The bulk viscosity actually diverges at a
temperature T�, which on the T-axis is at T�ð� ¼ 0Þ �
86 MeV, before becoming finite again at smaller tempera-
tures; this divergence extends from the T-axis out along a
curve into the finite chemical potential region of the phase
diagram. The divergence is power law, with

�

s
� ðT � T�Þ�2: (114)

Notably, the thermodynamic densities s and � and their
derivatives do nothing special at this locus.
From the gravity point of view, this divergence

can be understood as related to a formation of a node in
the mode solution for H ðrÞ. For T > T�, the fluctuation
H ðrÞ never crosses zero as it asymptotes to a constant
value at the boundary. For T < T� on the other hand, the
solutions have a single zero before asymptoting to a con-
stant. As T ! T� from below, this node moves out toward
the boundary, and precisely at T ¼ T� the solution goes to
zero at infinity; that is, the leading constant H ð0Þ in the

asymptotic expansion of H (58) vanishes. Since the AdS/
CFT prescription is to normalize this constant to unity, the
scaling required to accomplish this normalization leads to
the divergence.

FIG. 5 (color online). The bulk viscosity over entropy density over the T �� plane for the QCD-like black hole solutions.
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FIG. 6 (color online). The bulk viscosity over entropy density at zero chemical potential and at � ¼ �c for the QCD-like black hole
solutions; the ‘‘bump’’ at left evolves into the peak with singular slope on one side as � is increased.
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A reasonable expectation is that for T < T�, there is a
perturbative instability in the black hole. Because the
thermodynamics is perfectly well-defined and stable in
the vicinity of T ¼ T�, such an instability, if present, would
be a decisive counterexample to the correlated stability
conjecture of [51,52].

On the field theory side, however, it is unclear what this
divergence means, and what the conjectured instability
would be for T < T�. Importantly, this particular feature
is not a prediction for QCD-like systems, since it lies well
outside the range that was matched to lattice QCD data;
T� � 86 MeV is well below the lower bound of Tmin �
135 MeV where the matching to lattice QCD ended. (In
fact, the value of the temperature where �=s begins to rise
toward the divergence is close to Tmin.) Instead, one should
view this phenomenon as an indication of what features are
generally possible in gauge/gravity transport.

Interestingly, this divergence is reminiscent of the super-
star divergence in the conductivity for the one-charge
N ¼ 4 black hole (95). In both cases, the transport coef-
ficient has a double pole in the thermodynamic variable as
the divergence is approached.

C. Conductivity and diffusion for the QCD-like
holographic critical black holes

Utilizing a numerical algorithm identical in spirit to that
employed for the computation of the bulk viscosity, it was
also possible to construct solutions to the fluctuation equa-
tion for aðrÞ (44) and subsequently evaluate the conduc-
tivity Kubo formula (47). The results of this calculation are
displayed in Fig. 8, where the dimensionless ratio �=T is
plotted over the T �� plane. Unlike the ratio �=s, this
quantity grows in the larger-T region of the diagram. Note
that as mentioned in Sec. III E, the overall normalization
for this ratio is not known due to the lack of a string theory
embedding, but the N2

c dependence should be general, so
we plot �=TN2

c using (66) as a concrete choice.
Once again, the most salient attribute is the propagation

of the crossover feature out to the critical point, which is
the sudden rise of �=T. Cuts at � ¼ 0 and � ¼ �c are
displayed in Fig. 9. As with the bulk viscosity, the con-
ductivity attains a finite value at the critical point; and also
like the bulk viscosity, the slope of the rise increases as the
critical point is approached, until it diverges, except along
the first-order axis. Thus it is again natural to hypothesize
that � ¼ �ðs; �Þ, and that off the first-order axis the con-
ductivity approaches its critical value with exponent 1=��

�� �c � j���cj1=�� � jT � Tcj1=�� ; (115)

with �� ¼ �.
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FIG. 7 (color online). The bulk viscosity over entropy density
at zero chemical potential down to lower temperatures, showing
the divergence.

FIG. 8 (color online). The conductivity over temperature over the T �� plane for the QCD-like black hole solutions.
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As described in the Introduction, the finiteness of the
critical conductivity is reminiscent of dynamic critical
model B rather than model H [31], matches the result for
the one-charge N ¼ 4 models (see Eq. (92) and [36,43]),
and is consistent with the interpretation of a large-Nc

enhancement of diffusive conductivity over convective
conductivity [37].

We may also consider the baryon diffusion DB � �=�.
Since the conductivity diverges at the critical point, the
finite critical conductivity implies vanishing baryon diffu-
sion. In [22], the behavior of the baryon susceptibility was
studied as the second-order point was approached along the
first-order line axis, and along directions off this axis. From
(102) and (111), one has that on and off the axis the
susceptibility diverges with critical exponents � � 1 and
� � 2=3, respectively. Thus, we find the rates of approach
to zero for the diffusion

DB�jT�Tcj��jT�Tcj; along first order axis; (116)

and

DB�jT�Tcj��jT�Tcj2=3; off first order axis: (117)

In Fig. 10, the conductivity divided by temperature is
plotted for vanishing chemical potential. In this region of

the phase diagram, the baryon susceptibility is particularly
easy to compute, as it can be explicitly related to the
background metric and scalar [22]. As a result, it is
straightforward to extract the baryon diffusion along the
T-axis. The diffusion also experiences a rise at low tem-
perature, but we are unable to determine whether or not this
rise culminates in a divergence (as is the case for the bulk
viscosity) as it manifests in a numerically unreliable region
of the phase diagram.

VI. CONCLUSIONS

The primary lesson so far of the study holographic
critical phenomena has been the suppression of fluctua-
tions and convective transport by large Nc. The models
considered here have a thermodynamic crossover designed
to emulate QCD, and correspondingly a critical point arises
in the T �� phase diagram. However, rather than exact
3D Ising static critical exponents, we found mean field
Ising critical exponents; and rather than divergences in
the transport coefficients, we here find finite critical be-
havior. (In fact, one can view the famous constancy of the
shear viscosity over entropy density, which holds through-
out the phase diagram, as being the first example of this
phenomenon, since mode-coupling theories predict a weak
divergence.) These results can be explained by the hy-
pothesis that large-Nc suppresses quantum corrections as
well as convective transport [37].
Physical QCD of course hasNc ¼ 3, but large-Nc count-

ing is still a useful way of looking at the theory for a
number of phenomena. Understanding better the extent to
which the suppression phenomena that emerge from the
AdS/CFT duals apply to real QCD is the primary outstand-
ing question: in other words, could large-Nc-suppression in
real QCD significantly push the behavior of physical quan-
tities toward mean field and model B expectations, except
very close to the critical point? Understanding both the
nonzero-momentum fluctuations and the finite-Nc correc-
tions to these models is essential for making further
progress, and we hope to report on these issues in the
future.
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FIG. 9 (color online). Conductivity over temperature at zero chemical potential and at � ¼ �c for the QCD-like black hole
solutions; the smooth rise on the left evolves to the singular jump on the right as � is increased.
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FIG. 10 (color online). Baryon diffusion at zero chemical
potential for the QCD-like black hole solutions.
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APPENDIX: TWO-CHARGE N ¼ 4 BLACK HOLE

Along with the one-charge N ¼ 4 black hole solution
of Sec. IV, another family of black holes coming from
string theory is the so-called two-charge N ¼ 4 solution,
which has equal charges for two Uð1Þ gauge fields inside
the SOð6Þ R-symmetry. Although two-charge black holes
do not exhibit a phase transition, they were useful for us to
study for two reasons. First, unlike our model of holo-
graphic QCD, the two-charge black holes are based on a
definite top-down construction, which nevertheless has the
same field content and a similar Lagrangian. Second, some
of the analytical calculations we present here were useful
to us in checking that our numerical methods for determin-
ing transport coefficients are accurate.

Keeping only the diagonal combination of the two gauge
fields, the two-charged black hole geometries solve our
ansatz with potential and gauge kinetic functions as fol-
lows:

Vð�Þ ¼ � 1

L2
ð8e�=

ffiffi
6

p
þ 4e�

ffiffiffiffiffiffi
2=3

p
�Þ;

fð�Þ ¼ e
ffiffiffiffiffiffi
2=3

p
�;

(A1)

where the scalar potential matches that for the one-charge
case, while the gauge kinetic function is slightly different.
The solution takes the form

AðrÞ ¼ log
r

L
þ 1

3
log

�
1þQ2

r2

�
;

BðrÞ ¼ � log
r

L
� 2

3
log

�
1þQ2

r2

�
;

hðrÞ ¼ 1� �L2

ðr2 þQ2Þ2 ;

�ðrÞ ¼
ffiffiffi
2

3

s
log

�
1þQ2

r2

�
;

�ðrÞ ¼
ffiffiffiffiffiffiffi
2�

p
Q

r2 þQ2
�

ffiffiffiffiffiffiffi
2�

p
Q

r2H þQ2
:

(A2)

This solution again is characterized by a charge Q, a mass
parameter�, and the asymptotic AdS scale L. The solution
has a horizon at

rH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

ffiffiffiffi
�

p �Q2
q

: (A3)

For fixedQ and L, the mass parameter� is bounded below
by

� 	 �min � Q4

L2
; (A4)

and at � ¼ �min we have rH ¼ T ¼ 0; extending
�<�min results in a naked singularity.
It is more convenient to trade the parameter � for rH,

which runs over all non-negative values. The temperature
and chemical potential are

T ¼ rH
	L2

; � ¼
ffiffiffi
2

p
Q

L2
; (A5)

giving a one-to-one relationship between the black hole
parameters (rH, Q) and the thermodynamic parameters (T,
�); a single black hole exists at each point in the phase
diagram, and hence a single phase. The entropy and charge
density are
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FIG. 11 (color online). The conductivity over temperature and diffusion times temperature for the two-charge black hole with
� ¼ 1.
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s ¼ 2	rH
�2L3

ðQ2 þ r2HÞ ¼
N2

cT

4
ð2	2T2 þ�2Þ;

� ¼
ffiffiffi
2

p
�2L3

QðQ2 þ r2HÞ ¼
N2

c�

8	2
ð2	2T2 þ�2Þ;

(A6)

which can be obtained as derivatives of the pressure

p ¼ N2
c

32	2
ð2	2T2 þ�2Þ2: (A7)

The Uð1Þ susceptibility is

� �
�
@�

@�

�
T
¼ N2

c

8	2
ð2	2T2 þ 3�2Þ; (A8)

and it along with other derivatives of s and � such as the
specific heat are everywhere well-behaved; this example
has no phase transitions.

We can consider the conductivity and related diffusion
coefficient for this model. Proceeding analogously to the
one-charge case, we find the ! ¼ 0 solutions

aðrÞ ¼ C1

r2

Q2 þ r2
þ C2a2ðrÞ; (A9)

where, as for the one-charge case, a2ðrÞ is a more compli-
cated expression including logðr� rHÞ. Matching to the
near-horizon solution

aðrÞ ¼ ðr� rHÞ�; (A10)

with the exponent � imposing infalling boundary condi-
tions given as (33)

� ¼ � i!L2

4rH
; (A11)

we determineC1 andC2 and solve for the conductivity (48)
. For small !, we find the result

�ð!Þ ¼ iQ2

!�2L
þ r3HL

2�2ðQ2 þ r2HÞ
þOð!Þ: (A12)

It is straightforward to convert this to dependence on the
thermodynamic quantities T, �, and one finds

�

T
¼ N2

c

4	2

�
i ~�2

2 ~!
þ 	3

2	2 þ ~�2
þOð!Þ

�
; (A13)

where again ~� ¼ �=T, ~! ¼ !=T. As in the one-charge
case we find a 1=! pole in the imaginary part, indicating a
delta function in the real part, and the remaining zero-
frequency conductivity

� ¼ N2
c	T

3

4ð2	2T2 þ�2Þ ¼
N2

c	T

4ð2	2 þ ~�2Þ ; (A14)

which using the susceptibility (A8) gives the diffusion
constant

D ¼ 1

2	T

�
1

1þ 2 ~�2=	2 þ 3 ~�4=4	4

�
: (A15)

We plot �=TN2
c and DT in Fig. 11. The analytic results of

this appendix were also calculated numerically, and the
resulting agreement provides a check on our numerical
methods.
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