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In this paper, we use the noncritical string/gauge duality to calculate the decay widths of large-spin

mesons. Since it is believed that the string theory of QCD is not a ten-dimensional theory, we expect that

the noncritical versions of ten-dimensional black hole backgrounds lead to better results than the critical

ones. For this purpose we concentrate on the confining theories and consider two different six-dimensional

black hole backgrounds. We choose the near-extremal AdS6 model and the near-extremal KM model to

compute the decay widths of large-spin mesons. Then, we present our results from these two noncritical

backgrounds and compare them together with those from the critical models and experimental data.
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I. INTRODUCTION

The gauge/gravity duality demonstrates the correspon-
dence between a gravitational theory in anti-desitter space
and a gauge theory at large N limit [1–6]. An example for
this correspondence is the relation between type IIB string
theory in ten-dimensional background and N ¼ 4 super-
symmetric Yang-Mills theory on four-dimensional bound-
ary ofAdS5. In recent years, using this correspondence as a
powerful tool to study the QCD has been increased and lots
of papers have been published in this context. For example,
the dynamics of moving quark in a strongly coupled
plasma [7–16] and the jet-quenching parameter [16–24]
have been investigated. In addition, the motion of a quark-
antiquark pair in the quark- gluon plasma has been studied
in [25–31].

The calculations of decay widths of mesons are so
important but they are hard to do by using the QCD
methods because of the strong coupling problems. So,
the holographic methods could help to overcome these
difficulties. Recently, models including the various brane
configurations have been introduced in critical dimensions
to describe hadrons in the confining backgrounds. The
model introduced in [32] is one example with D4=D6
brane configuration which leads to the heavy scaler and
pseudoscalar mesons. Also, the model proposed by Sakai

and Sugimoto [33] with D4=D8=D8 in ten-dimensional
background leads to a nice description of hadron physics.
Many authors have used the holographic methods to study
the hadron physics [34–36]. The decay process of mesons
is a remarkable task which has been studied by using the
SS model. The authors have calculated the meson masses
and the decay rates by consideration of low-spin meson as
small fluctuations of flavor branes. Of course, these models
can be used only for low-spin mesons and can not describe
the large-spin mesons anymore.

Large-spin mesons are interesting because of their phe-
nomenological features, therefore some authors have
chosen the dual string theory description to study their
decay processes in critical dimentions [37]. In this paper,
an interesting setup has been proposed to compute the
decay widths of mesons. They have used a semiclassical
U-shaped spinning string configuration. This string can
decay into some outgoing mesons by touching one or
more of the flavor branes, splitting and then getting recon-
nected to the brane due to the quantum fluctuations. The
idea in this paper is to focus on the near-wall geometry and
build the string-wave function near in this geometry by
semiclassical quantization. The authors compared their
results with the Casher-Neuberger-Nussinov model where
quark-antiquark pairs are connected by a chromoelectric
flux tube [38].
There is also an old model called the ‘‘Lund model’’

describing the mesons decay [39]. There are improvements
for this model in the literature where two massive quarks
are connected together by a massless relativistic string
[40]. The resulting formula leads to a better description
for the decay widths. It shows that for a decay width linear
in length, the ratio of �=M is not a constant anymore. Also,
the decay process of the open strings [41] and closed
strings [42] is studied before by using different methods.
The decay widths of both low-spin and large-spin me-

sons has been studied in critical dimensions [33,37]. Also,
some calculations for the low-spin mesons have been done
before by using the noncritical string/gauge duality [43].
But the decay widths of high spin mesons has not been
studied in the context of the noncritical dual mesons yet. In
holographic QCD, there is an idea that the string theory in
dimensions less than ten is a good candidate to study the
QCD. So, this motivates us to study the decay widths of
large-spin mesons by using the noncritical version of ten-
dimensional black hole backgrounds [43–49]. For this
purpose, we consider two different six-dimensional back-
grounds. The first one is the near-extremal flavored AdS6,
which is dual to a four-dimensional low energy effective
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gauge theory. Mesons in the ir theory are constructed by
the quarks with a mass of the order of temperature. This
model is based on the near-extremalD4 branes background
and the D6 flavor branes added to this background. The
second one is the same as the Klebanov-Maldacena model
called KM model [47] with flavored AdS5 � S1 back-
ground. In the near-extremal background, there is a system
of D3 and uncharged D5 branes in six-dimensional string
theory and one of the gauge theory flat directions is com-
pact on a thermal circle in order to break supersymetry
[43]. The near-extremal solution is dual to the four-
dimensional theory at finite temperature without supersym-
metry and conformal invariance. In this paper, we use the
semiclassical model introduced in Ref. [37] and do the
same calculations in the two noncritical dual pictures. For
this purpose, we choose the flat space-time approximation
for simplicity. According to Ref. [37], we construct the
wave function for the string configuration and use it to
compute the decay width. This paper is organized as
follows: In Sec. II we use the noncritical AdS6 background
to write an expression for the meson decay width.

In Sec. III we use another noncritical background, the
near-extremal KM model with AdS5 � S1 black hole, and
obtain another equation for the meson decay width for six-
dimensional string theory. In the last section, we present
our numerical results and compare them with the previous
models and the experimental data of Ref. [50]. Also, we
use the modified relation between the length of horizontal
part of the string and its mass derived in [40] and obtain the
decay widths for two noncritical backgrounds of Secs. II
and III and compare them with the data.

II. DECAY WIDTHS IN THE NEAR-EXTREMAL
AdS6 MODEL

In this paper, we use two different noncritical back-
grounds to calculate the mesons decay widths: the near-
extremal AdS6 model in this section and the near-extremal
Klebanov-Maldacena model with AdS5 � S1 background
in the next section. Also, we use the method proposed in
Ref. [37] for the critical dimensions to calculate the decay
widths. First, we briefly review the model of Ref. [37] and
then use it to do our calculations. In this paper, a semiclas-
sical U-shaped spinning string configuration with two
massive endpoints on the flavor brane is considered. The
string is pulled toward the infrared wall and also extends
along it. This configuration is equivalent to a high spin
meson with massive quarks.

The string can decay into some outgoing mesons by
touching one or more of the flavor branes, splitting and
then getting reconnected to the branes due to the quantum
fluctuations. The idea in this paper is to focus on the near-
wall geometry and build the string-wave function near in
this geometry by semiclassical quantization. The total
wave function for a classical U-shaped string is [37]

�½fN ng� ¼
Y
n

�n½N nðXMÞ�: (1)

WhereN nðXMÞ are normal coordinates, XM are the target
space coordinates and�n½N nðXMÞ� are the wave function
of normal modes N n. Because of the quantum fluctua-
tions, the string may touch the flavor brane in one or more
points with the probability given by [37]

P fluct ¼
Z 0

fN ng
j�½fN ng�j2; (2)

and only the configurations with the following condition
are being integrated

maxðUð�ÞÞ � UB: (3)

The splitting probability for the string to is given by [37]

P splitb :¼ 1

Teff

�open

L
: (4)

Using this relation, the total decay width takes this form

� ¼ TeffP split �
Z 0

fN ng
j�½fN ng�j2K½fN ng�; (5)

where K½fN ng� is a factor with the dimension of L which
measures the size of string sesments intersect the flavor
brane. Finally, the authors in Ref. [37] obtained the ap-
proximated decay width as following

�approx ¼ ðTeffP split � L� �maxÞ � P fluct; (6)

where �max is dimensionless. The fluctuation probability is
the main thing that should be computed for the decay
width. P fluct.
Now, we are going to use the procedure proposed in

Ref. [37] to evaluate the decay widths. First, we use the
model introduced above to calculate the meson decay
width in the near-extremal AdS6 black hole background
[43]. This background is constructed by near-extremal

color D4-branes and additional D4=D4 flavor branes. In
order to have a nonsupersymmetric gauge theory with
massless fundamentals, D4 flavor branes are added to the
background which are extended along the Minkowski di-
rections and stretched along the radial direction. The back-
ground metric has the form

ds26 ¼
�

U

RAdS

�
2
dx21;3 þ

�
RAdS

U

�
2 dU2

fðUÞ þ
�

U

RAdS

�
2
fðUÞd�2;

(7)

Fð6Þ ¼ Qc

�
U

RAdS

�
4
dx0 ^ dx1 ^ dx2 ^ dx3 ^ dU ^ d�

(8)

e� ¼ 2
ffiffiffi
2

p
ffiffiffi
3

p
Qc

; R2
AdS ¼

15

2
; (9)
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where � is a constant dilaton, Fð6Þ is the RR six-form field

strength and

fðUÞ ¼ 1�
�
U�

U

�
5
: (10)

The coordinate � should be periodic in order to avoid a
conical singularity on the horizon

�� �þ ��; �� ¼ 4�R2
AdS

5U�

; (11)

where L� � �� is the size of the thermal circle and should
be small in order to have a dual four-dimensional low
energy effective gauge theory [32]. The mass scale for
this noncritical metric is

M� ¼ 2�

��
¼ 5

2

U�

R2
AdS

: (12)

At leading order, the fluctuations of horizontal part of the
string on the wall experiences a flat geometry. First, we use
the following coordinate to see when the flat approxima-
tion is valid [37]

�2 ¼ U�U�

U�

: (13)

Then, we expand the metric of Eq. (7) around � ¼ 0 to
quadratic order and find the following expression for the
AdS6 metric

ds2 �
�
U�

RAdS

�
2ð1þ 2�2Þð��	dX

�dX	Þ

þ 4

5
R2
AdSd�

2 þ 5

�
U�

RAdS

�
2
�2d�2: (14)

Then, we consider the following solutions of a rotating
string at the ir wall

T ¼ L
; X1 ¼ L sin
 sin�;

X2 ¼ L cos
 sin�; U ¼ U�;

(15)

where L is the length of the horizontal part of the string. To
quantize the linearized metric (14) by using the Polyakov
formulation. The Polyakov string action in a curved back-
ground is given by

S ¼ 1

2��0
Z

d

Z 2�

ffiffiffiffi
�0p

0
d�GMN½ _XM _XN � XM0XN0�:

(16)

As explained in Ref. [37], the fluctuations along the wall
directions are irrelevant to construct the wave function. So,
we only consider the fluctuations in the � and X� direc-
tions (transverse to the wall). By expanding the above

action around the solutions of (15) and keeping the qua-
dratic terms in �, we find the following action

S ¼ 1

2��0

�
U�

RAdS

�
2 Z

d
d�
4

5

R4
AdS

U2
�

½ð _�2 � �02Þ

� bcos2ð�Þð1þ 2�2Þ� þ ½ð1þ 2�2Þ
� ð� _X�� _X	��	 � �X�0

�X	0
��	Þ�; (17)

where b is a dimensionless parameter as following

b � 5

2

�2L2U2
�

R4
AdS

; (18)

which determines the effect of curvature. If b � 1, the
string fluctuations are small enough, so we can use the flat
space approximation with the following coordinate

� ¼
ffiffiffi
5

4

s
U�

R2
AdS

z: (19)

to write the metric (14) in the conformally flat form.

ds2 �
�
U�

RAdS

�
2ð��	dX

�dX	 þ dz2Þ þ 5

�
U�

RAdS

�
2
�2d�2:

(20)

Again, by expanding the Polyakov action for the fluctua-
tions in the directions transverse to the wall and use
T ¼ L
, we find

Sfluct ¼ L

2��0
effð1Þ

Z
dTd�

�
�ð@TzÞ2 þ 1

L2
ð@�zÞ2

�
; (21)

where we have neglected the fluctuations in the directions
along the wall. In the above formula, the string effective
coupling for the near-extremal AdS6 background is as
following

�0
effð1Þ ¼ �0

�
RAdS

U�

�
2
; (22)

which is obtained by using the following equation for the
noncritical string stretching close to the horizon of the
AdS6 black hole [43]

Teffð1Þ ¼ 1

2��0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00gxx

p jwall ¼ 1

2��0

�
U�

RAdS

�
2
: (23)

Then, by imposing the Dirichlet boundary conditions
for the fluctuations zð�; 
Þ, one can write the following
equation

zð�; 
Þ ¼ X
n>0

zn cosðn�Þ: (24)
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We put this in the action (21) and integrate over � coor-
dinate to obtain

Sfluct ¼ L

2�0
effð1Þ

Z
dT

�X
n>0

�
�ð@TznÞ2 þ n2

L2
z2n

��
(25)

for the fluctuation in the z direction. From this equation, we
can easily find that the system is similar to infinite number
of linear harmonic oscillators. The frequencies are n=L and
the masses are L=�0

effð1Þ. We can see that this result is in the

form of the critical setup obtained in Ref. [37]. But the
important difference is in the expression of�0

effð1Þ (Eq. (22)),
which is different in critical and noncritical cases. Also, the
values ofU� andR2

AdS differ from the corresponding critical

values. The wave function in the factorized form is [37]

�ðfzng; fxngÞ ¼ �longðfxngÞ ��sphereðfyngÞ
���ðf�ngÞ ��transðfzngÞ (26)

where �long ¼ �sphere ¼ �� ¼ 1 because only the fluctu-

ations transverse to the wall contribute to the fluctuation
probability, and those belong to other directions are being
integrated. So the wave function for the transverse direc-
tions is written as [37]

�½fzng� ¼
Y1
n¼1

�0ðznÞ: (27)

From Eq. (25) we can write the following equation for the
wave functions of the string compared to the harmonic
oscillators

�0ðznÞ ¼
�

n

��0
effð1Þ

�
1=4

exp

�
� n

2�0
effð1Þ

z2n

�
: (28)

This equation is also similar to the critical case [37], but
the difference is in the�0

effð1Þ equation. All oscillators are in
their ground state and there is no relevant excited mode.
Also, there is the following condition [37]

X
n>0

jznj � zB; (29)

which means that if one add all the modes constructively,
the total amplitude is still smaller than zB. This condition
leads to the following expression for the upper bound on
the fluctuation probability [37]

P max
fluct ¼ 1�

ZP
n>0

	 	 	
Z
jznj�zB

Y1
n¼1

dznj�ðfzngÞj2: (30)

There is also another condition for the string not to touch
the brane which leads to a lower bound for the string
fluctuation probability as following [37]

Pmin
fluct ¼ 1� lim

N!1

Z zB

0
dz1

�
Z zB

0
dz2 	 	 	

Z zB

0
dzNj�ðfzngÞj2: (31)

The authors in Ref. [37] have evaluated this integral
numerically and fitted their result to a Gaussian with the
following expression:

P min
fluct 
 exp

�
�1:3

z2B
�0
eff

�
: (32)

They have obtained this result by using the Pmin
fluct plot in

terms of zB=
ffiffiffiffiffiffiffiffi
�0
eff

q
. If we do the same process, the following

equation for Pmin
fluct is obtained

P min
fluct 
 exp

�
�1:3

z2B
�0
effð1Þ

�
: (33)

This equation is the same as Ref. [37], except that the �0
eff

is replaced by �0
effð1Þ. Then we put Eq. (33) into the Eq. (6)

and find the decay width of large-spin mesons in the flat
space approximation as following

�flat ¼ ðconst� TeffP split � LÞ � exp

�
�1:3

z2B
�0
effð1Þ

�
:

(34)

This is the decay width we obtain by using the near-
extremal AdS6 black hole background. The difference
between our result and the result of critical dimensions
(Ref. [37]) is the precise form of the exponent. Since the
string effective coupling is different in these two back-
grounds, this leads to different results for the decay width.
Also, this difference exists in the case of the Lund model
[39]. We present our numerical results in the last section.
Equation (34) shows that the ratio �=L is constant on the
same Regge trajectory just like the results of the Ref. [37]
and the Lund model. But the experimental data do not
support this result exactly. As mentioned in Ref. [37],
this deviation could be justify by the fact that the Regge
trajectories in the nature are not straight lines and one
should consider the effect of two massive endpoints as
following: [40]

L

M
¼ 2

�Teff

�m1 þm2

2TeffM
þO

�
m2

i

M2

�
: (35)

In Ref. [37], this relation has been applied to the decay
rates. The authors showed that in the case of � linear in L,
the �=M ratio in not a constant. They concluded that as M
increase, this ratio increases and reaches to a universal
value for large M. So, Eq. (35) leads to a better result for
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the decay width which is compatible with the experimental
data. We also use this equation together with Eq. (22) to
find the decay widths for a and f mesons. We discuss our
results in the last section.

III. DECAY WIDTHS IN THE NEAR-EXTREMAL
KM MODEL

In this section, we use another noncritical background to
compute the decay width of large-spin mesons. We choose
the near-extremal version of Klebanov-Maldacena model,
AdS5 � S1. The system is composed of D3 color branes
and uncharged D5 flavor branes in six-dimensional non-
critical string theory. Here, we consider one of gauge
theory flat dimensions to be compact on a thermal circle.
This background is dual to a four-dimensional field theory
at finite temperature with fundamental flavors. The
AdS5 � S1 metric is given by [43]

ds2 ¼
�

U

R0
AdS

�
2
�
dx21;2 þ

�
1�

�
U�

U

�
4
�
d�2

�

þ
�
R0
AdS

U

�
2 dU2

1� ðU�

U Þ4 þ R2
S1
d’2; (36)

with R0
AdS ¼

ffiffiffi
6

p
, R2

S1
¼ 4Q2

c

3Q2
f

, U4
� ¼ 2b1R

04
AdS and e�0 ¼

4
3Qf

. The RR 5-form field strength is

F5 ¼ Qc

�
U

R0
AdS

�
3
dx0 ^ dx1 ^ dx2 ^ d� ^ dU; (37)

and the period of the compact direction � is as following:

�� �þ �R02
AdS

U�

: (38)

Again, we use the coordinate of Eq. (15) to expand the
metric (36) around � ¼ 0 just like what we did in the
previous section. Then we find

ds2 �
�
U�

R0
AdS

�
2ð1þ 2�2Þð��	dX

�dX	Þ þ R02
AdSd�

2

þ 4

�
U�

R0
AdS

�
2
�2d�2 þ R2

S1
d’2: (39)

Then we consider fluctuations in the directions trans-
verse to the wall and expand the Polyakov action (16)
around the solutions (15). By keeping quadratic terms in
�, we obtain the following action

S ¼ 1

2��0

�
U�

R0
AdS

�
2 Z

d
d�
R04
AdS

U2
�

½ð _�2 � �02Þ

� b0cos2ð�Þð1þ 2�2Þ� þ ½ð1þ 2�2Þ
� ð� _X�� _X	��	 � �X�0

�X	0��	Þ�; (40)

where the dimensionless parameter b0 is

b0 � 2L2U2
�

R04
AdS

: (41)

In the case of b0 � 1, we have the flat space approxi-
mation because the fluctuations of the string are small.
Then we can use the coordinate

z ¼ R02
AdS

U�

�; (42)

to write the metric (40) in the following conformally flat
form

ds2 �
�
U�

R0
AdS

�
2ð��	dX

�dX	 þ dz2Þ

þ
�
U�

R0
AdS

�
2
�2d�2 þ R2

S1
d’2: (43)

Again, when we expand the Polyakov action for the fluc-
tuations in the transverse directions and use T ¼ L
, we
can find

Sfluct ¼ L

2��0
effð2Þ

Z
dTd�

�
�ð@TzÞ2 þ 1

L2
ð@�zÞ2

�
; (44)

where

�0
effð2Þ ¼ �0

�
R0
AdS

U�

�
2

(45)

is the effective string coupling for the near-extremal KM
model. Because of the AdS radii differences in these two
noncritical backgrounds, this equation is not the same as
Eq. (22). Then we put Eq. (24) for the fluctuations zð�; 
Þ
into the action (44) and integrate over � coordinate to find

Sfluct ¼ L

2�0
effð2Þ

Z
dT

�X
n>0

�
�ð@TznÞ2 þ n2

L2
z2n

��
: (46)

This action is also similar to the action for an infinite
number of linear harmonic oscillators with frequencies
n=L and masses L=�0

effð2Þ. Then by using the process of

previous section, we find the string fluctuation probability
as following

P min
fluct 
 exp

�
�1:3

z2B
�0
effð2Þ

�
: (47)

By inserting Eq. (47) into Eq. (6), we obtain the following
equation for the decay width of large-spin mesons in the
near-extremal KM model:

�flat ¼ ðconst� TeffP split � LÞ � exp

�
�1:3

z2B
�0
effð2Þ

�
;

(48)

where zB is the position of the flavor brane. This equation
is for the flat space approximation and is similar to the
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near-extremal AdS6 results and also Ref. [37]. These re-
sults are different in the precise form of the exponent which
depend on effective string couplings. This is the decay
width obtained by using the near-extremal KM model
with the AdS5 � S1 black hole background. We present
our numerical results in the last section.

IV. RESULTS AND DISCUSSION

In this section, we present the numerical results for the
decay widths and compare them with the models in [37]
and the experimental data of Ref. [50].

As mentioned before, the difference between Eqs. (34)
and (48) and the critical model [37] is the different effec-
tive string couplings. We use these equations and obtain the
decay widths numerically. For this purpose, we put the

values RAdS ¼
ffiffiffiffi
15
2

q
, R0

AdS ¼
ffiffiffi
6

p
, and TeffðcrÞ ¼ 0:177 into

the Eqs. (34) and (48) and use Eqs. (22) and (45) to plot the
decay width (Fig. 1). From this diagram, we can see that
the decay widths of mesons in the noncritical backgrounds
of Secs. II and III are more than in the critical model. So we
find larger values for the decay widths compared to the
critical model.
Then we plot �=M in terms of M for two large-spin

mesons, a and f by using a sigmoidal fitting for the
experimental data of Ref. [50] (see Fig. 2). From this
diagram, we can see that the decay widths in the nature
are not constant on the same Regge trajectory. The decay
widths behave like Eq. (35) in which the effect of two
massive endpoints of the string is considered.
Also, we can use Eq. (35) for the two noncritical

models of sections II and III and the critical model [37]
to plot �=M in terms of M (Fig. 3). In this figure, we can
see that for the a trajectory, there is a good agreement
between the AdS6 diagram and the experimental data for
all spin values (the left diagram). For the f trajectory we
can see that our results deviate from the experimental
results in low spins and the fitting of experimental data
has a better agreement with the critical model of Ref. [37]
but for high spins in the f trajectory, the AdS5 � S1

diagram is more compatible with the experimental data
(the right diagram).
In this paper, we used the noncritical string/gauge dual-

ity and obtained the decay widths for large-spin mesons.
We chose two different six-dimensional black hole
backgrounds; the near-extremal AdS6 background and

FIG. 2. a) The decay width divided by mass versus the mass of the mesons states on the a trajectory. b) The decay width divided by
mass versus the mass of the mesons states on the f trajectory. The solid lines correspond to a sigmoidal fitting for the data [50].

FIG. 1. The decay widths of mesons vs the position of flavor
brane. The dashed line belongs to the AdS6 model, the dashed-
dotted line belongs to the near-extremal KM model, and the
dotted line is for the critical case. The decay width in the
noncritical models are more than the critical one.
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the near-extremal KM model. By using the method of
Ref. [37], we obtained expressions for the decay widths
and plotted it in terms of the position of the flavor brane
(Fig. 1). From this diagram it is easy to see that the non-
critical models lead to larger values for the decay width.
Then we used another equation from Ref. [40] and plotted
the decay width in terms of the masses of meson states. We

compared these results with the fitting of experimental data
of Ref. [50] for mesons a and f (Fig. 3). From these
diagrams, one can find that for a meson, the AdS6 back-
ground leads to a better result. Also, for f meson, the near-
extremal KM model has better agreement with data only
for large spins. For lower spins, the critical model of
Ref. [37] is closer to the experimental data.
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