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Supercurrent coupling destabilizes knot solitons
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In an influential paper of 2002, Babaev, Faddeev, and Niemi conjectured that two-component
Ginzburg-Landau (TCGL) theory in three dimensions should support knot solitons, where the projective
equivalence class of the pair of complex condensate fields [, ¢,]: R*> — CP! has nonzero Hopf degree.
The conjecture was motivated by a certain truncation of the TCGL model which reduced it to the Faddeev-
Skyrme model, long known to support knot solitons. Physically, the truncation amounts to ignoring the
coupling between [, i,] and the supercurrent of the condensates. The current paper presents a direct
test of the validity of this truncation by numerically tracking the knot solitons as the supercurrent coupling
is turned back on. It is found that the knot solitons shrink and disappear as the true TCGL model is
reached. This undermines the reasoning underlying the conjecture and, when combined with other

negative numerical studies, suggests the conjecture, in its original form, is very unlikely to be true.
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I. INTRODUCTION

Two-component Ginzburg-Landau (TCGL) theory is a
phenomenological field theory which is enjoying increas-
ing prominence in several areas of condensed matter
theory. It consists of two complex scalar fields ¢,
,: R — C minimally coupled to a U(1) gauge field A €
Q'(R3) and (perhaps) each other via an energy density of
the form

£ =3ldaypi P+ 3ldaipol? + 31dAP + U1, ), (1)

where dy ¢y, = diy, — iA, and U is a potential function
whose details depend strongly on the precise physical
context. In an influential and much-cited paper of 2002
[1], Babaev, Faddeev, and Niemi conjectured that models
of this type should possess “‘knot solitons” in which the
projective equivalence class of the pair of complex fields

l;bls 11029
o =1[¢, ¥ R* = CP' = §2, 2)

has nonzero Hopf degree. This conjecture is based on the
observation that, when expressed in terms of the gauge-

invariant fields ¢, p = «/|¢]* + |,|* and
.2
i - N
C=52 2 Wadatha = Yuda¥ha) (3)
a=1
the TCGL energy density is
€ =gp’ldel® +31dC + 3¢ 0|’ +3ldpl* +3p%|CI?
+U(p. @), “)

where w is the area form of the usual metric on the unit
two-sphere. In superconductivity contexts, p>C is the total
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supercurrent associated with condensates ¢/, i/, and so, in
a slight abuse of terminology, we shall refer to C itself as
the supercurrent. If we impose that p = p, > 0, a constant,
and C =0, £ coincides with the energy density of the
Faddeev-Skyrme (FS) model, which is known to possess
knot solitons of every Hopf degree Q. These are smooth,
spatially localized, global energy minimizers in their ho-
motopy class. Topologically, maps ¢: R3 U {oo} — §? are
classified by the framed cobordism class of ¢ ~!'(p), where
p € S? is any regular value of ¢. In general, ¢ !(p) is a
union of closed curves in R3, that is, a union of knots. In the
case of FS solitons these knots are simple unknots for low
0, but become more complicated as Q grows. For a survey
of FS knot solitons, see [2].

So the conjecture of [1] results from identifying the FS
model as a “submodel” of the original TCGL model. In
replacing the TCGL model by its FS submodel, one is
making a two-step truncation. The first truncation, impos-
ing p = po > 0 constant, is reasonable for suitable choices
of U, for example,

U= Mpg = 14l> = ¢, o)

in the limit of large A. Indeed, the analogous truncation in
ungauged two-condensate systems has been found to in-
troduce no drastic qualitative changes [3]. However, the
second truncation, imposing C = 0, is harder to justify
since, even for p constant, C is coupled to ¢. Indeed,
Babaev, Faddeev, and Niemi do not directly claim that
setting C = 0 is a good approximation for the TCGL
model [1]. Nonetheless, their claim that TCGL theory
should support knot solitons assumes that the coupling
between ¢ and C does not destroy the solitons and, hence,
that the second truncation C = 0 is, if not a “‘good ap-
proximation,” valid at least at a qualitative level. This is an
assumption, not an established fact, a distinction missed by
the authors of many of the papers citing [1], who treat the
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existence of knot solitons in TCGL models likewise as
established fact rather than conjecture.

There have been many attempts to construct knot sol-
itons in TCGL models numerically, by choosing ¢, ¢/,, A
with ¢ = [}, ¥,] having Q > 0, usually in some toroi-
dally symmetric ansatz, and minimizing E = [ € using
some gradient descent method. In almost all cases the
initial field configurations have shrunk and fallen through
the lattice mesh [4-6]. The only exception we know of is
[7], which uses direct gradient flow to evolve the field
configuration towards a critical point of E, and claims to
have found ‘‘definite convergence towards torus-shaped
configurations.” Given that this finding has not been re-
produced by any other researchers, it seems likely that this
is an artifact of having used too lax a convergence criterion
(unfortunately, the precise convergence criterion used is
not described in [7], but gradient flow is a notoriously slow
method, and it is easy to mistake a slowly evolving field for
a truly static one).

The failure of the direct approach to find knot solitons is
not surprising given the results of [8]. Even if one imposes
that p is nonvanishing, so that Q is well defined, in every
degree class the infimum of E(i,, /5, A) is 0 because, for
suitably chosen A, any spatially localized configuration
¥y, 5 is unstable against Derrick scaling. This shows
that, for all Q # 0, there is no global energy minimizer.
Note that this contradicts the common misconception,
repeated in [7], that the existence of a nontrivial topologi-
cal charge protects a field configuration from collapse. So
knot solitons, if they exist in TCGL theory, can only be
local minimizers of E, and finding them is like looking for
a hollow dip in a hilltop, rather than the floor of a valley:
unless one’s initial guess is very close to the dip, one is
very unlikely to find it. Indeed this point was understood,
from a more qualitative, physical viewpoint, by Babaev
[9], some years after making the original conjecture. For
this reason, the failure of previous numerical studies to find
knot solitons, while discouraging, does not systematically
undermine the conjecture of [1]. To do so using the direct
approach one would have to systematically search the
infinite dimensional space of all possible initial data.

In this paper we pursue a different approach. We study
the TCGL model in the case of a hard-confining potential,
(5) with A — oo, or, equivalently, in the sigma model limit,
where |/1? + |,]> = p3. We may, without loss of gen-
erality, take p, = 1. This allows us to concentrate on the
dynamically crucial issue of the coupling between ¢ and
C. Rather than minimizing E starting with some plausible
initial guess, we consider the one-parameter family of
models with energies

1 1 a 1
E@=_|ldo|*+ <ll¢* > + ~(dC, ¢* w) + ~|ldCI|?
glldell” +llell* + 24dC ¢"w) +SldC]|

1
+2lcl?
Slel ©
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parametrized by a € [0, 1], where (-, -) denotes the L?
inner product and || - || denotes the L? norm. Note that at
a = 1 this is the TCGL model (in the sigma model limit),
while at @ = 0 it decouples into the FS model and an
uncoupled Proca model for C. So the & = 0 model clearly
supports knot solitons with C = 0—they are simply the
usual FS knot solitons. The question is then, what is the
fate of these solitons as the supercurrent coupling is
“turned on,” that is, « is increased to 1? We address this
problem numerically by a continuation method. Starting at
a = 0, we numerically minimize £(*) within a given ho-
motopy class using the limited memory quasi-Newton
algorithm (also called a variable metric algorithm) with
the BFGS formula for Hessian approximations [10].
Having found a minimizer for this value of «, we increase
a slightly and minimize E again, starting from the
energy minimizer just obtained. In this way we construct
a curve of energy minimizers parametrized by «, and the
crucial question is whether this curve continues all the way
toa = 1.

We will see that, for all a € [0, 1), we have a lower
energy bound

E@ = ¢/l = aloP, (7

where ¢y, > 0 is an absolute constant. This leads one to
expect the knot solitons to persist whilever « < 1, albeit
with nonzero supercurrent C, and indeed this is what we
find. We shall produce convincing numerical evidence,
however, that as o — 1, these knot solitons shrink to
zero size, because C deforms precisely to the form for
which EV) is not stable against Derrick scaling.

Note that our results are not just another negative finding
in the same vein as [5], since our approach tests not just the
conjecture of [1], but also the reasoning underlying it. That
is, our results conclusively demonstrate that, notwithstand-
ing the formal similarity between the TCGL model (in
suitable variables) and the FS model, the knot solitons of
the latter definitely do not persist in the former, even in the
most favorable case where a hard-confining potential en-
forces || + |,|> = 1. This also elucidates the mecha-
nism by which knot solitons are destabilized. It has
nothing, in general, to do with p shrinking and acquiring
isolated zeroes (thus allowing Q to discontinuously drop).
Even in the sigma model limit, where Q is a rigorously
defined topological invariant, the coupling to the super-
current C alone suffices to destabilize the knot solitons. Of
course, this does not show for certain that £ has no local
minima with Q # 0, but it does invalidate the reasoning
used to motivate the conjecture in the first place. The
present results complement the work of Ward [6] (extended
by one of us [4]) which also embeds TCGL theory into a
one-parameter family of models, one end of which sup-
ports solitons. Again, these solitons disappear as the true
TCGL theory is approached. It also complements the
exact results of [8], where it was shown analytically that
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supercurrent coupling destabilizes the Q = 1 Hopf soliton
on physical space S°. In the absence of evidence to the
contrary, one should wield Occam’s razor and conclude
that, in all likelihood, the basic TCGL theory does not
possess knot solitons. There remains the possibility that
more elaborate, but physically relevant, versions of TCGL
theory, involving direct current-current interactions, may
have knot solitons [9], but until direct evidence for this is
found, we prefer to remain sceptical.

II. ENERGY BOUND AND DERRICK SCALING

We seek local minimizers of the energy functional E(®
defined in (6) with ¢: R* — $? and C € Q'(R?) having
the boundary behavior
lim C(x) =0 (8)

|x|—00

Jim P(x) = @,
and a € [0, 1]. Without loss of generality, we choose
®e = (0,0, 1). Configurations with this boundary behavior
fall into disjoint homotopy classes labeled by the integer
Hopf invariant

1
=W'/[%Ba/\da, (9)

where a is any one-form on R?* such that da = ¢* . It is
well known that the Faddeev-Skyrme energy, which co-
incides (up to a factor of % in the usual normalization) with

EO (g, 0), satisfies a topological lower energy bound
EO(p,0) = colQ(p) P4, (10)

where ¢, > 0 is an absolute constant [11]. Now, for all
a €[0,1],

1 1 ) 1
E@ = lldglP + (1 - @llg*wlP +5(1 - a)lldclP

a 1 1
+ = + Z* 2+_ 2
Cldc+ 36"l +liCl
1 2 1 # 2
= el + (1= @llgol

1
VI—a(lldgl? + 1¢* wll?), (1

8
where @(x) = ¢(+/1 — ax). Hence, by the
Vakulenko-Kapitanski bound (10),

E9(p, C) = cyv/1 — al0(p)I¥/4. (12)

This leads us to expect that E® will have a global energy
minimizer in each homotopy class whilever a € [0, 1).

It is instructive to subject E(® to the Derrick scaling test
for all @ € [0, 1] since this gives an integral constraint on
(¢, C) which we can use as a consistency check on our
numerical scheme [12]. Assume that (¢, C) is a critical
point of E(®. Then E@ is stationary with respect to all
variations of (¢, C) and so, in particular, with respect to the
variation

usual
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pr=¢oD, Cy=D,C (13)
where A € (0, 00) and D,: R* — R? is the dilation map
D, (x) = Ax. Note that ¢, = ¢ and C; = C. A short
calculation shows that

E(A): E9(g,, C))

1 A Aa A
= _—|ldo|* + Z||o*w]||* + —(¢*w, dC) + =||dC]||?
Lol + gt wl + 2w, dcy + 2 llacl
1
+ —IClP. 14
il (14)
Hence, since (¢, C) is a critical point,

1 1 a
E'(1) = —<lldell* + Sl ll* + (¢, dC)
8 8 2
1 1
+ =|ldC|I* — = |IC|?
Sllact =il

=0. (15)

We shall refer to this as the Derrick constraint.
Note that, in the case @ = 1 (the TCGL model), if C is
chosen so that

dC +1o*w =0, (16)

and (¢,, C,) defined as in (13), we have
EV(g,, C) = —~Ildgll> + —~[IclIP =0 (17)
8A 2A

as A — o0. For all ¢ satisfying (8) there exists C satisfying
(8) and (16), which shows that E®V)(¢, C) has infimum 0 in
every homotopy class [8]. This argument, which is essen-
tially equivalent to the one described in [2] (whose authors
attribute it to unpublished work of Forgacs and Volkov),
explains why the energy bound (12) becomes trivial at « =
1. Of course, it does not follow that EV can have no critical
points, because there is no reason why critical points of E(!
should satisfy (16).

For the purposes of numerics, we will study E®) not on
R3, but in a large box B =[—L, L] X [—L, L] X [—L, L]
with Dirichlet boundary conditions ¢(x) = ¢4, C(x) = 0,
for all x € dB. In this case, the Derrick scaling argument
must be modified, as follows. First, we note that the
variation (¢,, C,) is only well defined for A € [1, c0),
since for A € (0, 1) (¢,, C,) does not satisfy the boundary
conditions. For A = 1 we first notionally extend ¢, C to the
whole of R? by their boundary values, then define (¢,, C))
as in (13). Equation (14) for E(A) still holds, but now on
[1, c0) rather than (0, ). We require that £(A) has a local
minimum at A = 1, but now, since this is at an endpoint of
the domain, it does not follow that E’(1) = 0. Rather, we
know only that
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1 1, . a, so the Derrick scaling constraint becomes an integral in-

E'(1) = _§I|d¢|lz + §”¢ ol + E<¢ , dC) equality once we pla%:e the theory in a finite bO)g(. This
1 1 argument, which could be called “Derrick scaling in a

+ 7 llacl* — 3 llcl? finite box” is of wide applicability in classical field theory.
Note that it does not really require B C R” to be a box: any

=0, (18) star-shaped domain will do (B C R” is star-shaped if there

(@) a=0 (b) @ =0.7

(¢c) a=0.94 (d) a=0.98

(e) @« =0.99 fa=1
FIG. 1 (color online). Minimizers of E(® for an increasing sequence of values of a, with Hopf charge Q = 1. The translucent white

surface is the isosurface ¢; = 0, which can be interpreted as bounding the soliton core. The colored surface is a plot of |C| on a
transverse slice through the soliton core. Note that as a — 1, the core shrinks and the C field accumulates in a singular spike.
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exists x, € B such that for all x € B the line segment from
X, to x lies in B). Of course, for the purposes of numerics,
one would hope to choose the box size L to be so large
(compared with the soliton core radius) that the numerical
solution satisfies (15) to a good approximation. We will
discuss this issue in more detail in Sec. III.

III. NUMERICAL RESULTS

We used a simple forward differencing scheme to dis-
cretize the energy functional E(® on a cubic lattice of
spacing h with N3 points, to give a lattice approximant
Ega ): (82 X R*)™ — R. Given an initial configuration
(¢, C), we used the quasi-Newton BFGS method, as im-
plemented by the TAO and PETSc parallel numerical
libraries [13] and PETSc [14-16], to find a local minimum

of Eé“). We considered the scheme to have converged to a

minimum if the sup norm of the gradient of EE)“) was less
than 0.0143. We tested the accuracy of this scheme by
comparing its results at &« = 0, for Hopf charges Q = 1,
2, 3, with previous studies of the pure FS model [17,18]
and found good agreement (the energy minimizers had the
same shape, energy, and core length to within a few,
typically 2, percent). By experimenting in the &« = 0 case
we found that a good balance of accuracy and computa-
tional speed was obtained with the choices N = 480 and
h = 0.0125, and these values were used for the remaining
calculations.

As described in Sec. I, having found a minimizer of E\W ,
we incremented « slightly, &’ = a + da, and minimized

! . . . . . . . .
Eg"‘) starting with the o minimizer as our initial guess. In

this way, we constructed a curve of minimizers of Eé“),
parametrized by a € [0, 1], starting at @« = 0 and working
towards a = 1, in each of the homotopy classes O = 1, 2,

12

10

0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2 (color online). Core lengths of the Q = 1 (blue disks),
Q = 2 (red squares), and Q = 3 (black diamonds) minimizers as
a function of «.
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3. In every case, the knot soliton at & = 0O shrinks rapidly
as a approaches 1, so that, at a = 1, its core size is
comparable to the lattice spacing. This extremely coarse
configuration can confidently be identified as a discretiza-
tion artifact, rather than a genuine minimizer of EW, as we
shall argue below. The shrinking process is illustrated in
Fig. 1, which shows a sequence of minimizers for increas-
ing « in the case Q = 1. The results for Q = 2, 3 look very
similar. A quantitative measure of the shrinking is given in
Fig. 2, which shows the core length of the minimizer as a
function of «. Recall that the core is, by definition, the
preimage curve of —¢,, which, in the cases Q = 1, 2, 3, is
a single closed curve. Numerically, we construct this curve
using interpolation tools of the MayaVi Data Visualizer
[19]. This works well until « is very close to 1, when the
core structure becomes too small for the lattice to properly
resolve, and the interpolation tool produces a disconnected
collection of segments instead of a closed curve. From this
point, the core length calculation is unreliable, which is
why the curves in Fig. 2 stop slightly short of a = 1.
Clearly, the data up to this point are consistent with the
core length shrinking rapidly to 0 as o — 1.

Recall we have an energy bound (12) which vanishes at
a =1, and that EV) has infimum 0 in every homotopy
class, meaning that every class contains fields of arbitrarily
low EW. Such fields are constructed by Derrick shrinking
among the set of fields satisfying (16). Conversely, if (16)
is not satisfied, the field is protected against shrinking by
the presence of a quartic term in E(V. So if our claim is
correct, that the minimizers shrink and vanish as a — 1,
then they should satisfy (16) to a closer and closer approxi-
mation as @ — 1. In Fig. 3 we present a graph of ||dC +
jo*w|* as a function of a which confirms that this is
indeed what happens: the minimizer loses stability against
Derrick scaling as a — 1, and consequently, its energy

120

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3 (color online). The squared L? norm of dC + } ¢*w of
QO =1 (blue disks), Q =2 (red squares), and Q = 3 (black
diamonds) minimizers as a function of «.
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FIG. 4 (color online). The energy E® of the Q =1 (blue
disks), QO = 2 (red squares), and Q = 3 (black diamonds) min-
imizers as a function of «.

vanishes rapidly as & — 1, as shown in Fig. 4. Note that
these curves are consistent with the bound (12).

Clearly the energy does not vanish exactly at @ = 1, but
this is a discretization artifact. To see this, we define for
each a € [0, 1] the quantity

1 1 1
——\ld 2_|__ * 2
[ g el + gl ol

) = e 0

o 1 1
+ —{(p* + = 2 2} 1
gtw, 0+ llacl = Slicir o)

where (¢, C) is the minimizer of E(®). This is the left-hand
side of the Derrick constraint (15), normalized by the total
energy of the field. Hence, as shown in Sec. II, for a
minimizer in R3, one should have D(a) = 0, while for
a minimizer in a finite box D(a) = 0. Figure 5 presents a
plot of D(«) for our numerical minimizers. One sees that
D(«) is moderately small for small «, indicating that
the boundary of the finite box exerts a moderate but
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0.2 |

0.0 |

-0.2 +

—0.4 |

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5 (color online). The Derrick constraint function D(«) of
QO =1 (blue disks), Q =2 (red squares), and Q = 3 (black
diamonds) minimizers. This quantity should be non-negative
for a genuine minimizer in a finite box.

appreciable influence on the numerical solution. As «a
increases D(a) decreases to very close to zero, because
the minimizers shrink, so the finite box size becomes
numerically irrelevant. However, as a gets very close to
1, D(«) becomes negative, indicating that from this point
on the minimizers are strongly affected by discretization
effects: if this were a continuum system, any field with
D(a) < 0 would be unstable against shrinking. In particu-
lar, D(1) is large and negative, suggesting that the o = 1
“minimizer” is a lattice artifact, and not representative of a
genuine local minimizer of E(.
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