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We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear

viscosity � to entropy density s. We start with higher-derivative extensions of Einstein gravity in

asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory

and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We

then propose that the gravitational perturbations about a solution of the UV-complete theory are described

by an effective theory whose linearized equations of motion have at most two time derivatives. Our

proposal leads to a concrete prescription for the calculation of �=s for theories of gravity with arbitrary

higher-derivative corrections. The resulting ratio can take on values above or below 1=4� and is consistent

with all the previous calculations, even though our reasoning is substantially different. For the purpose of

calculating �=s, our proposal also leads to only two possible candidates for the effective two-derivative

theory: Einstein and Gauss-Bonnet gravity. The distinction between the two is that Einstein gravity

satisfies the equivalence principle, and so its graviton correlation functions are polarization-independent,

whereas the Gauss-Bonnet theory has polarization-dependent correlation functions. We discuss the

graviton three-point functions in this context and explain how these can provide additional information

on the value of �=s.
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I. INTRODUCTION

The gauge-gravity duality [1,2] can be used to learn
about the hydrodynamic properties of strongly coupled
gauge theories in the limit that their number of colors N
is infinite. This is achieved through the study of weakly
coupled anti-de Sitter (AdS) gravity theories of one dimen-
sion higher [3,4].

In the case that the theory in the AdS bulk is Einstein
gravity, the ratio of the shear viscosity (�) to the entropy
density (s) in the dual gauge theory takes on the well-
known value of [3,5–7]

�

s
¼ 1

4�
(1)

in natural units. Kovtun, Son and Starinets [8] conjectured
that �

s � 1
4� holds for all strongly coupled fluids, and this

restriction has since been referred to as the KSS bound.
We are considering generic extensions of Einstein grav-

ity in an (asymptotically) AdS spacetime of dimensionality
D � 5. Our focus is on static black brane backgrounds,
relevant for studying the hydrodynamics of the field theory
(FT) dual. We assume that there are higher-derivative
terms in the extended theory, which amounts to finite N or
quantum corrections to the FT. The number of derivatives

can be arbitrary, but the extensions are to be regarded as
perturbatively small relative to the Einstein term. Our focus
is on corrections to the ratio of two-point functions �=s;
however, as a consequence of our results, we find that
quantities depending on the higher-point functions can
similarly be studied.
The entropy density s can be directly obtained from the

Wald formula [9,10], whereas the viscosity � can be
determined (at least in principle) by a suitable general-
ization of the Kubo formalism. The calculation of the ratio
�=s for gravity theories having two-derivative linearized
equations of motion is well understood. We refer to such
theories as ‘‘two-derivative gravity’’ or sometimes as the
‘‘Lovelock class.’’ These are the theories that belong to the
special class of Lovelock theories [11] or are, like fðRÞ
gravity, closely related.
But, if the linearized equations of motion contain terms

with four or more derivatives, the theory inevitably con-
tains Planck-scale ghosts and it is not clear whether these
ghosts affect the value of the hydrodynamic parameters. So
the situation is more complicated than often appreciated,
and this matter has not yet been fully resolved. This is the
aim of the current paper.
This issue of ghosts has been discussed in [12], where

�=s was calculated for the FT duals of four-derivative
gravity theories. The ghost modes and their influence on
the computed values of �=s were explicitly exposed and
understood. Then a set of boundary conditions (BC’s) that
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eliminates the ghost modes was proposed. It was further
claimed that, once these BC’s are enforced, the validity of
the KSS bound is ensured.

The conclusion of [12] can be confronted with the
particular case of Gauss-Bonnet gravity. This is a special
theory for which the Lagrangian contains four-derivative
terms but the linearized equations of motion contain at
most two derivatives, and so it is two-derivative gravity
by our definition. For this case, it is well-known that the
ratio �=s can be below the KSS bound. Apparently, by
having no ghosts to begin with, the Gauss-Bonnet model is
able to evade the need for enforcing the BC’s of [12] while
violating the bound.

Here, we extend the considerations of [12] and propose
that metric perturbations about a solution of string theory
are always described by two-derivative gravity. This
should apply, in particular, to black branes in AdS space.
So that, given a higher-derivative theory, the resulting
effective two-derivative theory should be used for all cal-
culations of the two-, three- (and higher-) point functions.
This includes (but is not limited to) s and �, as these
parameters are directly related to the two-point functions
of specific gravitons in the black brane background.

This restriction to two-derivative gravity, for which there
is a limited number of choices, implies that all such gravity
theories and their FT duals depend on only a small number
of parameters. Moreover, the above proposal already pro-
vides a clear distinction in philosophy between what we are
suggesting and the previous methods for calculating �=s.
The resulting two-derivative theory should not be viewed
as a perturbative extension of Einstein gravity (even if its
higher-derivative origin is) since one uses the information
from the UV-complete parent theory to allow the propa-
gator to change. And so the arguments for enforcing the
KSS bound in [12] no longer apply.

The rest of the paper proceeds as follow. Sec. II starts
with an explanation on how to extract the viscosity from
the one-particle irreducible (1PI) effective action, with
special attention to the implications of higher-order cor-
rections. We then propose a novel set of BC’s that main-
tains explicit unitarity by reducing any higher-derivative
theory to an effective two-derivative model. It is made
clear how our proposal differs from previous methods,
which are either explicitly or implicitly based upon a
Wilsonian form of the effective action. Next, the entropy
density is considered; in particular, the application of the
standard calculations of s to a higher-derivative theory. We
are, at the end, able to prescribe the ratio �=s for a higher-
derivative theory in an unambiguous way.

In Sec. III, we explain that, for current purposes, any
such two-derivative model must be either an Einstein
theory or a Gauss-Bonnet theory. The value of �=s is
shown to be sensitive to this choice and we provide a
criterion to determine which theory should be used. This
criterion relies on the distinction between the Einstein and

Gauss-Bonnet forms of the two-, three- (and higher-) point
functions.
The final section briefly summarizes our conclusions

and explains their relevance to multiparticle correlations
in strongly coupled fluids.
Appendix A contains the details of a calculation pre-

sented in Sec. III, while Appendices B and C review
relevant known results.

II. A PRESCRIPTION FOR EVALUATING �=s

We are considering a theory of gravity with an Einstein-
Hilbert term and arbitrary higher-derivative corrections.
The main objectives of this section are to explain how
the 1PI effective action can be used to extract the viscosity,
propose BC’s that ensure unitarity, and provide a precise
prescription for calculating �=s. An important conclusion
of this section is that any such gravitational theory should
be a two-derivative gravity. Although our current focus is
primarily on the viscosity (and, then, �=s), a similar pro-
cedure can be applied to any graviton n-point function.

A. Initial considerations

We assume here that the theory describing the AdS bulk
spacetime is string theory, a unitary and UV-complete
theory. In the low-energy limit, as relevant for calculating
transport coefficients like �, string theory can be approxi-
mated by an effective gravitational action, which includes
the lowest-order (Einstein) term and possibly some higher-
derivative corrections. To keep the presentation simple, we
will assume that the string-theory effective action is purely
gravitational and discuss the possible inclusion of any
other fields at the end of the section.
We further assume that the full UV-complete theory has

a black brane solution. We do not need to know the exact
form of this solution, only its geometry.
As a concrete example, we have in mind the case of a

D-dimensional AdS black brane for which the geometry is
described by the following background metric

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ þ
r2

L2
dx2i : (2)

The index denotes the transverse space dimensions i ¼
1; . . . ; D� 2, L is the AdS radius of curvature and r is the
radial coordinate (orthogonal to the brane). The function F
vanishes on the horizon at r ¼ rh, FðrhÞ ¼ 0, and asymp-
totes to r2=L2 as the AdS boundary (r ! 1) is approached.
According to the gauge-gravity duality, the bulk has a

UV-complete and unitary FT dual that ‘‘lives’’ at the AdS
boundary; for example, N ¼ 4 supersymmetric Yang-
Mills theory [1] or the Kats-Petrov class of N ¼ 2 con-
formal (C)FT’s [13].
We wish to study small metric perturbations about the

solution of the full theory and describe them in terms of an
effective field theory. Since our interest is in physical
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observables in the bulk, we should calculate on shell
graviton scattering amplitudes near the boundary of the
AdS spacetime. These amplitudes are then dual to gauge-
invariant correlation functions of the energy-momentum
tensor of the FT, whereas other types of bulk amplitudes
are generally not physical.

Let us make a cautionary comment about the on shell
condition in AdS space. Since the physical quantities are
really on shell boundary amplitudes, it should have been
possible to describe them purely in terms of boundary
quantities. However, in practice (as discussed in detail
below), one needs to define the solutions of the linearized
equations also in terms of bulk quantities. For instance, in a
black brane background, one of the boundary conditions is
usually imposed on the horizon. This involves gauge
choices in the bulk, and one should make sure that the
final results are physical and not affected by any of these
choices.

The relevant effective bulk action for the gravitons is,
therefore, the 1PI action as derived from string theory,
since this serves to generate the physical on shell ampli-
tudes. This 1PI action comes already equipped with an on
shell condition that defines the solution of the linearized
equation for gravitons around a black brane background.

B. Extracting � from the 1PI action

Let us recall how the 1PI action is derived from string
theory, starting with the case ofN ¼ 1 supergravity in 10-
dimensional Minkowski spacetime. The on shell condition
for such theories is

hEh�� ¼ 0; (3)

up to quite high order (as explained shortly). hE is meant
as the differential operator that satisfies the equations of
motion from an Einstein theory. Corrections to the 1PI
action start with terms that are quartic in the Riemann
tensor (specifically, quartic contractions of the Weyl tensor
[14,15]) and so contain 8-derivative terms. These terms
determine only the 1PI four-point function (and possibly
some higher-point functions) while not changing the one-,
two-, and three-point functions. This is the standard out-
come when evaluating the 1PI action order by order in
perturbation theory; new interactions do not change the
lower-point functions. In particular, they do not change the
one-point function (equivalently, the on shell condition)
nor the two-point function (equivalently, the propagator).

When one considers the 1PI effective action in a lower-
dimensional AdS Schwarzschild geometry (e.g., D ¼ 5),
the situation changes. Because the spacetime is no longer
flat, the Weyl tensor is no longer vanishing in the new
geometry. So that, if one computes the corrections coming
from the quartic (Weyl4) terms, the on shell condition,
propagator and three-point function are all modified.
That the on shell condition and the propagator are changed
by interaction-induced corrections is a consequence of

treating the full theory in a nonperturbative way rather
than perturbatively near a specific vacuum solution. For
instance, terms that only contribute to interactions in a
given vacuum can modify the propagator in another.
This is the main difference between the perturbative treat-
ment discussed in [12] and the current nonperturbative
treatment.
The FT viscosity � is a physical quantity and is, there-

fore, defined by a physical on shell amplitude of a specific
class of perturbations, the transverse-traceless gravitons
hxy.

1 Of course, the viscosity� can be defined, in principle,

purely in terms of a FT prescription that is completely
independent of the bulk.
Let us now review how the on shell condition is enforced

in a black brane geometry for the case of the bulk theory
being Einstein gravity. Then we will discuss the on shell
condition for more complicated situations.
First, the Einstein equation for the gravitons is linearized

in some gauge. The conventional choice is the radial
gauge, which sets all graviton perturbations h�r to zero

such that � is arbitrary.2 The resulting linearized form of
the Einstein equation is hEh�� ¼ 0.

The next step is to choose the BC’s. The standard choice
is Dirichlet BC’s on the boundary of AdS and incoming
BC’s at the horizon of the black brane. These choices
completely fix the solution of the linearized equations
and, thereby, uniquely determine the on shell conditions
for gravitons in this background.
The solutions of the linearized equations are of the

plane-wave form h�� � h��ðrÞei ~P� ~X�i�T , where ~X are the

space coordinates and T is the time coordinate for both

the FT and the brane. ~P is the dimensionless space mo-
mentum and � is the dimensionless frequency; both of
which are in units of the brane temperature.
One then uses the solution of the linearized equation to

evaluate the on shell value of the two-point function of
gravitons near the AdS boundary. By the standard rules of
the AdS/CFT duality, this correlator is related to the gauge-
invariant two-point function of the energy-momentum ten-
sor of the FT. Since the FT (as well as the bulk) is in a
thermal state, this on shell two-point function is also the
1PI retarded propagator.
The viscosity � and the other transport coefficients of

the FT can be extracted from the two-point function of the
energy-momentum tensor or, equivalently, from that of the
gravitons near the AdS boundary in the hydrodynamic
limit. In this limit, the frequency � and the momentum
P both vanish, possibly at different rates.

1The labels x and y denote transverse brane directions that are
mutually orthogonal as well as orthogonal to the direction of
propagation.

2In the radial gauge, the fx; yg gravitons decouple from the
other polarizations and, so, this gauge is compatible with trans-
verse and traceless hxy’s.
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In practice, the value of � can be evaluated by a number
of means. For instance, via the Kubo formula [5], the
membrane paradigm [3], or simply by looking at the
two-point function hhxyhxyi at the horizon (equivalently,

at the associated kinetic terms in either the action or the
equations of motion) [16–18]. The latter is so because, in
the hydrodynamic limit and when the equations of motion
contain at most two derivatives, the effective action has the
same value at the horizon and at the boundary.

C. Extracting � from higher-derivative gravity

Let us now discuss how the on shell condition is en-
forced when the lowest-order Einstein-Hilbert action is
corrected by higher-order terms (such as the previously
discussed quartic terms). To fix the on shell condition here,
we will use exactly the same principles that were used
above in the simpler case. A slight complication arises
when the on shell condition gets corrected at higher orders.
In that case, there is some additional freedom in defining
the on shell condition due to field redefinitions adding
terms proportional to the lowest-order equations. This free-
dom will play a significant role in what follows.

To see that the on shell condition for the gravitons is
modified by the presence of higher-order corrections, we
can look at the linearized equation for the hxy gravitons.

As discussed in [10] and clarified in [19], the Lagrangian of
a general extension of Einstein gravity can be expressed in
terms of the metric, the Riemann tensor and its symme-
trized covariant derivatives, while antisymmetric combi-
nations of derivatives can be traded off for more Riemann
tensors, L¼L½gab;Rabcd;ra1Rabcd;rða1ra2ÞRabcd; . . .�.
The linearized equation for the hxy gravitons can be ob-

tained by expanding the full equations of motion

@L
@gpq

� 2rarbXa
pq

b þRabcpXabc
q � 1

2
gpqL ¼ 0

(4)

to linear order in hxy. Here,

X abcd � @L
@Rabcd

�ra1

�
@L

@½ra1Rabcd�
�

þrða1ra2Þ
�

@L
@½rða1ra2ÞRabcd�

�
þ � � � (5)

and the ellipsis means ever-increasing numbers of symme-
trized derivatives.

The linearized equation can also be regarded as a per-
turbative expansion in derivatives. Schematically, sup-
pressing tensorial structures and indices,

ðhE þ �c2ðrÞrrþ �Lc3ðrÞðrÞ3 þ �L2c4ðrÞðrÞ4
þ � � � � � � þ �n�1c2n�1ðrÞL2n�3ðrÞ2n�1

þ �n�1c2nðrÞL2n�2ðrÞ2n þ . . .Þ hxy ¼ 0; (6)

where hE is the operator for the Einstein equation
(hEhab ¼ 0), � � 1 is a dimensionless perturbative pa-
rameter controlling the strength of the corrections, and the
dots denote increasing numbers of derivatives as well as
mass terms of perturbative order.3 The tensors, c2ðrÞ, c3ðrÞ,
etc., are a model-dependent collection of dimensionless
radial tensors that are at most of order unity but can have
subleading contributions of order � (and higher) from yet
higher-derivative corrections. These tensors represent the
most general way to contract a given number of covariant
derivatives and are built with the background metric, back-
ground Riemann tensor, and its symmetrized derivatives.
Consistency of the perturbative expansion fixes the lowest
power of � for a given number of derivatives. For classical
�0 string corrections, which correspond to finite N correc-
tions for the FT, �� l2p=L

2 (with lp being the Planck

length). On the horizon, hE reduces to h, the standard
d’Alambertian.
Let us recall from [12] how this procedure works in the

simplest case of four-derivative corrections to Einstein
gravity. Equation (6) then has the simpler form4 (up to
henceforth implied mass terms)

hEhxy þ �bðrÞhEhxy þ �L2aðrÞh2
Ehxy ¼ 0: (7)

To summarize the preceding discussion, the linearized
equation for the fx; yg gravitons is generically of the form

ðhE þ �Dþ � � �Þhxy ¼ 0; (8)

where D denotes the leading-order higher-derivative cor-
rections to the linearized equation (coming from the lead-
ing corrections to the Einstein-Hilbert action). The exact
form of D will not be essential for what follows.
The operator D generically contains terms with four or

more derivatives, including some with at least four time
derivatives. The equation will include more and more time
derivatives as the perturbative order increases. So that, to
define the on shell condition, Eq. (8) has to be supple-
mented with new BC’s in addition to those already speci-
fied in the Einstein case. Recall that some of the BC’s are
fixed at the boundary of AdS and others on the horizon of
the black brane. The most relevant BC’s for the current
discussion are those at the outer boundary.
That Eq. (8) contains more than two time derivatives is

very problematic because of the ghost modes that must
appear in such cases. Since our treatment is classical, the
problem manifests itself in severe instabilities if the ghost
modes have nonvanishing amplitudes. (See [12] for addi-
tional discussion on this point.) What makes the situation a
little more bearable is that the ghosts are typically at the

3One can absorb such mass terms into the definition of hE, so
that these are essentially irrelevant. Further, one can disregard
perturbative terms with a single derivative acting on a graviton,
as these are related to mass terms by integration by parts.

4This is only strictly true in the hydrodynamic limit. See [12]
for clarification.
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cutoff (Planck) scale and, therefore, expected to be irrele-
vant to the calculation of hydrodynamic coefficients
like �.

This situation when ghosts are present but have a cutoff-
scale mass is ambiguous in connection to the calculation of
� (and any other coupling). One might reason that it is safe
to disregard their presence. However, to proceed, one
should in any case ensure that the ghosts have decoupled
before the computation is carried out. Rather than rely on a
general argument that may or may not apply, we propose to
exorcize the ghosts from the get go; ensuring that they do
not have the opportunity to interfere with the low-energy
physics.

In fact, by the same line of reasoning, it is safer to
eradicate all the extra modes with cutoff-scale masses,
ghosts or otherwise. We propose to accomplish this goal
through a particular choice of BC’s. The rational for this
choice is that, if some properties of the cutoff-scale modes
determine a low-energy physical quantity, then the result-
ing value of this quantity cannot be trusted. So that, when-
ever a calculation involves the cutoff-scale modes, one
should make sure that their amplitude, couplings, etc., do
not enter into the final result. The best way to achieve this
is, in our opinion, to set them to zero from the very start.
We are now ready to make our central assumption about

how the BC’s should be chosen. We propose that

The boundary conditions imposed on the higher-

derivative equation have to be chosen in a unique way

such that; from the many solutions to the higher-order

equation ð8Þ; only one mode has a non-vanishing ampli-

tude: This mode is the unique mode that; as � vanishes;

connects continuously to the solution of the lowest-order

equation ð3Þ when supplemented with its original bound-

ary conditions:

(9)

The essential difference between the proposal (9) and
the proposal in [12] is that, here, we are proposing to set to
zero the amplitude of all the cutoff-scale modes and not
just the ghosts. For four-derivative theories, the two pro-
posals are equivalent.

Let us now describe how the proposal (9) is imple-
mented for gravitons in an AdS black brane background
in the presence of corrections to Einstein gravity. To imple-
ment our choice of BC’s on Eq. (8), let us suppose (for
simplicity) that, at leading order in �, the operator D is
obtained from a four-derivative or Riemann2 correction. In
[12], it was shown that it is possible to factor Eq. (8) in the
following way:

hE þ �D ¼ ½1þ �b2ðrÞ þ �aðrÞhE�½1þ �b1ðrÞ�hE;

(10)

where aðrÞ and bðrÞ ¼ b1ðrÞ þ b2ðrÞ are functions of the
AdS radial coordinate that are uniquely determined by the
operator D. To verify this form, one need only expand out
the right-hand side to first order in � and compare it with
Eq. (7).5

From Eq. (10), we can extract the two modes that
the corrected theory contains (now suppressing graviton

indices): one massless graviton h1 and one additional mode
h2 whose mass is near the cutoff scale 1=�. Only one
additional mode is added in this case because the highest
derivative is of fourth order. The distinction between the
modes is still subject to the aforementioned freedom of
field redefinition. Here, the freedom is manifested in the
functions b1 and b2, which are arbitrary provided that their
sum remains fixed. This freedom cannot affect physical
quantities and indeed it does not.
For a fixed identification of modes, the BC’s are imposed

according to (9) as follows: The BC’s for the massive
solution h2,

½1þ �b2ðrÞ þ �aðrÞhE�h2 ¼ 0; (11)

are h2 ¼ 0 at the boundary and incoming at the horizon.
This constrains the amplitude of h2 to vanish everywhere in
the bulk (and obviously at the AdS boundary) by setting
both its normalizable and non-normalizable modes to zero
at the boundary. For the massless graviton, one chooses
the ‘‘standard BC’s,’’ incoming at the brane horizon and
Dirichlet at the AdS boundary.
The 1PI effective action to a given order in gravitons

is obtained by expanding the original higher-derivative
effective action to the same order and, then, setting the
extra mode to zero as required from the solution of its
equations of motion. The result is a two-derivative action
for the (modified) massless graviton. It is still not uni-
quely defined because of the freedom to change b1, while

5There are subtleties regarding the commutation of deriva-
tives; see [12]. Alternatively, one can bypass this issue by
imposing the limit of large (radial) momenta on the gravitons,
so that the coefficients are effectively constant.
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keeping b1 þ b2 fixed. Ultimately, though, physical quan-
tities must not depend on this freedom (as argued above).

The situation in which the equation contains terms with
higher than four derivatives is conceptually the same as we
have discussed, although technically more complicated.
The factorization procedure is expected to follow along
similar lines and produce an additional factor for any
additional pair of derivatives. Out of all the modes, one
still has to choose the single mode that connects continu-
ously to the massless graviton and set BC’s such that all the
rest vanish. The theory must then necessarily reduce to
quadratic order or

ð1þ �bðrÞÞhEh1 ¼ 0; (12)

where the bðrÞ is completely analogous (and equally
ambiguous) to the coupling in the four-derivative case.
We have not, however, implemented the proposal in a
concrete example derived from a theory with six or more
derivatives.

Once the excess modes have been eradicated (and the
freedom in b has been resolved), what is left is a two-
derivative theory for which the usual AdS/CFT rules apply.
One determines any n-point function by turning on a
source (the non-normalizable mode) for the ‘‘normal’’
graviton, taking the nth derivative of the action with re-
spect to this source and then evaluating on the AdS bound-
ary (with some prescription for removing divergences).
Since � is expressed in terms of a 1PI two-point function,
which is also the two-point function of the FT energy-
momentum tensor, the proposed procedure then computes
� in an unambiguous way.

The very same reasoning extends to all other transport
coefficients and higher-point functions.

The main conclusion of this section is that, when the
proposed BC’s are enforced, the resulting 1PI effective
action for the remaining mode is a two-derivative gravity
(meaning that the linearized equations of motion derived
from it contain at most two derivatives).

D. Extracting � from the Wilsonian effective action

Another way of solving Eq. (8) and calculating � is via
the Wilsonian effective action. In practice, the calculations
are only presented at the level of the equations of motion
and done in the ‘‘reduced-action method’’ of Banerjee and
Dutta [20]. All other accepted methods (e.g., [21–25]) are
equivalent to it.

By this method, one iteratively reduces the higher-
derivative equation to a two-derivative form as follows:
The lowest-order field Eq. (3) can be written explicitly as
(suppressing graviton indices)

½@2r þ f1ðrÞ@r þ f2ðrÞ�hðrÞ ¼ 0: (13)

The functions f1 and f2 depend on the background and can
also depend on P, � and T. Their explicit form is not
relevant for this discussion.

Equation (13) is then used iteratively to reduce the order
of the operatorD in Eq. (8) until the full equation reduces
to a quadratic equation. For example, when the operatorD
has a four-derivative term as its higher order, then one has
to use Eq. (13) twice. Clearly, the procedure amounts to
integrating out the massive modes, and so the equations
that the massless graviton obeys can be derived from the
corresponding Wilsonian effective action.
In our notation, each iterative step is equivalent to using

the relation

hEh ¼ Oð�Þh: (14)

Then, for example,

h2
Eh ¼ hE½hEh� ! hE½Oð�Þh� � �hEh: (15)

One does this until there are at most two-derivative terms
left and then discards any subleading term in �. The final
result of this iterative process is then to reduce the higher-
derivative Eq. (8) to a quadratic in derivatives.
For instance, when applied to the field Eq. (7) of a four-

derivative corrected theory, this reduction process gives
back simply [12]

ð1þ �bðrÞÞhEh ¼ 0: (16)

Equation (16) is then solved, as usual, with Dirichlet BC’s
at the AdS boundary and incoming BC’s at the black brane
horizon. Equation (16) can also be utilized to find a qua-
dratic (Wilsonian) effective action, which may then be
used (according to the standard AdS/CFT rules) to calcu-
late bulk amplitudes near the boundary of AdS or, equiv-
alently, FT correlation functions.
In short, one ends up with [12]

� / 1þ �bðrhÞ; (17)

which can be verified by extrapolating the usual two-
derivative methods. (The constant of proportionality is
fixed by Einstein’s theory.) But, importantly, bðrÞ is the
exact same bðrÞ ¼ b1ðrÞ þ b2ðrÞ that appeared in the non-
unique decomposition in Eq. (10).

E. Comparison of the 1PI and Wilsonian approaches

TheWilsonian calculation can be compared explicitly to
the 1PI calculation with our proposed BC (9). The result is
that the Wilsonian approach leads to a solution with a
nonvanishing, order-� amplitude for the redundant mode.
The two procedures give the same equation for the

gravitons up to order �, and only differ at order �2.
Meaning that, if one wishes to calculate to order �, it is
possible to use either method. Since, in general, the
Wilsonian effective action is not well defined in string
theory, the justification for its use comes from the fact
that it is expected to (and indeed does) lead to results
that are equal to the ones obtained from the 1PI effective
action at each order in perturbation theory. However, at
higher orders this may become a delicate balancing act.
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The final result is that both methods agree on the value of
� (ambiguity aside) to leading order in �. This is some-
thing of a red herring, as both � and s are densities and, as
such, depend on the choice of coordinates, field definitions
and so forth. Only the ratio �=s is an invariant physical
quantity. Meaning that it is now time to bring s into the
discussion, which we do next.

F. Calculating the entropy density

The entropy density s is, similarly to �, related to a
graviton two-point function [19,26], and so its calculation
is subject to some of the same considerations.

Let us momentarily consider a two-derivative theory
of gravity that is not necessarily Einstein’s theory. It is
by now established [16–18] that the extraction of �
amounts to reading off the horizon value of b in an equa-
tion formally identical to (16). Perhaps less well-known is
that one can play the exact same game to extract the
entropy S or its density s. In this case, the gravitons in
question are the hrt gravitons, which decouple from all
others at the horizon.6 The precise equivalence of this
procedure to the Wald formulation was first pointed out
in [26] and then made explicit in [19]. That is, one can look
at the hrt component of the field equation

ð1þ �bsðrÞÞhEhrt ¼ 0; (18)

and read off the horizon value bsðrhÞ. This represents the
correction to the entropy density when the Einstein value
has been normalized to unity.

A subtle difference in the � and s calculations becomes
apparent only when higher-derivative corrections are in-
troduced. Recall that � has an arbitrariness that is intro-
duced by the presence of a ghost mode. On the other hand,
s is somehow ‘‘smarter.’’ As clarified in [19], any term with
four or more derivatives can be reduced to two derivatives
(or less) via successive applications of the Killing identity,
rcra�b ¼ �Rabcd�

d. This reduction process follows
from a relation between the hrt gravitons and the horizon
Killing vector �a that is valid only at the horizon (see
footnote 6).

It follows that, at the horizon r ¼ rh, the fr; tg counter-
part of Eq. (6) for a higher-derivative theory is

ð1þ �c2ðrhÞÞhhrt þ . . . ¼ 0; (19)

where the additional terms that are represented by the
ellipsis are only �-order mass terms. Higher-derivative
terms do not exist! This simplification is unique to this
class of perturbations and makes the entropy density spe-
cial amongst graviton couplings.

Strictly speaking, as we have just argued, the Wald
entropy density s is insensitive to higher-order corrections
and to the ghost modes that they induce. Thus, s appears to
be free of the type of ambiguities that haunt � and other
couplings. However, in the general context of the discus-
sion, this conclusion is misleading because it holds only at
the horizon.7 As we move away from the horizon, the ghost
modes and their associated instabilities come back.
Our conclusion is that, to define or s or any other

physical coupling, the only safe way to proceed is to
restrict the discussion to two-derivative theories.

G. Calculating the ratio �=s

We have tentatively identified the viscosity for an effec-
tive two-derivative theory as � / 1þ �bðrhÞ. However,
only a ratio of densities, such as �=s is physical. The ratio
�=s is gauge-invariant and also invariant under bulk field
redefinitions. The most convenient way to evaluate it is, as
explained in [28] and reviewed in Appendix B, to use a
particular choice of field redefinition. This choice calibra-
tes s for a given theory to its Einstein value when compared
at fixed values of rh or (equivalently) at fixed temperature.
So that, in this field-redefinition frame, s is set to its
Einstein value irrespective of the of the theory, whether
corrected or uncorrected by higher-derivative terms.
Using the proposed field redefinition, we find that

�

s
¼ �E

sE
½1þ �~bðrhÞ� ¼ 1

4�
½1þ �~bðrhÞ�; (20)

where a subscript E denotes the Einstein value and the tilde
on b indicates that it is the previously defined coefficient
but calculated in the field-redefined theory.
Let us note that this leading-order result is in agreement

with the previous methods (as discussed in Secs. II D and
II E), although our reasoning is substantially different.

H. Non-gravitational fields

String theory contains, in addition to the graviton, a
variety of other massless fundamental fields, for instance,
the dilaton and various gauge fields. These fields are
generically coupled to the graviton and could have, in
principle, affected our unitary arguments by possibly in-
fluencing the gravitational couplings. However, their pres-
ence does not lead to any additional complications for the
following reason: Once the radial gauge has been chosen,
the hxy graviton is decoupled from all other types of

perturbations of the metric and, similarly, from all scalar
and antisymmetric fields. Hence, the shear viscosity is
immune to the presence of any such fields massless or
massive.

6The zero-modes of the hrt gravitons do not vanish on the
horizon despite the choice of radial gauge. This gauge is incon-
sistent with the identity hab ¼ ra�b þrb�a (�a is the Killing
vector), which has to hold on the horizon [9,10]. This is similar
to the zero-mode problem in the Coulomb gauge in electromag-
netism and is resolved in a similar way.

7Although the Wald density can only be defined at the horizon,
one can use FT thermodynamics and AdS/CFT rules to define s
in terms of the htt and hxi xi gravitons. This definition has been
shown to limit to the Wald formula as r ! rh [27].
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The above conclusion remains valid for a generic effec-
tive theory. The dependence on the Riemann tensor does
not induce additional mixing between the hxy gravitons and

the other fields. To see that this is the case, it is enough to
inspect the xy component of the linearized field equation of
a truncated gravity theory. Let us consider, for illustrative
purposes, the field equation for a Gauss-Bonnet theory,

� 1

2
hhxy � 2�L2

�
1

2
R�Rx

x �Ry
y þRxy

xy

�
hhxy

� 2�L2½Raxb
x þRayb

y �Rab�rarbhxy ¼ 1

2
LGBhxy;

(21)

where LGB ¼ Rþ ðD�1ÞðD�2Þ
L2 þ �L2½R2 � 4RabRab þ

RabcdRabcd�. Here, we see explicitly that any four-index
Riemann tensor must always have at least two indices that
are either an x or a y. That is, the four-index Riemann
tensor acts effectively a two-index object, and so is inca-
pable of inducing any new mixing effects. This simplifica-
tion in the linearized equation depends only on general
covariance and is not due to the choice of theory.

Similar statements can likely be made about the entropy
density, since the hrt perturbations are known to decouple
from all others at the horizon. In any event, by setting s to
its Einstein value from the beginning, we need only con-
sider how the additional fields affect the viscosity �.

The calculation of other transport coefficients would
necessitate a more careful accounting of nongravitational
fields.

III. TWO-DERIVATIVE EFFECTIVE ACTIONS
OF HIGHER-DERIVATIVE GRAVITY

The focus of this section is on answering the following
question: What is the two-derivative theory of gravity that
effectively describes, by way of an action principle, a given
higher-derivative model? The answer involves an impor-
tant observation about the relationship between two-,
three- (and higher-) point functions and how this relation-
ship can be used to further constrain the ratio �=s.

A. Initial considerations

To begin, let us recall the effective two-derivative field
equation for the fx; yg gravitons

½1þ �~bðrÞ�hEhxy ¼ 0: (22)

Wewish to find a covariant action from which this equation
is derived. Before delving into the technical details, let us
try to guess what the answer should look like.

As argued earlier, the effective theory should be a two-
derivative covariant theory of small gravitational perturba-
tions about a background solution. This is already enough
to tell us that it must be one of the Lovelock theories. Then,
depending on the dimensionality of spacetime, there are

only a few possibilities. For D ¼ 5, the choices are just
Einstein and Gauss-Bonnet gravity. These considerations
apply to the two- and three-point functions and, in a limited
sense to be clarified later on, also to the higher-point
functions. Further simplification occurs when restricting
attention to the calculation of �=s because, for any dimen-
sionality, Einstein and Gauss-Bonnet are then the only
relevant theories. This was observed in [16] and is ex-
plained in Appendix C. Each of the two theories leads to
a distinct value of �=s.

B. A tale of two theories

Let us first consider the Einstein case. Wewish to find an
‘‘Einstein-like’’ Lagrangian whose variation gives Eq. (22)
. The answer is

L E / ½1þ �~bðrÞ�
�
Rþ ðD� 1ÞðD� 2Þ

L2

�
: (23)

Here, ~bðrÞ can be viewed as a radially dependent correction
to the gravitational coupling or an energy-scale-dependent
coupling from the perspective of the dual FT. That is,

1

16�GD

! 1

16�GDðrÞ ¼
1

16�GDðr ! 1Þ ½1þ �~bðrÞ�;
(24)

where GD is Newton’s constant and we have used the fact
that higher-derivative corrections die off when r ! 1.
The actual sense in which the coupling in (23) is radially

dependent is as follows: First, the radius r is fixed to some
specific value; for instance, the boundary of AdS or the
horizon of the brane. Then one calculates the 1PI ampli-
tudes for that chosen radius. The amplitudes would then be
in agreement with that of Einstein’s theory with the stan-
dard fixed Newton’s constant.
In spite of appearances, the variation of Eq. (23) leads to

Eq. (22) without involving derivatives of ~b. Any resulting
term in the variation of Eq. (23) contains two or less

derivatives, and so a derivative on ~b means one or zero
derivatives on the graviton. Such terms are then (irrelevant)
�-order mass terms.8

Now, one finds via the standard (two-derivative) meth-
ods that � and s are both corrected by the same factor of

1þ �~bðrhÞ, and so their ratio is (of course) the usual
Einstein value

�
�

s

�
E
¼ 1

4�
: (25)

For the Gauss-Bonnet case, the calculation is technically
more involved. As explained in Appendix A, Eq. (22)
would follow from the variation of

8Any term in the Lagrangian whose variation gives rise to a
single derivative on a graviton is, up to surface contributions,
equivalent to a mass term.

RAM BRUSTEIN AND A. J.M. MEDVED PHYSICAL REVIEW D 84, 126005 (2011)

126005-8



L GB / Rþ ðD� 1ÞðD� 2Þ
L2

þ �L2�ðrÞ½R2

� 4RabRab þRabcdRabcd�; (26)

where � is a radial function such that, in the proximity of
the brane horizon,

�ðrÞ ¼ � 1

2ðD� 1ÞðD� 4Þ
~bðrÞ: (27)

Again, � can be viewed as a radially dependent coupling
parameter that should be fixed at a radius of choice.

One then finds that � goes again as 1þ �~bðrhÞ. How-
ever, now s is uncorrected, as it would be for any Lovelock
theory with an unmodified Einstein-Hilbert term. (This
follows from the argument of Appendix C, which is indif-
ferent to a radially dependent coupling.) Hence,�

�

s

�
GB

¼ 1

4�
½1þ �~bðrhÞ�: (28)

Depending on the sign of �~bðrhÞ, the ratio ½�=s�GB can be
either smaller or larger than the Einstein value.

C. The two-, three- (and higher-) point functions

Since Einstein and Gauss-Bonnet gravity lead to differ-
ent hydrodynamics, one may ask how else the two theories
are distinguished and whether such a distinction can be
further used to determine the ratio �=s.

Let us first suppose that there are no higher Lovelock
terms, as would be the case for D ¼ 5. (We comment on
Lovelock extensions at the end.) Then, once the value of
�=s has been determined to a given order in �, the graviton
three-point function is determined to the very same order
(as clarified below). In particular, the n-point functions of
Einstein gravity are polarization-independent, as follows
from the equivalence principle, whereas the n-point func-
tions of a Gauss-Bonnet theory are polarization-dependent
in a specific way. Indeed, this is the very same polarization
dependence that allows the value of �=s to deviate from
the Einstein value 1=4�.

For the case of two-derivative theories, it was argued in
[29,30] that the two- and three-point functions are deter-
mined by a small number of interaction terms. Further, the
two-point function is already enough to fix the three-point
function, provided that the central charges of the FT dual
are known [31]. The premise behind these arguments can
be understood as follows: The quota of at most two deriva-
tives per term and general covariance conspire to severely
restrict how one can modify the propagator. If mass terms
are disregarded (these can anyhow be absorbed in a rede-
finition of hE), a modification of the linearized equations
of motion is restricted to hE ! hE þF abrarb, where
F ab parametrizes the allowed corrections and its tensorial
structure is determined by the background geometry.

We conclude that this intricate relation between the
propagator and three-point function can be used to

constrain the choice of two-derivative theory. A detailed
presentation of the Einstein and Gauss-Bonnet two- and
three-point functions (as well as their higher-point func-
tions) will be deferred to a subsequent publication, as the
exact expressions are not immediately useful. Their basic
forms, however, can be deduced from general covariance,
the two-derivative limit on the linearized field equations,
and the applicability of field redefinitions and simplifying
gauge conditions.
The end result is that the Einstein and Gauss-Bonnet

two-point functions can, respectively, be expressed in
terms of a few coefficients,

hhachbdiE ¼ Mð0Þ
E gabgcdhachbd

þN ð2Þ
E gabgcdgefrehacrfhbd; (29)

hhachbdiGB ¼ ðMð2Þ
GBg

abgcdgef þN ð2Þ
GBR

cedfgab

þ P ð2Þ
GBR

acbdgefÞrehacrfhbd

þ ðMð0Þ
GBg

abgcd þQð0Þ
GBR

acbdÞhachbd:
(30)

Here, the coefficients M and Q are functions of r and the
rest are numbers. The superscript 0 or 2 denotes the num-
ber of derivatives acting on the gravitons.
Similarly, the three-point functions can be expressed as

hhachbehdfiE ¼ Að0Þ
E gabgcdgefhachbehdf

þBð2Þ
E gabgcdgefgijhacrihberjhdf;

(31)

hhachbehdfiGB¼ðAð2Þ
GBg

abgcdgefgijþBð2Þ
GBR

eifjgabgcd

þCð2ÞGBR
cedfgabgijÞhacrihberjhdf

þðAð0Þ
GBg

abgcdgefþDð0Þ
GBR

cedfgabÞ
�hachbehdf; (32)

where the coefficientsA andD are functions of r and the
rest are numbers.
To simplify, we have used the fact that, for a theory of

pure gravity, the Ricci tensor goes as [32] Ra
b ¼ 1

DR	a
b

and, for Einstein gravity only, the Riemann tensor reduces
toRab

cd ¼ 1
DðD�1ÞR½	a

c	
b
d � 	a

d	
b
c�. Further, we have

dropped any terms that are redundant via symmetries and
assumed the transverse-traceless gauge (extending to a gen-
eral gauge would add more terms but is otherwise straight-
forward). It is also possible to express any n-point function
for these particular theories using similar expressions, how-
ever, we will not do so in this paper.
The crucial point is that the Riemann tensor appears only

in the Gauss-Bonnet correlators. The Einstein and Gauss-
Bonnet n-point functions are, therefore, distinguishable in
way that cannot be eliminated by a field redefinition.
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Now, given any higher-derivative theory, the simplest
way to find the correct two-derivative description is to
perform a field redefinition so as to bring the theory to
the appropriate Lovelock one. When the choice is strictly
between Einstein and Gauss-Bonnet, it becomes the simple
matter of inspecting the higher-derivative action or field
equation for polarization-dependent terms or, equivalently,
for the appearance of the four-index Riemann tensor
Rabcd. If none appear, the theory has a natural completion
to Einstein gravity and �=s reverts to its Einstein value of
1=4�. Otherwise, the theory naturally completes to Gauss-
Bonnet gravity, leading to the value for �=s as in Eq. (28).

Both of these outcomes are compatible with our pre-
vious prescription (20) in Sec. II. This agreement is trivial
when the choice is Gauss-Bonnet, so let us consider
Einstein gravity which is a polarization-independent the-
ory. Then, any field redefinition that changes smust change
all two-point couplings by the same amount. Hence, for the

Einstein case, s ! sE implies that � ! �E or b ! ~b ¼ 0.
For the purpose of evaluating higher-point functions,

additional input is necessary. This is on account of possible
Lovelock extensions when D> 6 and, irrespective of D,
information about the higher-point functions that is lost in
the linearized theory. So that, in general, further informa-
tion besides polarization dependence versus independence
is needed to clarify the precise identity of a polarization-
dependent theory. Such additional input could be a pertur-
bative hierarchy between the coefficients of the interaction
terms. For example, suppose that the terms quadratic in
Riemann tensor are of order � while those quartic in the
Riemann tensor are of order �2. Then the magnitude of the
deviation of the ratio�=s from its Einstein value 1=4� and,
similarly, the magnitude of the deviation of the three-point
function from its Einstein value can be used to find out
which term is responsible for the leading correction. Once
this leading contributor is identified, then its contribution
to four- and higher-point functions in some kinematic
region can also be determined to leading order in �.

IV. CONCLUSION

To summarize, we have proposed that gravitational per-
turbations about a background solution of a unitary and
UV-complete theory should be described by an effective
theory of a single massless graviton whose linearized
equations of motion contain at most two derivatives. Given
some higher-derivative corrections to Einstein gravity, we
have explained how to find this theory by imposing a novel
set of boundary conditions that ensures unitarity and re-
moves any unwanted dependence on the cutoff-scale phys-
ics. In particular, our procedure assigns an unambiguous
value to �=s for any higher-derivative model.

For the purpose of calculating �=s, there are only
two possible candidates for a two-derivative description
of higher-derivative theories; either Einstein or Gauss-
Bonnet gravity. We have provided an explicit criterion

for choosing among the pair that is based on the polariza-
tion dependence of their 1PI on shell amplitudes. It has
been verified that the resulting value of�=s agrees with our
earlier prescription and with previous calculations in the
literature. We have stressed the issues with directly calcu-
lating quantities like � and s in a truly higher-derivative
framework.
To determine the four- and higher-point functions, in

general, further information besides polarization depen-
dence versus independence is needed. However, if one is
satisfied with their leading-order values, then the leading-
order correction to�=s is sufficient to determine all higher-
point functions to leading order, as explained in the last
paragraph of Sec. III.
We anticipate that our proposals can be compared with

properties of strongly coupled fluids such as the quark-
gluon plasma or cold atoms. As discussed in [29,30],
the LHC should be able to measure energy correlation
functions for a strongly coupled fluid. If this fluid has a
gravitational dual, these correlators amount to graviton
scattering amplitudes. Then the polarization sensitivity of
the Gauss-Bonnet three-point function should be manifest
through an angular dependence that is absent in the
Einstein case.
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APPENDIX A: THE GAUSS-BONNET
LAGRANGIAN

In this appendix, we verify Eqs. (26) and (27) in the main
text.
Let us begin by considering just the four-derivative part

of the (generalized) Gauss-Bonnet Lagrangian in Eq. (26),

�L�GB � �L2½R2 � 4RabRab þRabcdRabcd�; (A1)

where � ¼ �ðrÞ is unspecified and we have dropped �.
Inserting this Lagrangian into the x; y component of the

generic field Eq. (4), we have

�Rabcx

�
	L�GB

	Rabc
y

�
� 2

�
	L�GB

	Ra
xy

b

�
rarb� ¼ 1

2
gxy�L�GB:

(A2)
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This form follows from a special property of any
Lagrangian LLL of the Lovelock class (for a formal proof,
see Appendix 3 in [33]):

ra

�
	LLL

	Rabcd

�
¼ 0: (35)

The next step is to linearize Eq. (A2) and then extract
the two-derivative terms. The linearization of the right-
hand side produces a term proportional to hxy, so that this is

just a mass term. What remains simplifies greatly in the
transverse-traceless gauge, as is appropriate for the hxy
gravitons once the radial gauge has been imposed. The
leftmost term can be evaluated in a tedious but straightfor-
ward manner. It can then be expressed as

�Ghhxy; (A4)

where we have defined

G � 4L2

�
D� 2

2D
R�Rx

x � ðD� 4ÞRxy
xy

�
: (A5)

For sake of completeness, the above expression follows
from the kinetic part of the linearized field equation or
Gabhhab, for which

G a
b � 4L2

�
	a
b

�
1

2
R� Xfx;yg

c

Rc
c þ 1

2

Xfx;yg
c�d

Rcd
cd

�

þ Xfx;yg
c

Rac
bc �Ra

b

�
: (A6)

To obtain Eq. (A5), we have set 2G ¼ Gxy þ Gyx and
then used symmetries of the background to simplify the
form of G.

Meanwhile, the second term in Eq. (A2) works out to be

2�L2½gabhhxy �rarbhxy�rarb�: (A7)

We now want to ‘‘reverse engineer’’ so as to produce the
desired result in Eq. (22). So let us fix

G�hhxy þ 2L2½gabhhxy �rarbhxy�rarb�

¼ ~bhEhxy: (A8)

To solve the previous equation for the unknown function
�ðrÞ, one can impose the hydrodynamic limit, whereby
only the radial differentiations of hxy turn out to be rele-

vant. This is enough to eliminate the rr� term. We also
take the near-horizon limit, so that hE ! h. This leads to

G�hhxy ¼ ~bhhxy (A9)

or

� ¼ G�1 ~b: (A10)

Finally, inserting the horizon value of�2ðD�1ÞðD�4Þ
for G, we arrive at

� ¼ � 1

2ðD� 1ÞðD� 4Þ
~b; (A11)

as claimed.

APPENDIX B: REVIEW OF THE SCALING
PROPERTIES OF �AND s

Here, we review an argument from [28] that is referred
to in the main text.
Let us consider some generic theory of gravity X in a

D-dimensional AdS spacetime with a black brane solution.
Our interest is in the entropy density sX, which can be
obtained by way of Wald’s formalism [9,10]. Then, via the
analysis of [26], sX can be expressed in the form of the area
law,

sX ¼ 


4GX

; (B1)

where 
� rD�2
h is the area density of the brane9 and GX is

related to but generally different than the D-dimensional
Newton’s constant GE (the subscript E labels quantities in
Einstein’s theory).
Now, as shown in [28], there exists a constant conformal

transformation of the metric (along with an accompanying
rescaling ofGX that is necessary to preserve the form of the
Einstein term in the action) such that

s ~X ¼ 


4GE

; (B2)

with ~X denoting the transformed theory. That is, the con-
formal transformation is chosen specifically to ensure

GX ! G ~X ¼ GE: (B3)

That the entropy density can be freely changed may
seem odd, but this is because densities such as s are
ambiguously defined. Conversely, the entropy S ¼ sV?
does not change under such a transformation (V? is the
transverse volume of the brane). Similarly, the ratio of two
densities cannot change, and so

� ~X

s ~X
¼ �X

sX
: (B4)

The advantage of using the transformed system is that
now s ~X ¼ sE (in units of fixed temperature), and so the net
correction to the ratio � ~X=s ~X is entirely captured by the
viscosity.

APPENDIX C: REVIEW OF THE LOVELOCK
CALCULATION

Finally, we recall from [16] why higher-order Lovelock
terms cannot contribute to the ratio �=s.

9We have left 
 unlabeled, as it is assumed to be fixed for the
purpose of comparing theories. This is equivalent to comparing
theories at fixed rh or fixed temperature.
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Let us first consider the entropy density. It is already
known that the mth-order term Lm in the Lovelock
Lagrangian (where L0 is a constant, L1 is Einstein, L2

is Gauss-Bonnet, etc.), makes a contribution to the entropy
or its density that, up to constant factors, goes asLm�1½gk�
[34,35]. Here, gk has a special meaning: One should in-

corporate only curvature components of the form Rxixj
xixj

(where xi and xj are any orthogonal pair of transverse

brane directions) and permutations thereof. Notably, any
such curvature component vanishes at the horizon of a
black brane; so that the only nonvanishing contribution to
s is from the m ¼ 1 Einstein term, for which Lm�1½gk� ¼
L0 is a constant.

By direct analogy, the contribution to � from the
order-m term goes as Lm�1½g?� [16], where g? indicates
that one should now only incorporate the curvature com-
ponent Rrt

rt. But, since the background geometry only
varies with r, one is effectively calculating the m� 1
Lovelock term for a two-dimensional theory. As is well-
known, the pth-order term in the Lovelock Lagrangian
vanishes identically when p >D=2. Then, since the di-
mension is effectively D ¼ 2, we have no contribution
to � when m� 1> 2=2 or m> 2. Meaning that, for the
shear viscosity, only the Einstein and Gauss-Bonnet terms
are contributors. (See, e.g., [36] for an explicit
verification).
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