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We present an infinite class of 2þ 1-dimensional field theories which, after coupling to semiholo-

graphic fermions, exhibit strange metallic behavior in a suitable large N limit. These theories describe

lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons

theories with UðNÞ � UðNÞ gauge groups at levels �k. They have dual anti-de Sitter (AdS) gravity

descriptions in terms of lattices of probe M2-branes in AdS4 � S7=Zk (for N � 1, N � k5) or probe

D2-branes in AdS4 � CP3 (for N � k � 1, N � k5). We discuss several challenges one faces in

maintaining the success of these models at finite N, including backreaction of the probes in the gravity

solutions and radiative corrections in the weakly coupled field theory limit.
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I. INTRODUCTION

Local quantum criticality, an invariance under rescaling
of energies that leaves the spatial momenta fixed, has been
invoked as a potential explanation of interesting phases
seen in a variety of condensed matter systems [1]. One
leading approach for explaining the anomalous transport
properties of the strange metallic phase, the marginal
Fermi liquid [2], involves a locally critical sector of spin
and charge fluctuations, coupled to a Fermi sea.

In general, the theory of non-Fermi liquids is still in its
infancy. One recently developed method of obtaining con-
trolled models of non-Fermi liquids uses holography. The
study of fermion probes in black brane backgrounds with
AdS2 � R2 near-horizon geometries [3–6], or equivalently
the semiholographic prescription of [7], readily gives rise
to non-Fermi liquid behavior. In the latter approach, free
fermions are mixed with fermionic operators from a
large-N locally critical sector, dual to fermions living in
AdS2. A distinct holographic mechanism realizing non-
Fermi liquid transport arises on probe branes in Lifshitz
backgrounds [8].

Much of the work on the holographic approach to
non-Fermi liquids has so far been at the level of four-
dimensional effective AdS gravity theories, with the
scaling dimensions of operators in the dual field theory
appearing as free parameters (masses of bulk fields). It
would be useful to have microscopic dual pairs where the
field theory dynamics giving rise to local criticality is
visible in a conventional field-theoretic Lagrangian, and
the scaling properties of the non-Fermi liquid can be
predicted by the concrete dual field theory instead of being
parameterized as unknowns [9]. One goal of our work is to
provide an infinite class of such theories where it is natural
to obtain precisely the scaling dimensions required for
marginal Fermi liquid behavior.

A second goal has been to remedy one of the residual
defects in the models of [4]; there, the precise nature of the
non-Fermi liquid depends sensitively on the Fermi mo-
mentum kF (since the dimensions of the relevant fermionic
operators depend on kF). In the models we describe here,
the relevant scaling dimension �, which (with the right
value) gives rise to marginal Fermi liquid behavior, is
independent of kF. This allows an arbitrary shape of the
Fermi surface, a useful feature since this is not protected
from renormalization group flow.
A third goal has been to clarify when and how locally

critical behavior can occur in a higher-dimensional (D �
2-dimensional) quantum field theory. Local criticality is a
rather exotic property, which needs to be better understood.
By definition, it entails quantum mechanical degrees of
freedom propagating independently at every point in space,
not suppressed by gradient terms. On the other hand, in
higher-dimensional quantum field theories, the ultraviolet
physics contains itinerant fields which propagate in all
directions, with gradient terms in their Lagrangian. Even
if one begins with a sector of localized degrees of freedom
(like the defects we study), which in itself exhibits local
criticality, this sector generically mixes with the itinerant
fields through interaction terms. These can, and generally
would be expected to, induce gradients. Yet surprisingly,
among holographic gravity systems dual to very strongly
coupled field theories, one often finds solutions with AdS2
symmetry (using either the AdS-Reissner-Nordström black
brane, or the world volumes of appropriate probe branes
[12] as we shall do here). These solutions are common
because they are not terribly hard to obtain, whether by the
relatively prosaic matter of stabilizing the extra dimensions
of string theory or by stably embedding a probe brane
along an AdS2 slice. However, even in the large-N ap-
proximation of a gauge theory withN colors, strong effects
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of the itinerant fields are included, so this is a nontrivial
result of gauge/gravity duality.

Therefore, we wish to begin an analysis of whether this
emergence of local criticality is only an artifact of the
extreme strongly coupled limit where the gravity descrip-
tion is appropriate, or whether instead a similar mechanism
exists also at weaker coupling and finite N. In the second
part of this paper, we discuss the interaction between
impurities, which is a finiteN effect but becomes important
at low energies. In some cases, this spoils the local criti-
cality, but in others this may survive to the IR.

II. THE BRANE SYSTEM

Instead of obtainingAdS2 in the near-horizon limit of an
AdS-Reissner-Nordström black brane, a setup which in-
curs various instabilities, we choose to obtain the AdS2
regions on the world volumes of lattice defects, as in
[12,13]. A variety of field-theoretic toy-models suggest
that lattices of defects interacting with itinerant electrons
could be a reasonable starting point for strange metal
phenomenology (see e.g. [14–16]).

Such lattices can be implemented in various ways, dif-
fering in their symmetries and in the quantum numbers of
the operators in the theory. The model of [12] involves a
lattice of defect fermions interacting with the four-
dimensional N ¼ 4 supersymmetric Yang-Mills theory,
and is engineered by intersecting D3- and D5-branes (with
the D5-branes wrapping AdS2 � S4 regions in the near-
horizon AdS5 � S5 geometry of the D3-branes). The su-
persymmetry preserved by that lattice model is somewhat
unconventional (allowing e.g. purely fermionic defect rep-
resentations); therefore, we will mostly focus on a different
lattice system which is 2þ 1 dimensional and enjoys a
more powerful supersymmetry algebra for some values of
our discrete parameters. This, however, entails extraneous
bosonic degrees of freedom at the lattice sites, and the
examples containing only fermions on the defects can be
analyzed similarly.

In the most symmetric case, the brane configuration we
study is given, in M-theory, by M2- and M20-branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M20 x < < x x

: (1)

Here, an x denotes a dimension wrapped by the given brane
stack, blanks denote dimensions where the given branes are
localized at a common point, and< denotes dimensions in
which the given branes are individually localized but form
a lattice. In this configuration, the two stacks intersect
along a lattice in the 1–2 plane.

Our family of theories will depend on two parameters:N
and k. N denotes the number of M2-branes in the stack
above; theM20branes are equally spaced in a square lattice,
and the lattice spacing is the only scale in the problem (so it

does not constitute a new parameter). The second parame-
ter k arises as follows. We consider a Zk orbifold which
acts as follows on the four complex coordinates transverse
to the M2s:

gk: zi¼x2iþ1þ ix2iþ2; zi!eði2�=kÞzi; i¼1...4: (2)

The set of M20-branes wraps the locus [17]

z1 ¼ z2 ¼ 0; z3 ¼ �z4; (3)

and their orbifold images under (2). For k ¼ 1 this embed-
ding is equivalent to the one in (1). We treat even and odd k
symmetrically, defining the orbifold action to identify
points on different, mirror branes (rather than taking the

gk=2k element to identify points on the same brane in the

case k even).
The global symmetry of the M2-brane theory is partially

broken by the orbifolding and the presence of the M20
probes; from SOð8Þ � SOð2Þ to SOð6Þ �Uð1Þ � Z4 for
k ¼ 1, and down to SUð2Þ �Uð1Þ2 � Z4 for k > 1. The
Z4 factor here represents the symmetry of the lattice. At
large k (such that k5 � N � 1), it follows from the
analysis in [18] that the near-horizon region of the system
of M2- andM20-branes is described more accurately using
different variables in terms of type-IIA string theory with
D2- and D20-branes on a nontrivial geometry with back-
ground 2-form gauge flux.

III. THE FIELD THEORY

The field theory on the M2-branes in these geometries
has been studied in great detail [18]. A general three-
dimensional supersymmetric Chern-Simons theory with
at least N ¼ 2 supersymmetry has an action including
the terms [19]:

S¼
Z
d3x

k

4�
Tr

�
A^dAþ2

3
A3

�
þD�

��iD
��i

þi �c i�
�D�c i�16�2

k2
ð ��iT

a
Ri
�iÞð ��jT

b
Rj
�jÞ

�ð ��kT
a
Rk
Tb
Rk
�kÞ�4�

k
ð ��iT

a
Ri
�iÞð �c jT

a
Rj
c jÞ

�8�

k
ð �c iT

a
Ri
�iÞð ��jT

a
Rj
c jÞ: (4)

Here, Ta
R are the generators of the gauge group in repre-

sentation R, and the scalars �i and fermions c i are super-
partners in a chiral multiplet. These terms arise from
integrating out the scalars and fermions of the massive
vector multiplet and flowing to the deep infrared limit of
the theory.
The field theory on our M2-branes is a special case of

this theory, with gauge groups UðNÞ �UðNÞ appearing at
levels �k. The ‘t Hooft coupling of this theory is N=k and
so is large in the holographic limits. The matter fields �i

are four bifundamental fields A1;2 and B1;2, in the ( �N, N)

and ( �N, N) representations, respectively. In addition to the
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basic supersymmetric action written above for these fields,
we add an N ¼ 3 superpotential

W ¼ 2�

k
�ab� _a _b TrðAaB _aAbB _bÞ: (5)

Here, a, b ¼ 1, 2 and the superpotential has been written in
a manifestly SUð2Þ � SUð2Þ symmetric manner. The full
symmetry of the field theory is in fact enhanced to an
SOð6Þ �Uð1Þb [with the baryonicUð1Þb actingwith charge
�1 on the A andB fields], and the theory with these choices
enjoys an enhancedN ¼ 6 supersymmetry [18,20].

The probe M20-branes give rise to localized degrees of
freedom; in the type-IIA string theory limit of the brane
construction, these arise from strings stretching between
the D2-branes and a lattice of probe D20-branes. In the
simplest case of k ¼ 1, these are hypermultiplets, with the
fermions transforming as spinors in the dimensions trans-
verse to both branes (and the bosons transforming as
spinors along 1234). The infrared Chern-Simons theory
is more difficult to analyze directly, since the appropriate
type-IIB brane construction involves nonperturbative in-
gredients. However, by generalizing the methods of [18]
one can obtain a plausible hypothesis for the spectrum
[17], in which defect hypermultiplets are added to both
gauge groups. One reason that this is plausible is that the
dual probe branes respect parity, which in the field theory
exchanges the gauge group factors. The bosonic quantum

mechanical degrees of freedom Q1;2 and ~Q1;2 at each site

transform as follows. Qi transforms in the N of the ith
UðNÞ gauge group (and is a singlet under the other), while
~Qi transforms in the conjugate manner; these also trans-
form as spinors under the Lorentz group in the 1234
directions. Each boson is accompanied by a fermion part-
ner so there are also defect fermions �1;2, ~�1;2; these do not

transform as spinors in the 1234 directions, but do in the
remaining directions. Starting from the ABJM theory [18],
the defect probe branes preserve 8 supercharges in the
special case of k ¼ 1, and more generally they preserve 4
supercharges [17]. We expect a similar spectrum of local-
ized degrees of freedom on the defects for all k.

While the overall system preserves at least 4 super-
charges in all cases, the superspace structure is unconven-
tional and we have not been able to find a packaging in the
standard superspace arising in four-dimensional N ¼ 1
supersymmetry. (For instance, from the IIB-brane configu-
ration used to obtain the N ¼ 6 theories in [18], supple-
mented by our defects as in [17], it is clear that there are no
spatial directions along which one could T dualize to
obtain a higher-dimensional theory with a conventional
superspace; either the probe branes or the ABJM configu-
ration itself breaks the needed higher-dimensional trans-
lation symmetries.) However, the couplings of the Ai, Bj

fields to the Qs and ~Qs can be inferred by the following
logic. Under translations of the M2-branes along the 34

directions, the Q, ~Q degrees of freedom should remain

massless, while other motions should separate the M2s

and M20s and give Q2, ~Q a mass. In a standard way, one
can identify motion in the transverse space to the M2-
branes with (eigenvalues of) appropriate gauge-invariant
composites of the A, B fields. First, we identify motion in
the 34 directions with A1B1 þ A2B2. Then, we expect
component couplings localized at the defects depending
on the other bilinears in Ai; Bi; these are of the form

�S ¼
Z

dt
X
i

jðA1B1 � A2B2ÞQij2 þ jðA1B2 � A2B1ÞQij2

þ jðA1B2 þ A2B1ÞQij2 (6)

with similar couplings to ~Qi. For the fermions, there are
related couplings

�S ¼
Z

dt~���M
��X

M�� (7)

with XM corresponding to the real and imaginary parts of
A1B1 � A2B2, A1B2 � A2B1 and �, � spinor indices run-
ning over the directions transverse to both the M2s and
the M20s.
The dimensions of the fields determined from their

kinetic terms at weak coupling are �ðQÞ ¼ �ð ~QÞ ¼ � 1
2 ,

�ð�Þ ¼ �ð~�Þ ¼ 0, and �ðAÞ ¼ �ðBÞ ¼ 1
2 . Gauge-

invariant composite operators can be formed from these
fields. We will shortly compute the dimensions of low-
lying defect operators at strong ’t Hooft coupling and large
N using the gravity side of the correspondence, and then
comment on the field theory description of these operators.

IV. COMPUTATION OF OPERATOR
DIMENSIONS USING HOLOGRAPHY

A standard extension of the holographic dictionary re-
lates the dimensions � of scalar operators localized at the
lattice sites in our construction, to the masses of scalar KK
modes arising in the M20-brane world-volume action, via
the formula

m2
localized ¼ �ð�� 1Þ: (8)

The fermionic spectrum may be inferred by super-
symmetry.
We briefly discuss the calculation in the simplest case,

k ¼ 1. The fluctuations of the transverse scalars to a given
M20-brane (the xI ¼ x5; x6; . . . ; x10 directions in space) are
all related by an SOð6Þ symmetry, so we may focus on a
single scalar. The M20-brane wraps an AdS2 � S1 geome-
try. The fluctuations can be expanded in Fourier modes on
the S1. If we let r denote the radial coordinate in AdS2 and
focus on static fluctuations, then

	xIðr;�Þ ¼ X
l

	xI;lðrÞeil� (9)

with � the angular coordinate on the wrapped S1. The
resulting Laplace equation for 	xI;lðrÞ reveals that
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m2
l ¼ � 1

4
þ l2

4
; (10)

which corresponds to scalar operators of dimension

�l ¼ 1

2
þ l

2
: (11)

The lowest operator in the tower, with l ¼ 0, gives a sextet
of scalar primaries with � ¼ 1=2; its Fermi partner is a
quartet of� ¼ 1 fermionic defect operators. We will see in
the next subsection that this � ¼ 1 multiplet of fermionic
operators plays an important role in obtaining semiholo-
graphic descriptions of marginal Fermi liquids.

There is also a second tower of operators, arising from
fluctuations of the M20-branes along the two transverse
spatial directions to their world volume in AdS4, i.e. the
x1;2 directions in (1). The tower arising from these fluctua-
tions is distinguished from the tower above by global
quantum numbers. For example, the fluctuations in the
AdS directions transform under the SOð2Þ rotation sym-
metry of the x1;2 plane (which is broken to Z4 by the
lattice), and are singlets under the SOð6Þ global symmetry
discussed above, while the fluctuations in the x5;���10 direc-
tions transform nontrivially under SOð6Þ but are Z4 invari-
ant. While this second tower contains some fermionic
operators of � ¼ 1=2 which would be dangerous if they
coupled to the semiholographic fermions, such couplings
can be forbidden by the SOð6Þ � Z4 symmetry in a
‘‘natural’’ way (in the sense of the renormalization group).

The spectrum for higher k may be most easily inferred
from the k ¼ 1 case by the following logic. We can obtain
the higher k-brane configurations by Zk orbifolds of ap-
propriate lattice configurations onAdS4 � S7. The orbifold
action is free on the S7 (the fixed point at zi ¼ 0 in C4 is
removed in the near-horizon limit), and therefore, all of the
low-lying modes in the orbifold theory are Zk-invariant
modes in the original k ¼ 1 theory. Correlation functions
of the dual operators will enjoy large N inheritance from
the parent k ¼ 1 theory, similarly to the theories discussed
in [21]. (New degrees of freedom that might be introduced
by the orbifolding, analogous to twisted states in string
theory, are very massive in the supergravity regime, due to
the free orbifold action.) A simple analysis following this
logic implies that the spectrum is the same for all k > 1; so,
in particular, � ¼ 1 fermionic operators arise in these
theories (and any lower � fermionic operators from the
second tower can be rendered safe as above, by using
global quantum numbers). A careful discussion of the
KK spectra of these theories, and the matching with op-
erators in the dual defect field theories, will appear in [22].

V. COUPLING TO
SEMIHOLOGRAPHIC FERMIONS

The theory we have constructed above is locally critical
in the large N limit. That is, because the probeM20-branes
wrap AdS2 slices of the AdS4 geometry, the excitations of

the bulk fields localized on the probe branes can be clas-
sified by the quantum numbers of a locally critical quantum
theory, and the correlation functions of the operators dual
to localized bulk excitations (computed using the standard
AdS/CFT dictionary) obey the constraints following from
local criticality. These are precisely correlation functions
of operators involving defect fields in the dual field theory.
Now, we couple the defect field theory we have con-

structed to semiholographic fermions, following [7].
Namely, if we call the full action of the lattice system
above (including both the bulk gauge theory and the defect
fields) SLC, we consider the theory with

Stotal ¼ SLCðA; B;Q; ~QÞ
þX

J;J0

Z
dtcyJ ði	J;J0@t þ�	J;J0 þ tJ;J0 ÞcJ0

þ g
X
J

Z
dtðcyJOF

J þ Hermitian conjugateÞ: (12)

In (12), we are coupling a normal theory of a weakly
coupled Fermi surface (governing the excitations of the c
fermion) to the strongly coupled locally critical sector,
through the coupling constant g mixing c with (in any
natural theory) the lowest-dimension fermionic operator
OF that has the right quantum numbers to couple to c.
Using large N factorization, it is then easy to show that

the g ¼ 0 Green’s function of the c fermion

G0ðk; !Þ � 1

!� vjk� kFðkÞj (13)

is modified to

Ggðk; !Þ � 1

!� vjk� kFðkÞj � g2Gðk; !Þ ; (14)

where

G ð!Þ ¼
Z

dtei!thOF
J ðtÞOFy

J ð0Þi: (15)

This two-point function is fixed by the scaling symmetry of
the LC theory to be Gð!Þ ¼ c�!

2��1 where � is the
dimension of OF [and, importantly, Gð!Þ � c! logð!Þ in
the degenerate case � ¼ 1].
The correction term in the denominator of Gg will

dominate the low-frequency behavior if � 	 1. Unitarity
allows any � � 1

2 and this scaling dimension is a free

parameter in the general approaches of [4,7]. The marginal
Fermi liquid behavior of [2] appears in the case that the
dimension of OF is precisely 1. Therefore, the question is,
are there natural circumstances in which the theory

SLCðA; B;Q; ~QÞ has a leading fermionic operator of
� ¼ 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of � ¼ 1, as indicated by our calcu-
lation of the KK spectrum on the probe M20-branes. It is
interesting to consider where these come from in field
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theory language. The field theory has gauge-invariant
operators of the form

@t ~Q1A�2; @t ~Q2B�1; @tQ1B~�2; @tQ2A~�1; (16)

(as well as related quartets of operators of the schematic
form ~�1c A�2; � � � and ~�1A@tQ2; � � � ). These have � ¼ 1
at weak coupling, and are good candidates for the duals of
the probe defect operators we computed on the gravity side
(arising in the tower of fluctuations of the M20-branes
along x5;���;10). Suppose that upon extrapolating to strong
coupling (at large N), the weak-coupling dimensions of
these operators are indeed protected, i.e. that the weak-
coupling engineering dimensions of the fields correspond
to their scaling dimensions under the locally critical scal-
ing governing the defect sector in the probe limit. Then,
assigning appropriate global quantum numbers to c, one
can choose one of these as the lowest-dimension fermionic
operator that c can couple to in the localized sector.

Returning to the dual gravitational description, we can
see that the idea above does work at least in the probe
approximation. By appropriate choice of global quantum
numbers [under the Z4 lattice symmetry and the (subgroup
of) SOð6Þ preserved by the brane configuration], one can
guarantee that no lower � operators from the second tower
of fluctuations in the previous subsection infect the
leading-order c-fermion correlators (14) after coupling to
the large N sector. We conclude that we can work directly
in the probe limit and obtain a marginal Fermi liquid by
identifying OF with the lowest fermionic operator in the
first tower of defect fields computed above. This has
� ¼ 1, and as emphasized in the Introduction, this dimen-
sion is independent of momentum.

VI. BACKREACTION

Up until now, we have ignored the backreaction of the
impurities on the itinerant fields, and therefore on each
other. Thus, we have been studying the dynamics of a
single impurity interacting strongly with itinerant fields.
The gravity side exhibits the successes it does because the
probe branes each wrap an AdS2 region, and the symme-
tries of local quantum criticality are manifest, even includ-
ing the highly nontrivial field theory interactions that are
resummed by the tree-level gravity solution.

At scales of order the lattice spacing, the backreaction is
a 1=N effect, but at lower energies it must become impor-
tant. The scale symmetry of the itinerant fields, which the
impurity system inherits, acts on the spatial coordinates. At

energies of order N�1=2 times the fundamental scale, the
number of impurities in a scaling volume is of orderN, and
the effect of the impurities on the itinerant fields and on
each other can no longer be neglected. Do these effects
inevitably generate corrections to the action which destroy
the locally critical behavior—is the behavior seen in the
gravity regime a peculiarity of very strongly coupled large
N theories, which would not extrapolate to any more

realistic systems—or can it be robust in some circumstan-
ces? And, if locally critical behavior survives to the far IR,
how do the operator dimensions there relate to those we
have found at higher energy?
Staying in the limit of strong ’t Hooft coupling, gauge/

gravity duality transforms this field theory question into the
problem of finding the supergravity solution with back-
reaction. This can still be a challenging problem, but one
can get insight from a simple energetics argument. We start
with the M-theory brane configuration (1). We are looking
for an IR geometry AdS2 � R2 � X, which we will for
convenience compactify to AdS2 � T2 � X. We study this
with the ansatz X ¼ S7, averaging the energy density of the
impurity 20-branes over the compact dimensions. Let A, T,
and S be the respective radii of the three factors AdS2 �
T2 � S7. The effective action dimensionally reduced to
1þ 1 dimensions is of the form

S¼
Z
d2x

�
�T2S7þA2T2S5�N0

2A
2S�N2

2A
2T2

S7

�
: (17)

We work in units where the M-theory scale is one, and
ignore order one coefficients. The respective terms come
from the curvatures of AdS2 and S7, the 20-brane tensions,
and the 7-form flux from the 2-branes. In other situations, it
would be natural to Weyl transform to an effective poten-
tial, but this is not possible for AdS2; instead, we directly
extremize with respect to A in addition to T and S.
One finds that there is an extremum (with physically

acceptable positive values for the moduli) such that

A� S� N1=6
2 ; T � N01=2

2 =N1=3
2 : (18)

The radius S is parametrically the same as for the pure M2

system. The density of defects is N0
2=T

2 ¼ N2=3
2 .

What is happening is that the lattice defects provide a
force acting against the contraction of the two spatial
dimensions, hence helping to drive the system towards a
fixed point where the bulk modes are locally critical. In the
probe approximation, the itinerant fields retained their
relativistic scaling, and each independent impurity was
invariant under a scale transformation leaving its position
fixed. Here, there is a common locally critical scaling of
the whole geometry.
This result is encouraging, but we should improve the

ansatz. We have averaged the action of the 20-branes over
the S7, but in fact they are wrapped on a circle and we
should consider moduli corresponding to the contraction of
this circle. Thus, we represent S7 as a circle over CP3, with
radius F for the fiber circle and B for the base. The action
becomes

S ¼
Z

d2x

�
�T2FB6 þ A2T2FB4 � A2T2F3B2

� N0
2A

2F� N2
2A

2T2

FB6

�
: (19)
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One now finds that there is no physical extremum; the
contraction of the fiber is not stabilized.

Nevertheless, there are brane systems that realize the
solution (18). Consider a system with several kinds of
impurity brane, with different orientations in the transverse
spacetime. These will be dual to field theories with an
action similar to that in Eqs. (6) and (7), but with couplings
of the defect fields to the bulk fields given by suitable
SOð8Þ rotations of those appearing in (6) and (7). If the
configuration of M20-branes is sufficiently uniform and
isotropic, the spherical ansatz will be a good approxima-
tion [23]. Such a configuration will necessarily break su-
persymmetry (for supersymmetric configurations, at least
withN � 2, there will always be an unstable fiber circle).
It is also necessary to stabilize the angular configuration,
for example, by taking a sufficiently symmetric configura-
tion, and by keeping relatively nonsupersymmetric branes
far enough apart to avoid tachyons. With the scaling (18),
the typical transverse distance between the branes is larger
than the M-theory scale, so one expects that the latter
difficulty may be avoided. Although with a symmetric
distribution there should be a solution of the equations of
motion, it may be an unstable saddle point; with the lack of
supersymmetry, there is no a priori guarantee against dis-
allowed tachyons. Without having addressed all the pos-
sible instabilities, something that might benefit from
further model building, we simply take from this construc-
tion the lesson already noted that lattice flavors contribute to
producing local criticality on the gravity side.

As an aside, the absence of supersymmetric solutions
could also be anticipated from another point of view. We
are looking for solutions where the color branes remain
localized in the 3–4 directions in which the impurity branes
are extended. In Ref. [25], it is shown that these do not exist
for brane intersections of spatial dimension 0 (as here) or 1.
The interpretation was that the scalar fields Q on the
intersection are spread out on their moduli space due to
low-dimensional quantum effects, which implies that the
brane intersection delocalizes and the AdS IR region dis-
appears. In nonsupersymmetric systems, masses will ge-
nerically be generated for these scalars. In the Appendix,
we analyze an impurity system that has no such impurity
scalars.

Orbifolding by Zk does not affect the energetics, and so
the discussion above can be applied with N2 ! Nk, giving
in M-theory units

A�S�N1=6k1=6; R11�N1=6=k5=6; T�N01=2
2 =N1=3k1=3

(20)

and in string units

A�S�N1=4k1=4; gs�N1=4=k5=4; T�N01=2
2 =N1=4k1=4:

(21)

The same applies if the orbifold action (2) is replaced by
one acting only on two complex coordinates z3;4, generat-
ing the brane configuration

0 1 2 3 4 5 6 7 8 9 10

D2 x x x

D6 x x x x x x x

D20 x < < x x

(22)

with N color D2-branes and k D6-branes. This is a nice
example, having a weakly coupled conformal point for
N2 � N6 (as in Ref. [26]) and an AdS4 dual description
for N2 � N6 [27]. The radius S and coupling gs are para-
metrically the same as for the pure D2-D6 system. In
particular, one sees that the condition that the radius be
large (in string units) is N2 � N6, and that there then is a
weakly coupled IIA dual for N2 � N5

6 and an M-theory

dual for N2 � N5
6 . The density of defects is N0

2=T
2 ¼

N1=2
2 N1=2

6 .

Even if we find a supergravity solution, there is a general
argument that suggests that the local critical scaling cannot
persist indefinitely into the IR. The scaling would imply a
density of states


ðEÞ ¼ A	ðEÞ þ B=E (23)

per energy (and exponential in the volume). The first term
is the widely noted zero-temperature entropy. If only this
term is present, the Hamiltonian in the critical sector is
zero: there is no dynamics (e.g. a dimension-1 operator
would have a correlator 	0ðtÞ rather than 1=t2). So, the B
term is necessary, but its integral diverges, so local criti-
cality must always break down at sufficiently low energy.
In the gravity description, the density B comes from bulk
states, and so is of order 1=N2. Thus, the breakdown takes
place at exponentially small scales, which seems more

promising than the N�1=2 breakdown scale of the probe
approximation.
Ref. [8] identified a specific breakdown mechanism,

whereby the scaling exponents of the spatial directions
were shifted (at all scales) from 0 to Oð1=NÞ, thus render-
ing the density of states convergent. This is a rather special
property of the system studied there. More generally, local
criticality might persist until the finite density of states per
volume forces it to break down.

VII. BACKREACTION AT WEAK COUPLING

It is encouraging that we have found possible stable
systems with the desired IR properties, but the gravity
methods are still only controlled in a peculiar limit, from
the field theory perspective. Here, we discuss some related
issues in direct analysis of the dual field theory. We start
with the field theory corresponding to the brane system
(22). This is anN ¼ 8 supersymmetric three-dimensional
Yang-Mills theory, with defect hypermultiplets. In such
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theories, with a Maxwell action, the conformal symmetry
that will emerge in the IR is far from manifest. A second
approach, via the Chern-Simons theories of [18], has been
the one we have followed in the bulk of the paper. The IR
conformal behavior of the bulk theory is much clearer here,
as the gauge fields do not appear with a dimensionful
coupling, and the starting (bulk) Lagrangian has no dimen-
sionful parameters. It is interesting to contrast our expec-
tations for radiative corrections arising from the two
approaches.

Starting from the three-dimensionalN ¼ 8 Yang-Mills
theory with hypermultiplet defects, and following the tech-
niques of [28], it is easy to write a superspace Lagrangian.
The problems with finding a four-dimensional N ¼ 1
superspace do not arise in this perspective; the additional
complications of the ABJM brane construction [18] are not
present, and one can straightforwardly T dualize to find an
N ¼ 1 presentation. In terms of the brane construction
with D2-branes wrapping x1;2 and D20-branes wrapping
x3;4, it is convenient to perform the T duality along the 7,
8, 9 directions and to treat those as the spatial directions of
the N ¼ 1 field theory, with x1;2 being internal dimen-
sions. The bulk action, without explicitly writing out the
Wess-Zumino-Witten (WZW) term, is

S ¼ 1

g23

Z
dtd2xTr

�Z
d2�

1

2
W�W�

þ �ijk�ið@j�k � ½�j;�k
=3
ffiffiffi
2

p Þ þ H:c:

þ 2
Z

d4�ð ffiffiffi
2

p
�@i þ ��iÞe�Vð� ffiffiffi

2
p

@i þ�iÞeV

þ �@ie�V@ie
V

�
þWZW term: (24)

Here, @1 ¼ @x1 þ i@x2 , while @2;3 ! 0, and ð�iÞy ¼ ��i.

W� is an SUðNÞ gauge field strength superfield, while V
is the vector superfield. In three-dimensional N ¼ 4 lan-
guage, one should think of �1;2 as the scalars in a hyper-

multiplet and�3 as the complex adjoint scalar in the vector
multiplet. In Wess-Zumino gauge, the WZW term
vanishes. The fields in the above action can be interpreted
as follows: D2 gauge field Wilson lines along x1;2 and D2
motions along x3;4 are packaged in �1;2; D2 motions along

x5;6 are contained in �3; and the vector multiplet V has � ��
components consisting of A0 and x7;8;9.

The hypermultiplets H, which transform in the funda-
mental of SUðNÞ, have localized actions

X
n

Z
dt

Z
d4�ðHc

ne
Vn �Hc

n þ �Hne
�VnHnÞ

�
Z

d2�Hc
n�3;nHn � H:c: (25)

The index n runs over the lattice sites, and n subscripts on a
bulk field simply indicate that the field is to be evaluated at
position of the nth site. This has the intuitively expected

features; for instance, motions of the D2-branes along
x5;6;7;8;9, given the correspondence with fields above, can
be seen to mass up the defect hypermultiplets.
Integrating out the auxiliary D field in the gauge multi-

plet generates interdefect interactions. For simplicity, we
focus on the Abelian (N ¼ 1) case; defect hypermultiplet
scalars are denoted by �. Then, the couplings of the
auxiliary field are

SD¼ 1

g23

Z
dtd2x

�
1

2
D2�2

ffiffiffi
2

p ð�1 �@1Dþ ��1@1DÞþ _��1
_�1

�

þ1

2

X
n

Dnðj�c
nj2�j�nj2Þ: (26)

Integrating out D, the action becomes

SD¼ 1

g23

Z
dtd2xð�2½ �@1Z1þ@1

�Z1
2þj _Z1� _j2Þ; (27)

where we have defined

ðz1Þ ¼ 1

8�
ffiffiffi
2

p X
n

ðj�c
nj2 � j�nj2Þ
z1 � z1n

(28)

and

�1 ¼ Z1 � : (29)

The j _j2 term in (27) exhibits cross couplings between
the � hypermultiplet fields that would naively ruin local
criticality. One would also get similar terms by integrating
out A0 and�3. The generation of interdefect interactions is
not tied to supersymmetry, but these terms sum to a
cross-coupling term in the Kähler potential for the defect
hypermultiplets [29]. This makes it seem unlikely that the
local criticality of the gravity regime can survive to finiteN
and coupling, where a field theory analysis should be
reliable. However, it is important to remember that our
starting point here has been the three-dimensionalN ¼ 8
Yang-Mills theory, and this UV Lagrangian is valid only
far from the IR fixed point which we know governs the
physics on the N M2-branes (even at finite N).
To get an alternate perspective, we can also try to

compute the interdefect corrections arising from coupling
the defect hypermultiplets to the doubled Chern-Simons
theory which captures the fixed-point physics. In fact, a
simple toy model already illustrates the important differ-
ence between the Chern-Simons defect theories and the
Yang-Mills defect theories. An Abelian Chern-Simons
gauge field coupled to defect fermions �n would be gov-
erned by an action

S ¼
Z

dtd2z½A0ð@zA�z � @�zAzÞ � Azð@0A�z � @�zA0Þ
þ A�zð@0Az � @zA0Þ þ

X
n

	ð2Þðz� znÞ�y
nA0�n
: (30)
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One can see directly that integrating out A0 will not gen-
erate a dangerous interdefect coupling here, as it is a non-
propagating field. The A and B fields do propagate, but
these couple to the defect fields only quadratically as in
Eqs. (6) and (7) and so do not generate tree-level
corrections.

A full field-theoretic analysis of the radiative corrections
to the ABJM theory coupled to hypermultiplet defects is
beyond the scope of our work. It will be interesting to see
to what extent the absence of induced interdefect couplings
applies in the full model; the simple computation above
suggests that at least the most obvious dangerous cross
couplings visible from the Yang-Mills perspective do not
characterize the physics of the IR fixed-point theory
coupled to hypermultiplet defects. Especially in the cases
k ¼ 1, 2, where the full model enjoys enhanced supersym-
metry, nonrenormalization theorems strongly constrain the
possible generation of four-fermion cross-coupling terms
(see, for instance, [30]); constraints on higher multifermion
terms are less obvious. It would be most interesting to push
this analysis further, and construct systems of defect fer-
mions interacting with itinerant fields where local critical-
ity can be seen robustly directly from field-theoretic
arguments.
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APPENDIX: THE 3.5 SYSTEM

To begin, let us consider a variant of the construction of
[12], who studied the brane configuration

0 1 2 3 4 5 6 7 8 9 10

D3 x x x x

D5ð�5Þ x < < < x x x x x x

: (A1)

As before, an x indicates a direction in which the given
branes are extended, and a< indicates a direction in which
they are in a lattice configuration. The 3–5 intersections are
0þ 1 dimensional, representing defects in the dual gauge
theory. For this system, with 8 ND directions, only fermi-
ons live on the intersections, which is very natural for the
intended applications.
In the limit that the 5-branes are probes, the D3-branes

generate an AdS5 � S5 spacetime, with each 5-brane
wrapped on an AdS2 � S4 subspace. However, the spatial
directions contract in the IR of the AdS5 geometry, so the
5-brane density diverges there and their backreaction can-
not be neglected. At large N, the backreaction becomes a
large effect at energies which are parametrically small
compared to the lattice scale (as noted in [12]) [31].
We are looking for an IR geometry AdS2 � R3 � X,

which we will for convenience compactify to AdS2 �
T3 � X. We study this with the ansatz X ¼ S5, averaging
the energy density of the 5-branes over the compact di-
mensions. Let A, T, and S be the respective radii of the
three factors AdS2 � T3 � S5. The effective action dimen-
sionally reduced to 1þ 1 dimensions is of the form

S¼
Z
d2x

�
�T3S5

g2s
þA2T3S3

g2s
�N5A

2S4

gs
�N2

3A
2T3

S5

�
:

(A2)

We work in units where the string length is one, and ignore
order one coefficients. The respective terms come from the
curvatures ofAdS2 and S

5, the 5-brane tensions, and the RR
5-form flux, and do not distinguish between pure D5-branes
and a mix of D5s and D5s. In other situations, it would be
natural to Weyl transform to an effective potential, but this
is not possible forAdS2; instead, we directly extremizewith
respect to A. One readily verifies that the action has no
stationary points for finite values of the moduli A,T,S,gs.
This analysis precludes an AdS2 � T3 � S5 solution in the
case that the 5-branes are oriented in many directions on the
S5, averaging to a symmetric source.
One way of understanding the absence of an AdS2

solution in the infrared in this case is that the N ¼ 4
super Yang-Mills sector has a line of fixed points, parame-
terized by the string coupling gs. The additional lattice
branes source this mode and altogether there are not
enough independent forces to fix gs, T, S, and A. If we
include electric and magnetic flavors, these can fix gs.
Having done this, an AdS2 solution fixing the other moduli
does arise.
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