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Physical effects in brane world models emerge by the incorporation of field modes coming from extra

dimensions with the usual four-dimensional ones. Such effects can be tested with well-established

experiments to set bounds on the parameters of the brane models. In this work we extend a previous

result which gave finite electromagnetic potentials and self-energies for a source looking pointlike to an

observer sitting in a 4D Minkowski subspace of a single brane of a Randall-Sundrum spacetime including

compact dimensions, and along which the source stretches uniformly. We show that a scalar particle

produces a nonsingular static potential, possesses a finite self-energy, and that technically its analysis is

very similar to the electrostatic case. As for the latter, we use the deviations from the Coulomb potential to

set bounds on the anti–de Sitter radius of the brane model on the basis of two experiments, namely, one of

the Cavendish type and the other being the scattering of electrons by helium atoms. We found these are

less stringent than others previously obtained using the Lamb shift in hydrogen.
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I. INTRODUCTION

Despite the extraordinarily rich accuracy with which the
predictions of electrodynamics have been experimentally
tested over the years (see, for instance, [1,2], and referen-
ces therein), efforts to place limits on deviations from its
standard formulation continue nowadays. The nature of the
experiments covers a big range of possibilities which in-
clude among others: (a) testing the power in the inverse-
square law of Coulomb, (b) seeking a nonzero value for the
rest mass of the photon, and (c) considering more degrees
of freedom, allowing mass for the photon while preserving
explicit gauge invariance. It is worth mentioning that all
these experiments have probed length scales increasing
dramatically over time.

Now, historically, once the Maxwell theory of electro-
magnetic fields was established, one of the main concerns
in physics was the construction of a consistent description
of electrodynamics and charged particles. The first serious
proposals in this direction were developed by Lorentz [3]
and Abraham [4]. These proposals and subsequent at-
tempts based on classical electrodynamics, special relativ-
ity, and the Lorentz force law led to the theory known as
the classical electron theory (CET). Whereas in the
Maxwell theory charges are considered as punctual which
produce infinite Lorentz self-force and infinite electromag-
netic self-energies associated with the singularities of the
Liénard-Wiechert potential, in the CET charges are con-
sidered as extended objects that experience a volume-
averaged Lorentz force. Parallel to the development of

the CET, quantum mechanics was developed giving origin
to one of the most spectacular theories we have in physics:
quantum electrodynamics (QED). This theory is awesome
due to the impressive range of electromagnetic phenomena
it covers with spectacular precision. After the experimental
achievements of QED, CET dropped from the list of con-
tenders for a fundamental theory of electrodynamics inter-
acting with matter. However, despite the great success of
QED there are still some features of the theory that could
be waiting for a better explanation, for instance, its prop-
erty of renormalizability. It turns out that QED is defined
by a perturbative series that is renormalizable in each
order, but it is most likely to be merely asymptotic in
character rather than convergent [5], in such a way that
the precision results are obtained only when computations
are made to some order in the expansion series, but without
any a priori prescription to stop the series at some order.
It is thus tempting to investigate theories that avoid

singularities. These are not expected to solve the problem
but at least they may contribute to a better understanding of
the singularity issue.
In this context, recently, in a previous work, some of us

found that a source lying on the single brane of a Randall-
Sundrum (RS) spacetime including compact dimensions,
and which looks pointlike to an observer sitting in usual 3D
space, produces a static potential which is nonsingular at
3D point position. Moreover, it matches Coulomb’s poten-
tial outside a small neighborhood [6]. The presence of the
compact dimensions in this setup serve to localize the
gauge field on the brane [7–9]. The aim of this paper is
to further investigate some consequences of the above
property to set bounds to the anti–de Sitter (AdS) curvature
radius � using the experimental results from the Cavendish
experiment for electromagnetism and the scattering of
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electrons by helium atoms. For the sake of clarity, the
simpler case of a scalar particle is first considered.
Remarkably, the nonsingular character of the potential
holds together with the finiteness of the self-energy.
Indeed, technically, the study of the potentials for both
scalar and electromagnetic is very similar.

Our interest in this work is twofold: on one hand, it is
interesting to explore how the old problem of divergences
acquires a different character in light of the brane-world
models, at least classically, and, on the other hand, it is also
interesting from the perspective of the brane-world scenar-
ios [10–14], which have recently been a matter of copious
research, mainly in high energy physics (see, e.g., [15,16],
and references therein) and cosmology (see, e.g., [17–19],
and references therein). More recently, the possibility to
obtain information from models with extra dimensions
studying low energy physical phenomena has also been
addressed. In particular, we mention the ones that have
been performed in the RSII-p setup, such as the electric
charge conservation [8], the Casimir effect between paral-
lel plates [20,21], and the hydrogen Lamb shift [6].

The paper is organized as follows. In Sec. II we briefly
describe the RSII-p setup, Sec. III is dedicated to obtain
the static potential for a scalar field, whereas in Sec. IV we
do the same for the electric case. In Sec. VAwe set bounds
on the AdS radius � comparing our electrostatic results
with the experimental values obtained in Cavendish-like
experiments of the Coulomb force. Section VB is dedi-
cated to the same purpose but this time we use the experi-
mental results of the scattering process of electrons by
helium atoms. Finally Sec. VI is devoted to a brief
discussion.

II. RANDALL-SUNDRUM II-p SCENARIOS

The Randall-Sundrum II-p scenarios consist of a
(3þ p) brane with p compact dimensions and positive
tension�, embedded in a (5þ p) spacetime whose metrics
are two patches of anti–de Sitter (AdS5þp) having curva-

ture radius �. The interest in these models comes from its
property of localizing on the brane: scalar, gauge, and
gravity fields due to the gravity produced by the brane
itself. This property is valid whenever there are p extra
compact dimensions [8,9]. In the limiting case p ¼ 0, the
model only localizes scalar and gravity fields. With this
setup and appropriate fine-tuning between the brane ten-
sion � and the bulk cosmological constant �, which are
related to � as follows:

� ¼ 2ð3þ pÞ
8��G5þp

;

� ¼ �ð3þ pÞð4þ pÞ
16��2G5þp

¼ �ð4þ pÞ�
4�

;

(1)

there exists a solution to ð5þ pÞD Einstein equations with
metric

ds25þp ¼ e�2jyj=�
�
���dx

�dx� �Xp
i¼1

R2
i d�

2
i

�
� dy2: (2)

Here ��� is the 4D Minkowski tensor, �i 2 ½0; 2�� are p
compact coordinates, Ri are the sizes of compact dimen-
sions, and G5þp is the ð5þ pÞD Newton constant.

Throughout the paper we use the notation for the 5þ p
coordinates XM � ðx�; �i; yÞ, where � ¼ 0, 1, 2, 3, and
i ¼ 1; . . . ; p.
In this work we consider two different ð5þ pÞD field

theories on RSII-p: a massless scalar field and electro-
dynamics. They will be subjected to a hybrid of the two
well-known consistent compactifications, namely, Kaluza-
Klein (KK) [22,23] and warped [10]. These two differ
among them on whether the compactified manifold is
factorizable or not. The corresponding effective field theo-
ries in 4D Minkowski spacetime will be given.
With regard to the KK compactification, it is well known

that toroidal dimensional reductions lead to consistent
lower dimensional theories which nonetheless can be ques-
tioned in that they do not come with a mechanism to fix the
moduli, or equivalently, the radii of the pD torus Tp

[24,25]. Historically, a way out in such cases has been to
conform to the corresponding phenomenology at low
enough energies and set a bound for the radii (e.g., the
use of the classical value of the electron charge required a
radius of the order Planck length in the original KK setting
[23,26]). We adhere to this approach by considering a low
energy approximation so that we truncate the massive KK
modes of the compact dimensions but keep those that
correspond to the noncompact dimension, meaning that
we assume the energy scale of the former is much smaller
than that of the latter. This is explicitly performed in the
Green’s function in Sec. III A for the scalar field and in
Sec. IV for the gauge field. As for the consistency of the
Randall-Sundrum compactification it has been discussed in
[27] (and references therein).
For completeness we only mention other mechanisms

adopted in the literature to perform a generalized KK
compactification. One of them is the so-called Scherk-
Schwarz compactification [28,29] or flux compactifica-
tions [30–32]. In this mechanism the symmetries of the
compactification manifold and/or the fields are used to
produce an effective potential for stabilizing the size of
the extra dimensions. There also exists a quantum proposal
by Candelas and Weinberg [33] where the effective poten-
tial for the moduli fields is produced by the Casimir energy
of matter fields or gravity. It remains open to study these
possibilities for our present setup.
A remark regarding the stability of the scenario de-

scribed by the metric (2) is in order here. Concerning the
world volume of the (3þ p) brane,M4 � Tp, it is clear that
the space is stable since it is flat. On the other hand, the
stability of the spacetime (2), without the Tp structure, was
studied long ago in [10,34] for static perturbations of the
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metric and in [35] for general spacetime dependent
sources. The stability of other warped compactifications
has also been addressed, for instance, in [36–39] the mod-
uli stabilization of the RSI model was discussed, whereas
in [40] more general metrics were discussed.

Before ending this section it is worth mentioning that
this setup was considered in different low energy physics
effects such as the electric charge conservation [8], the
Casimir effect between two conductor hyperplates
[20,21,41,42], and the Liennard-Wiechert potentials and
hydrogen Lamb shift [6] among others.

III. STATIC POTENTIAL FOR A SCALAR FIELD

In this section we compute the potential produced by a
static source which is seen as punctual by an observer
living on the usual 3D subspace of the (3þ p) brane. It
stretches, however, along the p compact dimensions thus
forming a p-dimensional torus (see Fig. 1).

A. The Green’s function

Let us consider a massless scalar field � described by
the action in ð5þ pÞD

S ¼
Z

d4x
Yp
i¼1

Rid�idy
ffiffiffiffiffiffi
jgj

q �
1

2
gMN@M�@N�þ�Jscalar

�
:

(3)

The equation of motion for the scalar field is

1ffiffiffiffiffiffijgjp @Mð
ffiffiffiffiffiffi
jgj

q
gMN@N�Þ ¼ Jscalar; (4)

where the source is given by

Jscalar ¼ �ðpÞ	3ð ~x� ~x0Þ	ðy� y0Þ: (5)

Here �ðpÞ is a constant whose dimensions are
½charge�=½length�p, explicitly

�ðpÞ ¼ �

ð2�ÞpR1 � � �Rp

;

with � the total charge.
In the background (2), the equation of motion (4) be-

comes

e2jyj=�
�
h��Xp

i¼1

1

R2
i

@2�i�

�
� 1ffiffiffiffiffiffijgjp @y½

ffiffiffiffiffiffi
jgj

q
@y�� ¼ Jscalar;

(6)

where h stands for the flat 4D d’Alembertian. The corre-
sponding Green’s equation is

e2jyj=�
�
hG�Xp

i¼1

1

R2
i

@2�iG

�
� 1ffiffiffiffiffiffijgjp @y½

ffiffiffiffiffiffi
jgj

q
@yG�

¼ 	ðy� y0Þ	pðRi�i � Ri�
0
iÞ	4ðx� x0Þffiffiffiffiffiffijgjp ; (7)

where G is the ð5þ pÞD Green’s function. This can be
expressed in terms of the eigenfunctions of the differential
operators for the different coordinates. Assuming
�ðXMÞ � eik�x

� Qp
i¼1 �ið�iÞc ðyÞ, where the modes �n

and c m account for the � and y dependences, respectively.
These have been discussed previously (see, for instance,
[7,20]) and here we only give a summary. The differential
equations governing the p compact modes depending on
�i are

ð@2�i þm2
�i
R2
i Þ�ið�iÞ ¼ 0; i ¼ 1; . . . ; p; (8)

whereas for the noncompact modes depending on y one
gets�

@2y � ð4þ pÞ
�

sgnðyÞ@y
�
þm2e2jyj=�Þc ðyÞ ¼ 0: (9)

The (pþ 1) constants of separation, m�i , m, fulfill the

following dispersion relation:

k2 ¼ Xp
i¼1

m2
�i
þm2 � m2

p þm2: (10)

To account for the compactness of the p dimensions Eq. (8)
is solved under the periodic boundary conditions

�nið�iÞ ¼ �nið�i þ 2�Þ; (11)

and the solutions turn out to be

�nið�iÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2�Ri

p eini�i ; where ni ¼ m�iRi 2 Z: (12)

To match the modes across the brane along the noncompact
dimension, Eq. (9) is solved with the following boundary
conditions:

c ðy ¼ 0þÞ ¼ c ðy ¼ 0�Þ and

@yc ðy ¼ 0þÞ ¼ @yc ðy ¼ 0�Þ: (13)

FIG. 1. Schematic view of the charge source for p ¼ 2. The
source is effectively pointlike from the perspective of an ob-
server sitting in the usual 3D space.
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In this case the solutions include a massless zero mode
localized on the brane

c 0ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ p

2�

s
(14)

which satisfies the normalization condition

2
R1
0 dye�ð2þpÞjyj=�c 2

0ðyÞ ¼ 1, as well as massive modes

given by

c mðyÞ ¼ e
y=�
ffiffiffiffiffiffiffi
m�

2

r
½amJ
ðm�ey=�Þ þ bmN
ðm�ey=�Þ�;

(15)

where J
 and N
 are the Bessel and Neumann functions,

respectively. In this expression


 � 4þ p

2
; (16)

and the coefficients am and bm are

am ¼ � Amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

m

p ; bm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

m

p ;

Am ¼ N
�1ðm�Þ
J
�1ðm�Þ :

(17)

Notice that in this case the localization of the massive
modes on the brane is better for increasing p, since the
modes are modulated exponentially by a factor of

e�pjyj=ð2�Þ. The normalization condition for the massive

modes is
R1
�1 dye�ðpþ2Þjyj=�c mðyÞc m0 ðyÞ ¼ 	ðm�m0Þ.

With the eigenfunctions at hand it is straightforward to
use them to write down the Green’s function. It takes the
form

Gðx; �i; y; x0; �0i; y0Þ ¼
Yp
i¼1

X
fng

eini�ie�ini�
0
i

2�Ri

�
Z d4k

ð2�Þ4 e
ik�ðx��x0�Þ

�
c 0ðyÞc 0ðy0Þ
k2 �m2

p

þ
Z 1

0
dm

c mðyÞc mðy0Þ
k2 �m2 �m2

p

�
; (18)

where fng denotes fn1; n2; . . . ; npjn1 2 Z; . . . ; np 2 Zg.
At this point it is convenient to introduce an approxima-

tion that will allow us to obtain analytic expressions of the
potential. We have massive modes from both compact
dimensions (12) and the noncompact one (15). Since we
are interested in the low energy regime we assume m�i �
m � ��1. Hence we will set n1 ¼ � � � ¼ np ¼ 0, and, as

for the noncompact modes (15) we use

c mðyÞ � �e
y=�
ffiffiffiffiffiffiffi
m�

2

r
J
ðm�ey=�Þ: (19)

In such low energy regime and upon integrating over the p
compact extra dimensions, we end up with an effective 5D
Green’s function

G5Dðx; y; x0; y0Þ ¼
Z d4k

ð2�Þ4 e
ik�ðx��x0�Þ

�
c 0ðyÞc 0ðy0Þ

k2

þ
Z 1

0
dm

c mðyÞc mðy0Þ
k2 �m2

�
; (20)

where the massless mode is given by (14) and the massive
modes by (19). Although we have only taken the zero
modes of the compact extra dimensions, notice that their
imprints remain in the 5D Green’s function through (16)
and (19).

B. Static potential

Now we are in a position to compute the static potential.
In this case the useful Green’s function is

Gð ~x; y; ~x0; y0Þ ¼
Z 1

�1
dt0Gð ~x; t ¼ 0; y; ~x0; t0; y0Þ

¼ c 0ðyÞc 0ðy0Þ
4�r

þ
Z 1

0
dmc mðyÞc mðy0Þ e

�mr

4�r
;

(21)

where r ¼ j ~x� ~x0j. As usual the potential is obtained upon
integrating the Green’s function times the source, Eq. (5),
and we are interested in its form at the brane, i.e., y ¼ 0,
namely,

’ðr; y ¼ 0Þ ¼
Z

d3x0dy0Gð ~x; y
¼ 0; ~x0; y0ÞJscalarð ~x0; y0; ~x0; y0Þ

¼ �ðpÞc 0ð0Þc 0ðy0Þ
4�r

þ �ðpÞ Z 1

0
dmc mð0Þc mðy0Þ e

�mr

4�r
; (22)

where now r ¼ j ~x� ~x0j, and (19) takes the asymptotic
value

c mð0Þ � 1

�ð
� 1Þ
ffiffiffiffiffiffiffi
m�

2

r �
m�

2

�

�2

: (23)

Finally, the potential becomes

’ðrÞ ¼ �ðpÞ

4�r

�
2þ p

2�

�
� �ðpÞ Z 1

0
dm

1

�ð
� 1Þ
�
�
m�

2

�

�1

e
y0=�J
ðm�ey0=�Þ e
�mr

4�r
: (24)

Next we further assume the source to be located at the
brane, i.e., y0 ¼ 0. The explicit form of (24) now depends
on whether the number of extra compact dimensions, p, is
odd or even, and so we discuss each case separately.

C. Odd number of extra compact dimensions

In the case that p takes odd values, 
 takes semi-integer
values and is useful to use the relation
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mlþ1=2Jlþ1=2ðm�Þ ¼ ð�1Þl
ffiffiffiffi
2

�

s
�lþ1=2

�
d

�d�

�
l sinðm�Þ

�
;

(25)

in the integrand of (24). Upon evaluation of the integral we
get

’ðrÞ ¼ �ðpÞ

4�r

2þ p

2�
� ð�1Þ
�1=2�ðpÞ�2
�1

2
�3=2
ffiffiffiffi
�

p
�ð
� 1Þ

1

4�r

�
�

d

�d�

�

�1=2

�
�

2�
� arctanðr�Þ

�

�
: (26)

Let us notice that the first term of this expression is
divergent at r ¼ 0. However, such a term cancels out
with the first term within parentheses for every odd p.
This leads to the form of the effective potential

’ðrÞ ¼ ð�1Þ
�1=2�ðpÞ�2
�1

2
�3=2
ffiffiffiffi
�

p
�ð
� 1Þ

1

4�r

�
d

�d�

�

�1=2

�
arctanðr�Þ

�

�
:

(27)

As an example, let us work out the case in which we have
only one compact extra dimension, i.e., p ¼ 1 ) 
 ¼
5=2. From (27) we obtain

’ðrÞ ¼ 2qð1Þs

3��

�
3
arctanðr�Þ

r
�

þ 5

ð1þ r2

�2
Þ þ 2

r2

�2

ð1þ r2

�2
Þ2
�
; (28)

where qð1Þs ¼ 3�ð1Þ
8�� . The finite value of the potential at the

3D point position of the source takes the value

lim
r!0

’ðrÞ ¼ 16qð1Þs

3��
; (29)

evidently regularized by the existence of � and R. Using
(28) we compute the effective self-energy of the point
charge, as determined by a 3D observer

Eðp¼1Þ
self

:¼ 1

2

Z
R3

d3xðr’Þ2 ¼ 85ðqð1Þs Þ2
9�

: (30)

D. Even number of extra compact dimensions

In the case that p takes even values 
 is integer and we
can use the relation

mlJlðm�Þ ¼ ð�1Þl�l
�

d

�d�

�
l�1

�
� J1ðm�Þm

�

�
; (31)

in (24), to obtain1

’ðrÞ ¼ ð�1Þ
þ1�ðpÞ�2
�1

2
�1�ð
� 1Þ
1

4�r

�
d

�d�

�

�1

�
r

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

p
�
:

(32)

As an example, let us consider the lowest even value for p:
p ¼ 2 ) 
 ¼ 3. From (32) we obtain

’ðrÞ ¼ qð2Þs

8�

�
8ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2

�2

q þ 4

ð1þ r2

�2
Þ3=2 þ

3

ð1þ r2

�2
Þ5=2

�
; (33)

where qð2Þs ¼ �ð2Þ
2�� . In this case the finite value of the poten-

tial at the 3D position of the source is

lim
r!0

’ðrÞ ¼ 15qð2Þs

8�
; (34)

whereas the source self-energy is given by

Eðp¼2Þ
self ¼ 51 975�2ðqð2Þs Þ2

65 536�
: (35)

IV. ELECTROSTATIC POTENTIAL

The procedure to compute this potential is similar to the
one we used in the scalar case. To avoid repetition, we
describe briefly the computation giving special emphasis to
the aspects that are different with respect to the scalar case.
A previous discussion of the photon Green’s function
analysis in the RSII-p scenario can be found in [8]. We
begin by considering the ð5þ pÞD action

S ¼
Z

d4x
Yp
i¼1

Rid�idy
ffiffiffiffiffiffi
jgj

q �
1

4
gMNgPQFMPFNQ

þ AMJ
N
gauge

�
; (36)

leading to the equation of motion

1ffiffiffiffiffiffijgjp @Mð
ffiffiffiffiffiffi
jgj

q
gMPgNQFPQÞ ¼ �jNgauge: (37)

We consider a static source along the brane, uniformly
distributed along the p extra compact dimensions, namely,ffiffiffiffiffiffi

jgj
q

jNgauge ¼ �ðpÞ	N
0 	

3ð ~x� ~x0Þ	ðy� y0Þ; (38)

where �ðpÞ is the charge density. Now we write down the
equation of motion for the gauge field in the background
(2). In order to do this, it is convenient to fix the gauge
Ay ¼ 0 and A�i ¼ 0, which is consistent with the value
J�i ¼ 0 for the components of the current density in the
directions of the compact extra dimensions. Thus Eq. (37)
becomes

O Â� � e�pjyj=�@�@�Â� ¼ �R�pepjyj=�
ffiffiffi
g

p
j�; (39)

where we assume equal size compact dimensions, Ri ¼
R; i ¼ 1; . . . ; p, and the differential operatorO is defined as

1It is worth mentioning an alternative approach to get the same
results for both odd and even p. It amounts to using the
completeness relation of the noncompact modes. In such a
case the coefficient in front of 1=r is proportional to the square
of a Dirac delta and by using either dimensional regularization or
distribution operations the coefficient vanishes thus obtaining the
same result, i.e., that the potential is finite at the 3D position of
the source [6].
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O :¼ e�ðpþ2Þjyj=�
�
�@2y þ pþ 2

�
sgnðyÞ@y þ e2jyj=�h

�
;

(40)

and Â� ¼ ���A�. Inspection of Eq. (39) reveals the term

@�Â
� is pure gauge on the brane, so we drop it from now

on [8].
To solve (39) let us notice that the differential operator

(40) is invariant under the change y ! �y, so the solutions
will inherit such symmetry. This is important since we are
looking for the potential on the brane. We adopt again the
Green’s function method. As in the scalar case, the neces-
sary tools are the eigenfunctions and eigenvalues of the
differential equation.

The eigenfunctions and eigenvalues for the p compact
modes are the same as those for the scalar field, Eq. (12).
As for the noncompact modes depending upon y and
subject to the boundary conditions (13) they fulfill again
a Bessel equation and have the following form:

�0 ¼
ffiffiffiffiffiffi
p

2�

r
;

�mðyÞ ¼ e�y=�
ffiffiffiffiffiffiffi
m�

2

r
½amJ�ðm�ey=�Þ þ bmN�ðm�ey=�Þ�; (41)

where

� � pþ 2

2
; (42)

and the constants am, bm are defined as in (17), with 

replaced by �. The modes are normalized in the formR1
�1 dye�pjyj=��2

0 ¼ 1 and
R1
�1 dye�pjyj=��mðm�Þ

�m0 ðm0�Þ ¼ 	ðm�m0Þ. Formally the Green’s function,
its low energy approximation, and the static potential on
the brane are obtained from (18), (20), and (24), replacing
the scalar modes c by the gauge modes � as well as the
factor 
 by �. The electrostatic Green’s function on the
brane takes the form

Ggaugeð ~x� ~x0; y ¼ 0; y0Þ

¼ p

2�

1

4�r
� 1

4�r

e�y
0=�

�ð�� 1Þ
�
�

2

�
��1

�
Z 1

0
dmm��1J�ðmy0Þe�mr: (43)

Since we are interested in the potential for a source located
on the brane, we have to evaluate the above expression in
the limit y0 ! 0. As in the scalar case this limit is different
depending on whether p is either even or odd. They are
given explicitly below.

A. p odd

In this case the potential gets the form

A0ðrÞ ¼ �ð5þpÞ

4�Rpr

ffiffiffiffi
2

�

s
ð�1Þ��2��1

�ð�� 1Þð2Þ��1

�
d

�d�

�
��1=2

�
�
arctanðr�Þ

�

�
; (44)

where r ¼ j ~x� ~x0j. As an example notice that for one
extra compact dimension p ¼ 1 one gets

A0ðrÞ ¼ 2e

��

�
1

1þ r2

�2

þ arctanðr�Þ
r
�

�
; e ¼ eð6Þ

2R�2
; (45)

which reduces to the Coulomb potential for r 	 � and is
finite at the 3D source position

lim
r!0

A0ðrÞ ¼ 4e

��
: (46)

The self-energy in this case is

Eðp¼1Þ
self

:¼ 1

2

Z
R3

d3xðrA0Þ2 ¼ 5e2

32�3�
: (47)

B. p even

Now � is an integer and

A0ðrÞ ¼ ð�1Þ��ð5þpÞ�2��1

2��1�ð�� 1ÞRp

1

4�r

�
d

�d�
Þ��1

�
r

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

p
�
:

(48)

Notice that for p ¼ 2,

A0ðrÞ ¼ e

�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2

�2

q þ 1

2ð1þ r2

�2
Þ3=2

�
; e ¼ eð7Þ

R2�
; (49)

which becomes the Coulomb potential for r 	 � and its
finite at the 3D source position:

lim
r!0

A0ðrÞ ¼ 3e

2�
: (50)

The source self-energy is now

Eðp¼2Þ
self ¼ 315e2

16 384��
: (51)

The static potentials for p ¼ 1, p ¼ 2 and Coulomb’s
are compared in Fig. 2. Remarkably as we have mentioned,
the electrostatic potentials corrected by the extra dimen-
sions are finite at the 3D position of the charge.
It is interesting and natural to explore possible conse-

quences of the modified electrostatic potentials we just
obtained using known experiments such as the Cavendish
and scattering ones. We do so in the following section.
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V. PHENOMENOLOGY OF THE
ELECTROSTATIC POTENTIAL

A. Cavendish experiment

From the different results obtained to verify the accuracy
of the electrostatic force, we have chosen the ones obtained
by Plimpton and Lawton [43] and more recent modifica-
tions (see [44,45] for a review of the different experi-
ments). The reason is that this belongs to a series of
experiments in which the main idea was to test the accu-
racy of Coulomb’s force between charged particles using
similar techniques as the one used by Cavendish to test the
gravitational force (see, for instance, [1] for a recent review
on the different perspectives and experiments performed to
test different aspects of electrodynamics). In the modern
version of the Cavendish experiment we have a modified
electromagnetic potential for a charge Q

V ¼ VC þ 	V;

where 	V is the modification to the Coulomb potential.
The idea behind the concentric charged sphere experiments
is that only for the Coulomb potential is the interior of a
charged sphere field free and therefore the potential there is
a constant. Then the potential difference between a charged
outer sphere and the uncharged inner sphere is zero only if
the potential is that of Coulomb. Any deviation from this
would imply a nonvanishing potential difference between
the spheres that can be measured.

The potential of a sphere with a chargeQ and radius c at
a distance r from the center is

UðQ; r; cÞ ¼ Q

2cr
½fðrþ cÞ � fðjr� cjÞ�;

where the function f is given by

fðrÞ ¼
Z r

0
dssVðs;Q ¼ 1Þ:

It is easy to verify that for V ¼ 
=r, UðQ; r < c; cÞ ¼
const, that is, the potential is constant in the interior.
In the simplest version of the Cavendish experiment one

has an outer sphere of radius b, charged to a certain
voltage, and then measures the relative voltage difference
to the uncharged inner sphere of radius a < b,


ab¼
��������V b�V a

V b

��������¼
��������UðQ;b;bÞ�UðQ;a;bÞ

UðQ;b;bÞ
��������: (52)

Plimpton and Lawton found that j
abj 
 3� 10�10 with
a ¼ 0:696 m, b ¼ 0:762 m. Here we calculate j
abj for
the two potentials corresponding to p ¼ 1 and p ¼ 2,
namely,

v1 ¼ 2Q

��

0
@ 1

1þ r2

�2

þ arctanðr�Þ
r
�

1
A;

v2 ¼ Q

�

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2

�2

q þ 1

2ð1þ r2

�2
Þ3=2

1
CA:

(53)

The results, to first order in �, are

j
1abj ¼ �

�b
; j
2abj ¼ �

4b
: (54)

Taking into account the experimental bound of Plimpton
and Lawton this means that � 
 7:18� 10�10 m or � 

9:14� 10�10 m for p ¼ 1 and p ¼ 2, respectively.
The more recent version of the Cavendish experiment

employs four concentric spheres of radii a, b, c, and d in
increasing order. The outer sphere has a charge Q and the
next one �Q. Then the potential at radius r is given by

UðQ; r; c; dÞ ¼ Q

2dr
½fðrþ dÞ � fðjr� djÞ�

� Q

2cr
½fðrþ cÞ � fðjr� cjÞ�: (55)

The experiment sets a bound for the ratio of the potential
differences between the two uncharged spheres and the two
outer spheres


abcd ¼
��������V b �V a

V c �V d

��������
¼

��������UðQ; b; c; dÞ �UðQ; a; c; dÞ
UðQ; c; c; dÞ �QðQ; d; c; dÞ

��������: (56)

Williams et al. [46] found that j
abcdj 
 2� 10�16 with
a ¼ 0:60 m, b ¼ 0:94 m, c ¼ 0:947 m, and d ¼ 1:27 m.
Here we calculate j
abcdj for the two potentials corre-
sponding to p ¼ 1 and p ¼ 2, and using the experimental
limits to constrain �. A straightforward calculation gives,
to leading order in �,

FIG. 2. Electrostatic potential of the point particle for the
standard 4D Coulomb case and p ¼ 1, 2.
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1abcd ¼
cd

�
4ðc�dÞðcþdÞð�2a2þc2þd2Þ

ða2�c2Þ2ða2�d2Þ2 þ 4ð2b2ðc�dÞðcþdÞ�c4þd4Þ
ðb2�c2Þ2ðb2�d2Þ2

�
3�ðc� dÞ �3

þOð�4Þ; (57)


2abcd ¼
cd

� 1

ðaþcÞ3þ
1

ða�cÞ3
c þ

1

ðd�aÞ3�
1

ðaþdÞ3
d

a þ
1

ðc�bÞ3�
1

ðbþcÞ3
c þ

1

ðbþdÞ3þ
1

ðb�dÞ3
d

b

�
16ðc�dÞ �4

þOð�5Þ: (58)

Taking into account the experimental value obtained by
Williams et al. (j
abcdj 
 2� 10�16) the corresponding
bounds for � are � 
 2:80� 10�7 m or � 
 4:02�
10�6 m for p ¼ 1 and p ¼ 2, respectively. In this case
the two sphere experiment gives a tighter constraint on �.
The reason for this may be the peculiarities of the modifi-
cation of the Coulomb potentials that in our case contains
positive powers of r.

B. Scattering by helium atoms

We study the collision of a particle of charge ze and
mass m with an atom of atomic number Z. Notice that an
exact formulation of this problem requires the use of a
many-body Hamiltonian which describes all the particles
of the system; however, we make the assumption that the
complicated interaction of the incident particle with the
constituents of the atom can be accounted for by an effec-
tive electrostatic potential VðrÞ in which the incident par-
ticle travels.

It is physically reasonable that the electrostatic potential
in which the incident particle travels is well approximated
by

Vð ~rÞ ¼ ze

�
Zev1;2ð ~rÞ þ e

Z
�ð ~r0Þv1;2ðj~r� ~r0jÞd3 ~r0

�
;

(59)

were ~r is the position vector of the incident particle and
v1;2ð~rÞ are given by (45) and (49). The first term is due to

the field of the nucleus and the second term is the potential
of the atomic electrons, described in terms of an effective
electron density �. It is worth mentioning that in this
description we are neglecting all effects of symmetry and
spin. For neutral atoms, the density satisfiesZ

�ð ~rÞd3 ~r ¼ Z: (60)

When the incident particle carries sufficiently high energy,
the scattering amplitudes can be easily evaluated by the
Born approximation

fð�Þ ¼ � m

2�ℏ2

Z
ei ~q� ~rVð~rÞd3 ~r; (61)

where ~q ¼ ~k0 � ~k, and ~k0 and ~k are the initial and final
momentum, respectively. Since the scattering is elastic,

j ~kj ¼ j ~k0j ¼ k. Thus introducing Eq. (59) in (61) and

making the following change of variable ~R ¼ ~r� ~r0 we
have

f1;2ð�Þ ¼ � me2

2�ℏ2

�
zZ

Z
ei ~q�~rv1;2ð ~rÞd3 ~r

� z
Z

ei ~q� ~Rv1;2ð ~RÞd3 ~R
Z

�ð ~r0Þei ~q� ~r0d3 ~r0
�
;

¼ �me2z

2�ℏ2
½Z� Fð ~qÞ�

Z
ei ~q� ~rv1;2ð~rÞd3 ~r; (62)

Fð ~qÞ is called the form factor of the atom. We defined Fð ~qÞ
as

Fð ~qÞ ¼
Z

�ð~rÞei ~q� ~rd3 ~r: (63)

When the potential is spherically symmetric, the angular
integration can be performed to give

f1;2ð�Þ ¼ � 2me2z

ℏ2
½Z� Fð ~qÞ�

Z 1

0

sinðqrÞ
qr

v1;2ðrÞr2dr;
(64)

with q ¼ j ~qj ¼ 2k sinð�=2Þ and r ¼ j~rj. The evaluation of
this integral depends on the form that v1;2ðrÞ takes. We first

calculate f1ð�Þ

f1ð�Þ ¼ � 4me2z

�ℏ2

1

�q
½Z� Fð ~qÞ�

�
Z 1

0
sinðqrÞ

�
1

1þ r2

�2

þ arctanðr�Þ
r
�

�
rdr; (65)

using the following relations (see [47]):

Z 1

0

sinðqrÞ
1þ r2

�2

rdr ¼ �

2
�2e�q�; (66)

Z 1

0
sinðqrÞ arctanð

r
�Þ

r
rdr ¼ �

2

e�q�

q
; (67)

f1ð�Þ can be written as

f1ð�Þ ¼ � 2me2z

ℏ2
½Z� Fð ~qÞ�

�
1

q2
þ �

q

�
e�q�: (68)

Considering the form of v2ðrÞ, f2ð�Þ can be expressed as

f2ð�Þ ¼ � 2me2z

ℏ2

1

�q
½Z� Fð ~qÞ�

�
Z 1

0
sinðqrÞ

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2

�2

q þ 1

2ð1þ r2

�2
Þ3=2

1
CArdr: (69)

Now let us consider the integrals
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Z 1

0

sinðqrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

�2

q rdr ¼ �2K1ðq�Þ; (70)

Z 1

0

sinðqrÞ
ð1þ r2

�2
Þ3=2 rdr ¼ �3qK0ðq�Þ; (71)

where K0ðxÞ and K1ðxÞ are Bessel functions of zeroth and
first order, respectively. Thus f2ð�Þ takes the form

f2ð�Þ ¼ � 2me2z

ℏ2
½Z� Fð ~qÞ�

�
�

q
K1ðq�Þ þ �2

2
K0ðq�Þ

�
:

(72)

For helium we can calculate the electron density as

�ðrÞ ¼ Z

�
b3

�a30

�
e�2br=a0 ; (73)

with b being the effective charge and having the value 1.69
for helium while a0 is the Bohr radius. The form factor
becomes

FðqÞ ¼ Z

ð1þ a2
0
q2

4b2
Þ2
: (74)

The differential scattering cross section for elastic pro-
cesses thus becomes

�
d�

d�

�ðp¼1Þ ¼
�
2zZ

a0q
2

�
2
�
1� 1

ð1þ a20q
2

4b2
Þ2
�
2½1þ q��2e�2q�;

(75)

�
d�

d�

�ðp¼2Þ ¼
�
2zZ

a0q
2

�
2
�
1� 1

ð1þ a2
0
q2

4b2
Þ2
�
2
�
q�K1ðq�Þ

þ q2�2

2
K0ðq�Þ

�
2
: (76)

For incident electrons, we set z ¼ �1 and Z ¼ 2 for the
helium atom. To complete the analysis we compare the
theoretical results with the corresponding experimental
ones. This comparison is made explicit in Figs. 3 and 4.
For both p ¼ 1, 2 a best agreement is attained when ��
10�10 m.

VI. DISCUSSION

The ever increasing accuracy with which electrodynam-
ics has been tested naturally lends itself to consider it as a
probe to set bounds for possible deviations coming from
the existence of extra dimensions. Among different models
the so-called Randall-Sundrum ones including a single 3-
brane and p extra compact dimensions (RSII-p) have
provided simple scenarios that yield effects well under
control. Take, for example, the Casimir force [20,21]: In
a nutshell the field modes corresponding to the extra di-
mensions add up to modify the usual Casimir force ex-
pression and the deviations are assumed to be bounded by
the uncertainties in the experimental data. This in turn sets
bounds for the parameters of the brane model.
In this work we explored the static potential produced by

a scalar and a charged source, respectively, in RSII-p.
These sources are effectively pointlike from the perspective
of an observer sitting in the usual 3D space. However, they
stretch uniformly along the p compact dimensions thus
having the structure of a Tp torus. Remarkably the effec-
tive potentials turn out to be nonsingular at the position in
3D space. At first one may think this is related to the fact

FIG. 3. Comparison of experimental differential cross section
[54] with that corresponding to one compact dimension, Eq. (75).

FIG. 4. Comparison of experimental differential cross section
[54] with that corresponding to two compact dimensions, Eq. (76).
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the sources stretch along the extra dimensions, similarly as
in models of charged spherical shells [48]. This is not the
case as a more careful look reveals: The potential produced
by either a charged ring or a torus is not finite at the source
itself [49–51]. The RSII-p scenario thus allows one to
regularize the 3D potentials and self-energies. Indeed the
combined limit having AdS radius and compact size going
to zero yields the usual standard divergent result.

We determined the potentials in the low energy regime
in terms of light modes; this entails approximating the
continuous modes given in terms of Bessel functions by
their small argument form whereas for the compact modes
we keep the zero mode only. Within this approximation a
delicate balance occurs between part of the massive sector
contribution to the potential and the zero mode. Since the
zero mode is responsible for the usual singular 1=r term,
the potential characteristic of massless fields, the balance
just described, regularizes such a divergence. Moreover the
remaining effective potential becomes the usual 1=r within
a few times � away from r ¼ 0 and provides finite self-
energies as determined from the usual 3D formulas.

To probe the effective potentials we proposed to con-
sider two types of experiments. First we adopted the long
known Cavendish experiment with two and four conduct-
ing spheres that is used to test the form of the Coulomb
force. To be consistent with known experimental results for
the case of two spheres a value of �� 10�10 m is required.
The four spheres setting however turns out to produce a
milder bound �� 10�7 m, probably due to the positive
powers of the correcting terms of the effective potentials
when developing around 1=r. The second possibility we

studied to test our effective potentials was to consider
electrons scattered off by helium. A comparison of the
differential cross section modified by the RSII-p scenario
with the curve fitting experimental data indicates consis-
tency with a value of �� 10�11 m. In a previous work [6]
we used the Lamb shift to set a bound of �� 10�14 m for
p ¼ 1, and �� 10�13 m, for p ¼ 2, which clearly are
stronger than the ones obtained in the present work.
The fact that for both the scalar and electromagnetic

case the potentials become well behaved leads naturally to
the question of whether the same results holds for the
gravitational case. This is work under study and will be
reported elsewhere. Indeed, historically, finiteness of the
potentials have led in the past to the idea that gravity
regulates the self-energy of the charged point particle
[52] as well as nonlinear field equations to achieve the
finiteness of the electric field [53].
In the low energy regime we focused on in this work

there are some other possible directions which can be
pursued. These include a reanalysis of the radiation reac-
tion problem in both electromagnetic and gravitational
cases as well as the complete understanding of the regu-
larization of the potentials and, in particular, its relation to
the topology of the sources together with their
dimensionality.
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