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In this work we study the hadron-quark phase transition matching relativistic hadrodynamical mean-

field models (in the hadronic phase) with the more updated versions of the Polyakov-Nambu-Jona-Lasinio

models (on the quark side). Systematic comparisons are performed showing that the predicted hadronic

phases of the matching, named as RMF-PNJL, are larger than the confined phase obtained exclusively by

the Polyakov quark models. This important result is due to the effect of the nuclear force that causes more

resistance of hadronic matter to isothermal compressions. For sake of comparison, we also obtain the

matchings of the hadronic models with the MIT bag model, named as RMF-MIT, showing that it presents

always larger hadron regions, while shows smaller mixed phases than that obtained from the RMF-PNJL

ones. Thus, studies of the confinement transition in nuclear matter, done only with quark models, still need

nuclear degrees of freedom to be more reliable in the whole T �� phase diagram.
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I. INTRODUCTION

The study of the properties of the strongly interacting
matter is experimentally supported by the heavy-ion colli-
sions at ultrarelativistic energies, accomplished in the most
sophisticated accelerators such as the relativistic heavy-ion
collider (RHIC) and the large hadron collider (LHC). The
measurements coming from these experiments are indi-
rectly used to furnish the basic information on the phase
diagram concerning the state of matter, being the different
regions related to the distinct hadronic (confined quarks),
and the quark-gluon plasma (free quarks) phases. In order
to cover the temperature-density/chemical potential plane
of the hadron-quark phase diagram, the new experiments
should be able to compress the baryonic matter even to
higher densities compared to the well known nuclear satu-
ration density, �0 � 0:16 fm�3. The new facility for anti-
proton and ion research (FAIR) [1] at Darmstadt, and the
nuclotron-based ion collider facility (NICA) [2] at the Joint
Institute for Nuclear Research (JINR) in Dubna, will make
possible such extreme conditions through collisions fore-
seen to reach an energy range of 8 to 45A GeV [1].
Therefore, it will be possible to test the predictions from
the theoretical calculations about the order of hadron-quark
phase transition (crossover, first order or both), and also the
regime of high density and moderate temperatures.

On the theoretical side, the strongly interacting matter is
described by Quantum Chromodynamics (QCD). In its
nonperturbative regime of large distances, or equivalently
low energies, the most important method to study the QCD
structure is the numerical lattice calculations [3], with the
Monte Carlo simulations [4] being its mainly representa-
tive. Such techniques provide results as for the pure gluon

sector, i.e., in the limit of infinitely heavy quarks, as for
systems including dynamical quarks. The difficulties in the
latter are in the fact that at finite quark chemical potential
(�q) regime, the numerical calculations face to the fermion

sign problem [5]. However, alternatives to solve this ques-
tion are addressed in many methods [6–10]. On the other
hand, one can deal with the high energy QCD regime
(asymptotically free region) [11] in a complete theoretical
way through the perturbative treatment.
To investigate the moderate and high density regime of

the transition, it is needed effective models such as the
MIT bag model [12] and the Nambu-Jona-Lasinio (NJL)
[13–15] one, that curiously were firstly proposed to de-
scribe the hadronic mass spectrum. The former treats
gluons and massless quarks as free particles in which the
confinement phenomenon is incorporated by including a
bag constant in an ad hoc fashion. The latter presents
further similarities with the full QCD theory but do not
take into account the confinement, since the quarks interact
each other via pointlike interactions with no mediator
gluons. One of the mainly aims of these kind of models
is to provide the QCD phase diagram in the T �� plane in
order to distinguish hadronic phase where the chiral sym-
metry is broken, and the quark one. The quark stars de-
scription with these effective models is in the same
important way [15,16].
The phenomenology of the hadron-quark phase transi-

tion is often studied with the mentioned effective QCD
models [17,18] and other. Recently, a study about the QCD
phase diagram was accomplished in Ref. [19] where the
linear � model was used to construct the phase transition
curve, in the two-flavor quark system, as a function of
the vacuum pion mass. It was shown that the point in the
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T �� plane where is changed the phase transition order,
the critical end point, is sensitive to this parameter. In such
cases, where there is only one model (the quark one), the
identified phases in the transition curve are associated to
those with broken and restored chiral symmetry.

To distinguish hadron and quark phases we have the
following well accepted phenomenology. The strongly
interacting matter at very high temperatures and baryon
densities should have quarks and gluons as the degrees of
freedom. Motivated QCD models, cited above [12–15]
take these degrees of freedom into account. On the other
side, at low temperatures (T < 20 MeV) and moderate
densities of the order of �0, the hadronic phase can not
be described by quarks and gluons. Instead, nucleons and
mesons are the relevant degrees of freedom. Here, different
approaches as Brueckner-Hartree-Fock by using realistic
two-nucleon interactions [20], or relativistic mean-field
(RMF) models may describe quite well the nuclear matter
and finite nuclei properties. Between these two phases a
mixed region takes place.

In this work, we focus in two structurally distinct models
to treat the hadron-quark phase transition, namely, the
Polyakov Nambu-Jona-Lasinio (PNJL) models in the char-
acterization of the quark phase, and the relativistic mean-
field nonlinearWalecka ones in the description of the phase
where the chiral symmetry is broken, i.e., the hadronic
phase. The former is a generalization of the NJL model
in the sense that the confinement phenomenon is incorpo-
rated in its structure. For sake of comparison, we also
perform a hadron-quark phase transition using the MIT
Bag model in the quark side, in order to see explicitly the
effect of the dynamical confinement contained in the PNJL
model compared with the MIT Bag one.

The motivation for such an approach matching two
models with different degrees of freedom is the following.
MIT bag and PNJL models do not describe any of the very
well known properties of the ordinary nuclear matter while
attempting only to achieve, through phase diagrams, the
boundaries where this matter starts to be confined. In this
aspect only with such models a more complete description
is poor. On the other side, the RMF models constructed to
well describe the bulk nuclear matter and finite nuclei
properties, are often applied to investigate high density
regimes as it is common for neutron stars. Whether in
such regions the RMF models are still valid is question-
able. The phase transition between the quark and the
hadron phase helps understanding when one needs to start
describing nuclear matter with other degrees of freedom
than baryons and mesons employed by RMF models.
Therefore, our study brings more information for the
mixed phase between these two still disconnected quark
and hadronic phases. The use of different PNJL and RMF
models is needed if one wants to have a more precise
conclusion about how the different families of hadronic
and quark models predict mixed phases. If they are similar

or not, or still whether the description of the confined/
deconfined phase transition only via the PNJL model itself
is totally trustable when compared with the approach
matching the two models. As we will show, this phase
transition obtained by only the PNJL model, is expected
to occur in a much smaller chemical potential for the same
temperature differing strongly of the transition obtained by
RMF-PNJL models. Future experiments, discussed already
before, will show what description is correct.
After the first version of this manuscript was submitted,

we became aware of a very similar study in which the
hadron-quark phase transition was investigated only with
one parametrization for the PNJL and RMF model [21].
Our systematic study here goes beyond that work, in the
following aspects. Our calculations will take into account
here different parametrizations for both, the PNJL and
RMF models. In the latter, we will analyze a class of
hard and soft equations of state, in a very large range of
the nuclear matter incompressibility, 172<K <
554 MeV, and show that, actually, the RMF models affect
quite small the entire hadron-quark phase transition. In the
former, the most up to date Polyakov potential parametri-
zations will be used and compared each other. Still, a
comparative study involving the hadron-quark phase tran-
sition with the MIT bag model will be performed.
This paper is organized as follows. In Sec. II, we present

the quark models used in this work, starting by the MIT
Bag model and later with the PNJL one, where a compari-
son between the current parametrizations, regarding their
thermodynamics, is also done. In Sec. III, the mainly
features of the RMF models are presented, and in
Sec. IV, the phase diagrams concerning the hadron-quark
phase transitions are shown. Our summary and conclusions
are in the last section.

II. QUARK MODELS

A. MIT Bag model

Possibly, the simplest model to describe an approximate
physics describing the matter where quark and gluons are
the proper degrees of freedom of the system is the MIT bag
model [12]. Such a scenario is supposed to exist at very
high density or temperature regimes. Back in the big bang
theory, at the very beginning, the universe was very hot and
dense before hadronization. Nowadays, very high energy
heavy-ion collision experiments in LHC try to recreate the
signatures to confirm this hypothesis. In the case it is
confirmed, hot hadronic matter undergoes a phase transi-
tion to the quark-gluon plasma (QGP) at uncertain but very
high and very low temperature and density, respectively.
The phase diagram connecting the QGP phase to a pure
hadronic phase from high to zero temperature is still a big
challenge and has a model dependence exhibited in pre-
vious studies when some relativistic hadronic models and
the MIT bag ones were investigated [22,23]. The MIT bag
model itself does not describe the confined hadronic phase
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but rather the QGP. Therefore, the hadronic phase has
to be represented by any hadronic model in which the
degree of freedom are baryons and mesons as we will
present later on. Once each phase is modeled, the
phase diagram is obtained thermodynamically by the
Gibbs criteria, matching the chemical potential and
the pressure at a given temperature (Tc), across the phase
boundaries when a phase transition takes place. Explicitly,
these criteria are

�HðTc; �
c
HÞ ¼ �QGPðTc; �

c
QGPÞ (1)

PHðTc; �
c
HÞ ¼ PQGPðTc; �

c
QGPÞ: (2)

As previously presented [22], the set of critical �c’s
establishes curves �cðTÞ in the (�, T) plane. Below the
(�c

H, Tc) curve the system may be interpreted as
nuclear matter described by the hadronic models (hadronic
sector). The region in between (�c

H, Tc) and (�c
QGP, Tc)

corresponds to a mixed (H-QGP) coexistence phase.
Above the (�c

QGP, Tc) curve, the system is in a pure QGP

phase.
For the quark-gluon plasma phase in theMIT bag model,

the pressure and baryon number density are given by
[24,25]

PMITð�q;TqÞ¼
8�2T4

q
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�MIT ¼ 1
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�qT
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q

�2

��
1� 2�s

�

�
; (4)

where B is the bag constant, Nf is the number of flavors

and �s is the QCD running coupling constant, depending
on the quark-gluon plasma temperature Tq and the quark

chemical potential �q through the first order perturbative

expression

�s¼4�

��
11�2Nf

3

�
ln½ð0:8�2

qþ15:622T2
qÞ=�2�

��1
: (5)

In this paper, the MIT bag model will be used only as a
comparison with the PNJL model, regarding the predic-
tions for the boundaries of the hadronic and QGP phases
for each specific RMF model describing the hadronic
phase.

B. PNJL model

1. Confinement

The confinement can be measured by the Polyakov loop,
defined as a Wilson line in the Euclidean space-time by

L ¼ P expðiR�
0 d�A4Þ where A4 is the gauge field. By this

definition, it can be viewed as a closed path connecting

the same point in the space, at the different times 0 and
� ¼ 1=T. The traced Polyakov loop,� ¼ TrcðLÞ=Nc with
Nc being the quark color number, plays an important role
concerning the deconfinement since it is the order parame-
ter of this transition. Actually, the deconfinement is a
consequence of the global center symmetry breaking. In
pure gauge systems at finite temperature, where the peri-
odic boundary conditions are satisfied, this symmetry is
realized by the gauge transformations due to the way how
they affect the boson fields. The consequence in the traced

Polyakov loop is that � ! eð2�ik=NcÞ�, with k ¼ 1; 2; 3 . . .
what means that the condition � ¼ 0 has to be fulfilled in
order to keep the center symmetry preserved. Since � is

related with free energy of a color source, through � ¼
e�Fq=kBT , if the center symmetry is realized, then Fq ! 1,

meaning that the quark is confined. In dynamical quark
systems where the fermionic field explicitly breaks the
center symmetry, generating automatically � � 0, the
traced Polyakov loop is considered as an approximated
deconfinement order parameter. The situation is analog to
the cases in which the system Lagrangian density presents
a mass term that explicitly breaks the chiral symmetry.
The condensate h �c qc qi is also an approximated order

parameter, in this case for the restored chiral symmetry
phase. The confinement effect, associated with �,
was implemented originally in the NJL model by
Fukushima [26] and deeply studied in Refs. [27–33]. The
PNJL model is able to describe as the broken-unbroken
chiral symmetry as the confinement-deconfinement
phase transitions even being this situations, respectively,
in the opposite regimes of vanishing and infinite quark
masses [26].

2. Thermodynamical calculations at T � 0

The connection between the fermion and the gauge
field in the PNJL model is done by making the substitution
@� ! @� þ iA� in the Lagrangian density. The after bo-
sonization of the system, and the mean-field approximation
lead to the following grand canonical potential per volume
[28]:

�PNJL ¼ Uð�;��; TÞ þG�2
sq

2
� �q

2�2

Z �

0
Eqk

2dk

� �qT

2�2Nc

Z 1

0
ln½1þ 3�e�ðEq��qÞ=T

þ 3��e�2ðEq��qÞ=T þ e�3ðEq��qÞ=T�k2dk

� �qT

2�2Nc

Z 1

0
ln½1þ 3��e�ðEqþ�qÞ=T

þ 3�e�2ðEqþ�qÞ=T þ e�3ðEqþ�qÞ=T�k2dk; (6)

being Eq ¼ ðk2 þM2
qÞ1=2, �sq¼h �c qc qi¼h �uuiþh �ddi¼

2h �uui in the isospin symmetric system, Uð�;��; TÞ the
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effective Polyakov loop potential in terms of � and its
conjugate ��, that we will discuss later, and �q ¼ Ns �
Nf � Nc ¼ 12 the degeneracy factor due to the spin,

flavor, and color numbers (Ns ¼ Nf ¼ 2 and Nc ¼ 3).

The constituent quark mass should obey the autoconsistent
equation

Mq ¼ M0 �G�sq (7)

where the quark condensate �sq, determined by the condi-

tion ð@�PNJL=@�sqÞ ¼ 0, is given by

�sq ¼ �q

2�2

Z 1

0

Mq

Eq

k2dk½Fðk; T;�;��Þ þ �Fðk; T;�;��Þ�

� �q

2�2

Z �

0

Mq

Eq

k2dk (8)

with

Fðk; T;�;��Þ ¼ �e2ðEq��qÞ=T þ 2��eðEq��qÞ=T þ 1

3�e2ðEq��qÞ=T þ 3��eðEq��qÞ=T þ e3ðEq��qÞ=T þ 1
; (9)

�Fðk; T;�;��Þ ¼ ��e2ðEqþ�qÞ=T þ 2�eðEqþ�qÞ=T þ 1

3��e2ðEqþ�qÞ=T þ 3�eðEqþ�qÞ=T þ e3ðEqþ�qÞ=T þ 1
(10)

being the generalized Fermi-Dirac distributions. As
pointed out in Refs. [34,35], an important consequence
of the structure of the coupling between � and the quark
sector, is the possibility to deal with the PNJL model in the
same theoretical way as in the NJL one, regarding the
statistical treatment. The modification in the equations,

as, for example, in Eq. (8), is in the use of these new
distribution functions for quarks and antiquarks.
Through �PNJL, all the thermodynamical quantities can

be obtained, namely, the pressure, given by P ¼ �� that
leads to

PPNJL ¼ �Uð�;��; TÞ �G�2
sq

2
þ �q

2�2

Z �

0
ðk2 þM2

qÞ1=2k2dkþ
�q

6�2

Z 1

0

k4

ðk2 þM2
qÞ1=2

dk½Fðk; T;�;��Þ

þ �Fðk; T;�;��Þ� þ�vac; (11)

the quark density, � ¼ � @�
@� ,

�q ¼
�q

2�2

Z 1

0
k2dk½Fðk; T;�;��Þ � �Fðk; T;�;��Þ�; (12)

and the energy density, E ¼ �T2 @ð�=TÞ
@T þ��,

EPNJL ¼ Uð�;��; TÞ � T
@U
@T

þG�2
sq

2
� �q

2�2

Z �

0
ðk2 þM2

qÞ1=2k2dkþ
�q

2�2

Z 1

0
ðk2 þM2

qÞ1=2k2dk½Fðk; T;�;��Þ
þ �Fðk; T;�;��Þ� ��vac: (13)

Notice here that we have subtracted the vacuum value of�PNJL, resulting in the addition of the�vac term in the expressions
(11) and (13).

The entropy density is obtained through S ¼ � @�
@T , or by the thermodynamical relationship S ¼ ðPþ E ���Þ=T.

Therefore we have

SPNJL¼�@U
@T

þ �q

6�2T

Z 1

0

k4

ðk2þM2
qÞ1=2

dk½Fðk;T;�;��Þþ �Fðk;T;�;��Þ�þ �q

2�2T

Z 1

0
ðk2þM2

qÞ1=2k2dk½Fðk;T;�;��Þ

þ �Fðk;T;�;��Þ���q�q

2�2T

Z 1

0
k2dk½Fðk;T;�;��Þ� �Fðk;T;�;��Þ�: (14)

It should be mention at this point that the prescription of generalization of the NJL model to the PNJL one concerning the
Fermi-Dirac distributions functions of particles, fðk; TÞ, and antiparticles, �fðk; TÞ, to those shown in Eqs. (9) and (10), is
valid for the entropy density functional given in Eq. (14), and not for its usual expression S � R

d3k½f lnfþ ð1� fÞ�
lnð1� fÞ� þ �f ln �fþ ð1� �fÞ lnð1� �fÞ�.
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To deal with the entire PNJL model, characterized by the
above equations of state (EOS), it is needed specify the
Polyakov loop potential, Uð�;��; TÞ. Different versions
were proposed in the literature, and following the language
of Ref. [36], we refer two of them by RTW05 [27], and
RRW06 [28–35]. We call the other two used in our work by
FUKU08 [36], and DS10 [37]. Their functional forms are
given, respectively, by,

URTW05

T4
¼ � b2ðTÞ

2
��� � b3

6
ð�3 þ��3Þ þ b4

4
ð���Þ2;

(15)

URRW06

T4
¼ �b2ðTÞ

2
��� þ b4ðTÞ ln½1� 6���

þ 4ð�3 þ��3Þ � 3ð���Þ2�; (16)

UFUKU08

bT
¼ �54e�a=T��� þ ln½1� 6���

þ 4ð�3 þ��3Þ � 3ð���Þ2�; (17)

UDS10 ¼ ða0T4 þ a1�
4
q þ a2T

2�2
qÞ�2

þ a3T
4
0 ln½1� 6�2 þ 8�3 � 3�4�; (18)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
; and

b4ðTÞ ¼ b4

�
T0

T

�
3
: (19)

In a general way, the Polyakov potentials are constructed
in order to reproduce the well established data from lattice
calculations of the pure gauge sector (where � ¼ ��),
concerning the temperature dependence of the traced
Polyakov loop and its first order phase transition, charac-
terized by the jump of� from the vanishing to a finite value
atT0 ¼ 270 MeV (see the dotted curve of Fig. 2 inRef. [28],
for instance). Actually, in this work we reduced this value to
T0 ¼ 190 MeV, following the rescaling adopted in
Ref. [27], in order to better reproduce the latticeQCD results
that wewill show in Fig. 2, and the transition temperature at
vanishing chemical potential, Tcð� ¼ 0Þ, also predicted in
the lattice, and that wewill discuss in Sec. IV. By taking this
rescaling into account, we match more realistic PNJL mod-
els with the RMF hadronic ones, that already describe quite
realistically nuclear matter and finite nuclei.

The FUKU08 potential presents two free parameters,
a ¼ 664 MeV and b ¼ 0:03�3, and was derived from
strong coupling lattice expansion. Also to correctly repro-
duce the lattice results for Tcð� ¼ 0Þ we changed here the
b parameter value to b ¼ 0:007�3.

The RTW05 parametrization was based on a Ginzburg-
Landau ansatz, presenting the polynomial form in terms of
the order parameters, �, and ��. The improved version

RRW06 uses, instead the polynomial terms of third and
fourth order, the logarithm of the Jacobi determinant.
Differently from the FUKU08 potential, the dimensionless
parameters ai, and bi of the RTW05, and RRW06 ones (see
their values in Table I) are found with the additional fit to
the lattice data for the energy density, entropy density, and
pressure of the gauge sector as a function of the tempera-
ture, including the proper Stefan-Boltzmann (SB) limit at
high temperature regime. Fig. 1 of Refs. [27,28], for ex-
ample, shows the good agreement among these quantities
and the lattice results.
The DS10 potential, proposed in Ref. [37], presents

baryon chemical potential dependence and is used in a
hybrid SUð3Þ chiral model that has both hadrons and
quarks as degrees of freedom. This parametrization is
able to reproduce the gauge lattice results, just like in the
potentials shown before, and also allows that the hadron-
quark phase transition occurs, at zero temperature, at den-
sity of 4 times the saturation density, and that the critical
end point (CEP) is situated at �B ¼ 354 MeV, and T ¼
167 MeV [37]. By using this particular parametrization,
we remark that the quark density, Eq. (12), and the energy
density, Eq. (13), have to be modified, respectively, to
�q ! �q � ð4a1�3

q þ 2a2T
2�qÞ�2 and EPNJL ! EPNJL �

ð4a1�4
q þ 2a2T

2�2
qÞ�2.

To define completely the PNJL model it is needed to
determine the coupling constant G, the cutoff �, and the
current quark mass M0 ¼ Mu ¼ Md. This is done by im-
posing the reproduction of the certain vacuum values,
namely, the pion decay constant fixed in f�, the quark
condensate h �uui, and the pion mass m�. These values,
together with the zero temperature expressions of the
PNJL model, are shown in Appendix A.

3. Comparing the Different Polyakov Potentials

To evaluate the PNJL model one needs to solve simul-
taneously Eq. (7) and the minimization conditions for the
thermodynamical potential relatively to � and ��. Along
all our study wewill follow the lowest order approximation
described in Refs. [30,32] that automatically leads to
� ¼ ��. This approach reduces the set of coupled equa-
tions to Eq. (7), and

@Uð�;TÞ
@�

� 3T�q

2�2Nc

Z 1

0
k2dk½gðk;T;�;�qÞ

þgðk;T;�;��qÞ�¼0 (20)

TABLE I. Dimensionless parameters of the potentials given in
Eqs. (15), (16), and (18).

Potentials a0 a1 a2 a3 b3 b4

RTW05 6.75 �1:95 2.625 �7:44 0.75 7.5

RRW06 3.51 �2:47 15.22 - - �1:75
DS10 �1:85 �1:44� 10�3 �0:08 �0:40 - -
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with

gðk;T;�;�qÞ

¼ 1þe�ðEq��qÞ=T

3�½1þe�ðEq��qÞ=T�þeðEq��qÞ=T þe�2ðEq��qÞ=T ;

(21)

coming from the condition ð@�PNJL=@�Þ ¼ 0.

To see how sensitive is the PNJL model regarding the
different potentials, we present the behavior of some im-
portant quantities. First we show in Fig. 1 how the order
parameters� and �sq vary as functions of the temperature

for some fixed values of the quark chemical potential.
If we use only the PNJL model to construct the T ��q

diagram, the maxima of ð@�=@TÞ, and ð@�sq=@TÞ at a

given �q are used to define the transition temperature

[27,30,32], in this case a crossover transition. Indeed, the

0 100 200 300
T (MeV)

0 100 200 300
T (MeV)

0 100 200 300
T (MeV)

0 100 200 300
T (MeV)

0 100 200 300
T (MeV)

0 100 200 300
T (MeV)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Φ RTW05
FUKU08
RRW06
DS10

(a) µ
q
 = 0 (b) µ

q
 = 150 MeV (c) µ

q
 = 300 MeV

0

0.2

0.4

0.6

0.8

1

ρ sq
(T

)/
ρ sq

(v
ac

)

(d) µ
q
 = 0

0

0.2

0.4

0.6

0.8

1
(e) µ

q
 = 150 MeV

0

0.2

0.4

0.6

0.8

1
(f) µ

q
 = 300 MeV

FIG. 1. � (1a-1c) and the ratio �sqðTÞ=�sqðvacÞ (1d-1f), of the different PNJL parametrizations, as a function of the temperature for
some fixed values of �q.

0 100 300 500
0

0.2

0.4

0.6

0.8

1

P/
P

SB

RRW06
RTW05
FUKU08
DS10

0 200 400
T (MeV)

0 100 300 5000 200 400

T (MeV)

0 100 300 5000 200 400
T (MeV)

0 100 300 5000 200 400
T (MeV)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Nτ = 4
Nτ = 6
      p4: Nτ = 8
asqtad: Nτ = 8

(a)

ε/
ε SB

Nτ = 4
Nτ = 6
      p4: Nτ = 8 
asqtad: Nτ = 8

(b)

S/
S

SB

p4: Nτ = 4
p4: Nτ = 6
p4: Nτ = 8
asqtad: Nτ = 6
asqtad: Nτ = 8

(c)

0

2

4

6

8

10

(ε
 -

 3
P)

/T
4

p4: Nτ = 4
p4: Nτ = 6
p4: Nτ = 8
asqtad: Nτ = 6
asqtad: Nτ = 8

(d)

0 1 2 3 4 5

ε1/4
 [(GeV/fm

3
)
1/4

]

0

0.05

0.15

0.25

0.35

P/
ε Nτ = 4

Nτ = 6
      p4: Nτ = 8
asqtad: Nτ = 8(e)

SB limit

FIG. 2 (color online). (Color online) (a-c): Pressure, energy density, and entropy density, in units of its respective SB values, versus
T. (d): Interaction measure, in units of T4, versus T. (e): Ratio P=E versus E1=4. All calculations at �q ¼ 0. The three flavor lattice

results were extracted from Refs. [38,39].
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strength of this mixing is utilized to find the value of b in
the FUKU08 potential [36]. Other similar criterium to find
the transition point is to localize the maxima of the chiral,
and Polyakov susceptibilities [26,32]. Here we will also
use the Gibbs criterium to find such transition points since
we are dealing with two different models to treat the
different phases.

In Fig. 2 we show, at vanishing chemical potential, the
behavior of some important thermodynamical quantities.
The pressure, energy density and entropy density as a
function of the temperature, and scaled by the respective

Stefan-Boltzmann values PSB ¼ 37�2T4

90 , ESB ¼ 3PSB, and

SSB ¼ 4PSB=T, are displayed in Figs. 2(a)–2(c). In units of
T4, we furnish the called interaction measure given by
E � 3P. This quantity show us how the model deviates
from the noninteracting massless quark system, since in
such regime its value is vanishing. Finally, as a function of
the energy density, we see the evolution of the ratio P=E
that is closely related with the sound velocity through

c2s ¼ @P
@E ¼ E@ðP=EÞ

@E þ P
E . In the SB limit, one has c2sSB ¼

PSB=ESB ¼ 1=3.
As a reference the recent QCD lattice results with tem-

poral extent N� ¼ 4, 6 [38], and N� ¼ 8 [39] for the 2þ 1
flavor system, in calculations with the improved fermion
actions asqtad, and p4, are also shown in Fig. 2. Rigorous
comparisons among lattice data and quantities such as the

difference PðT;�Þ
T4 � PðT;0Þ

T4 and the moments of the pressure,

can be found, for example, in Refs [27,28,40], and
[28,30–32], respectively.

Notice here the good agreement of the PNJL parametri-
zations and the lattice data, even the latter being originated
from the 3 flavor system. We highlight RTW05 and
RRW06 as being the models that better agree with the
data. These results can be explained by the rescaling
procedure adopted in the T0 value (from 270 MeV to
190 MeV).

As mentioned in Ref. [36], the FUKU08 model was not
constructed to reproduce the Stefan-Boltzmann limit in
high temperatures. This explains the deviation of the lattice
data from temperatures higher than 200 MeV even after
our rescaling in the b parameter of the model, from
b ¼ 0:03�3 to b ¼ 0:007�3.

III. RELATIVISTIC MEAN-FIELD MODELS

Different from the microscopic approach in which the
nucleon-nucleon potentials are developed to reproduce the
well established data of the few-nucleon physics, and
where the basic informations about the many-body system
are extracted, e.g., via Brueckner-Hartree-Fock methods,
the Quantum Hadrodynamics (QHD), based on local
Lagrangian densities, uses the nuclear matter bulk proper-
ties observables at zero temperature to adjust its free
parameters and thereafter construct all the thermodynam-
ics of the particular hadronic framework. One of the most

used models coming from QHD is the nonlinear Walecka
(or Boguta-Bodmer) [41] model, that is given by the fol-
lowing renormalizable Lagrangian density

L ¼ �c ði��@� �MÞc þ 1

2
@��@��� 1

2
m2

��
2

� 1

4
F�	F�	 þ 1

2
m2

!!�!
� � g�� �c c

� g! �c��!�c � A

3
�3 � B

4
�4; (22)

with F�	 ¼ @	!� � @�!	, and the nucleon degree of

freedom represented by the spinor c . The responsible
mesons for the attractive, and repulsive parts of the nuclear
interaction are described in this formulation by the scalar
(�), and vector (!�) neutral fields, respectively. The satu-
ration in nuclear matter is understood in the QHD by the
almost vanishing value of � ¼ Sþ V at the saturation
density, with S, and V being the Lorentz meson potentials.
M, m�, and m! are, respectively, the masses of the nu-
cleon, scalar, and vector mesons.
In their model, Boguta and Bodmer [41] considered the

cubic and quartic self-interactions in the scalar field �, in
order to improve the original Walecka model [42]. In this
version, the models are able to control through the fitting of
their coupling constants, the values of the saturation den-
sity, binding energy (B0) as well as the incompressibility
(K), and the effective nucleon mass (M�).
Through the Dirac equation of the model, one identifies

its nucleon effective mass as

M� ¼ Mþ g�� ¼ M�G2
�½�s þ að�MÞ2 þ bð�MÞ3�;

(23)

with G2
� ¼ g2�=m

2
�, a ¼ A=g3�, b ¼ B=g4�, and �M ¼

M� �M. Let us remark here that this definition of effective
mass, also called Dirac mass, is valid for the relativistic
models. A deep discussion about other definitions and
concepts of this physical quantity can be found in
Ref. [43]. The scalar and vector densities are written, at
finite temperature, as

�s¼h �c c i¼ �

2�2

Z 1

0

M�

ðk2þM�2Þ1=2k
2½fðk;TÞþ �fðk;TÞ�dk

and (24)

� ¼ h �c�0c i ¼ �

2�2

Z 1

0
k2½fðk; TÞ � �fðk; TÞ�dk; (25)

with � ¼ 4 for symmetric matter. The usual Fermi-Dirac
distributions to particles and antiparticles are defined, re-

spectively, by fðk; TÞ ¼ ½eð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM�2p

�	Þ=T þ 1��1 and

�fðk; TÞ ¼ ½eð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM�2p

þ	Þ=T þ 1��1, and the relation between
the effective chemical potential, 	, and the baryon chemi-
cal potential is given by �B ¼ 	þG2

!�.
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From the energy-momentum tensor obtained through
Eq. (22), one can obtain the pressure of the system, that
reads

PRMF¼G2
!�

2

2
�ð�MÞ2

2G2
�

�að�MÞ3
3

�bð�MÞ4
4

þ �

6�2

Z 1

0

k4

ðk2þM�2Þ1=2 ½fðk;TÞþ
�fðk;TÞ�dk; (26)

already written in terms of the mean-field approximation,
as well as Eqs. (23)–(25).

For the construction of the hadron-quark phase dia-
grams, we choose the following set of RMF parametriza-
tions: Walecka (WAL) [44], NLB [45], NL2 [46], NLSH
[47], NLB1 [46], NL3 [47], NLB2 [46], NLC [45], NL1
[46] and NLZ2 [48]. The WAL and NLZ2 models are
chosen because their incompressibilities, K ¼
554:4 MeV and K ¼ 172:0 MeV, respectively, indicate
very hard and very soft EOS for infinite nuclear matter.
The other models intermediate both. A full list of the
nuclear matter saturation properties including �0, B0 and
m� ¼ M=M is found in Table II of Appendix B.

Important features can be highlighted concerning these
relativistic models. At moderate temperatures, T &
20 MeV, a liquid-gas phase transition is predicted [49].
In Figs. 3(a)–3(c) we show the typical van der Waals
behavior of the used parametrizations in the pressure ver-
sus density curves.

The Maxwell construction can be used to find the coex-
istence points, and consequently the coexistence curve. It
was shown in Ref. [50] that this curve, scaled by the critical
parameters, is not universal in the liquid region due
importance of the interactions in such phase. Another

interesting feature of the RMF models occurs at high
temperature regime (T � 200 MeV), where other kind of
phase transition takes place. This scenario was studied by
Theis et al. [51] in the context of the linear Walecka model
at � ¼ �B ¼ 0. The authors have shown that the order of
the phase transition depends on the values of the coupling
constants used to fit �0, and B0. A signature of this tran-
sition is exhibited in the behavior of the nucleon effective
mass as a function of the temperature, since an abrupt
decreasing of M� characterizes a first order phase transi-
tion. In Figs. 3(d)–3(f) we present the high temperature
regime of RMF models used in our work concerning the
behavior ofM� at zero baryon chemical potential. A recent
study regarding the high temperature regime of RMF
models at different number of nucleons and antinucleons
(�B � 0) was done in Ref. [44,52].

IV. RESULTS AND DISCUSSIONS

Now we present our mainly results regarding the
hadron-quark phase diagrams, constructed from the
Gibbs criteria shown in Eqs. (1) and (2), defining first
our notation for the transitions curves we will exhibit.
We call the matching between the RMF models and the
PNJL ones as the ‘‘RMF-PNJL’’ transition curves. When
the transition is done with the MIT Bag model on the quark
side, the modification is straightforward in the sense
that the curve is denoted by ‘‘RMF-MIT’’. Thus, the
Gibbs criteria applied, for example, in the NL3 model
together with the RRW06 one, generate the curve called
NL3-RRW06. If the PNJL model is replaced by the
MIT Bag one in this case, we denote this transition by
NL3-MIT.
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FIG. 3. (Color online) (a)-(c) Pressure as a function of �=�0 at T ¼ 10 MeV, and (d)-(f) Effective nucleon mass as a function of the
temperature at �B ¼ 0.
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A. RMF-PNJL transitions

Regarding the condition of equal pressures, we stress
that the hadronic pressure, Eq. (26), was used to match the
quark ones, Eq. (11) and (3) for the RMF-PNJL and RMF-
MIT curves, respectively.

Let us remark here that for the RMF-PNJL transitions, we
adopt the Gibbs criteria with the additional constraint that
the RMF confined phase is actuallymatching the deconfined
phase of the PNJL model. We only consider the solutions
satisfying this condition. An example of this restriction
is shown in Figs. 4(a) and 4(b) for the NL3-RRW06, and
NL3-FUKU08 matchings at �B ¼ 3�q ¼ 660 MeV.

Notice that the FUKU08 and NL3 pressures cross each
other at the temperature given by T ¼ 128:8 MeV, but
since at this temperature the FUKU08 model is still in the
confined phase (see the down panel of Fig. 4(b)], we did not
consider this crossing for theNL3-FUKU08 phase diagram.
Here we are following the same procedure used in Ref. [27]
concerning the definition of the transition temperature. In
the case of the adopted rescaling forT0 (in RTW05, RRW06
and DS10) and for b (in FUKU08), the almost perfect
coincidence between the peaks of the temperatures deriva-
tives of � and �sq is lost. To circumvent this problem, for

each chemical potential, the transition temperature �T, as the
average of the different temperatures related to the peaks
of @�=@T and @�sq=@T. For the FUKU08 potential at

�B ¼ 660 MeV, this average is �T ¼ 139:5 MeV.
For the RRW06 and NL3 models, its pressures cross at

T ¼ 149:2 MeV, where the RRW06 model already pre-
dicts the deconfinement, since its transition temperature is
given by �T ¼ 148:8 MeV (see the up panel of Fig. 4(b)].
Therefore, the point in which T ¼ 149:2 MeV and �B ¼
660 MeV contributes to the NL3-RRW06 phase diagram.

In the next figure we present the hadron-quark phase
diagrams for all the RMF-PNJL parametrizations used in
this work.

In Fig. 5, each individual panel depicts the diagrams
where the matching between the models is done by keeping
fixed the indicated quark model, and changing the hadronic

one. In the same figure, for comparison, we also give the
transition line of the phase diagram for each PNJL model
itself constructed, as aforementioned, from the average of
the temperatures related to the peaks of @�=@T and
@�sq=@T. The full (dotted) lines stand for the crossover

(first order) transitions. It is important to stress here that
there are different criteria to construct these PNJL transition
curves, such as the choice between different peaks of
@�=@T [53] and @�sq=@T. This fact can favor the emer-

gence of the quarkyonic phase, predicted in Ref. [54].
A detailed study about these different choices and its con-
sequences in the hadron-quark phase diagram is under
progress.
An important feature regarding the PNJL curves are the

values of the transition temperatures at vanishing chemical
potential, Tcð� ¼ 0Þ ¼ 179 MeV, 181.8 MeV, 177.3 MeV,
and 174.5 MeV, respectively, for the RRW06, RTW05,
FUKU08 and DS10 parametrizations. Notice that these
values agree very well with the lattice QCD result for
this quantity given by Tcð� ¼ 0Þ � 170–190 MeV [55],
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FIG. 4. (a) Pressure as a function of the temperature for two of the PNJL models and the NL3 one. (b): @�=@T and �@
=@T versus
T, where 
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FIG. 5. Hadron-quark phase diagrams in the T ��B plane for
the RMF-PNJL matching (grey band), and for the PNJL models
themselves (fullþ dotted lines).
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or even with the more stringent value of Tcð� ¼ 0Þ ¼
173� 8 MeV [56]. This nice agreement is completely
destroyed if the original values of T0 and b are used in
the construction of the PNJL curves. In this case, the values
of Tcð� ¼ 0Þ are higher than 200 MeV for all the Polyakov
potentials.

We also remark that the PNJL phase diagrams could also
furnish other phases beside the confined/broken chiral
symmetry, and deconfined/restored chiral symmetry ones,
delimited by the full and dotted lines in Fig. 5. These
specific phases are closely related to the instabilities of
the ground state, present in any fermionic system at suffi-
ciently low temperatures, that are overcame by the forma-
tion of the fermion pairs (in BCS theory, these are the
so-called Cooper pairs). In particular, the quark system
described by the PNJL models should also be affected in
this regime, giving rise to the emergence of the two-flavor
superconducting color (2SC), and the color flavor locked
(CFL) phases. This phenomenology can be incorporated in
the PNJL model, via inclusion of the diquark condensate
term in its Lagrangian density. However, in this work we
focus exclusively in the nonsuperconducting phases of the
hadron-quark diagrams by treating only the simplest ver-
sion of the PNJL model, in which the color condensates are
not being taken into account. Very interesting studies con-
cerning the consequences of the 2SC and CFL phases in the
description of quark stars were performed for the NJL [57]
model, in which it is shown the role played by the diquark
coupling strengths. Recently, this effect of the color super-
conductivity was also analyzed for the PNJL [58] model,
where a modified version of the DS10 Polyakov potential is
used in the description of the quark core of massive hybrid
stars.

Regarding the RMF-PNJL transitions themselves, we
stress the following interesting results. First of all, notice
that for all the RMF-PNJL matchings, one can delimit very
narrow bands that encompass all the transition curves,
being the WAL-PNJL and NLB1-PNJL matchings their
extremes. This is not an obvious result since we are dealing
with a large set of RMF models, in the sense that they
present a range of very soft to very hard equations of state,
i. e., from the NLZ2 model with K ¼ 172 MeV, up to the
WAL one in which K ¼ 554 MeV. This result indicates
that at least for RMFmodels with scalar self-interactions of
third and fourth order, all of them will predict very similar
behavior concerning the hadron-quark phase transition, in
connection with PNJL models.

Our systematic study still shows that the additional
constraint exemplified in Figs. 4(a) and 4(b), are useful
to define the CEP’s of the RMF-PNJL transitions, given
approximately by (�CEP

B ¼ 650 MeV, TCEP ¼ 149 MeV),
(750 MeV, 142 MeV), (750 MeV, 126 MeV), and
(750 MeV, 138 MeV), respectively, for the RMF-
RRW06, RMF-RTW05, RMF-FUKU08, and RMF-DS10
transitions. In a different way, the CEP is also defined in

Ref. [21]. Notice how this restriction avoids the hadron-
quark phase transition curves go inside the confined phases
predicted by the PNJL transitions.
This situation is completely modified if we use the

original values of T0 and b of the PNJL models. In this
case there is no CEP for the RMF-PNJL transitions, in the
sense that there is no transition inside the hadron phase of
the PNJL models themselves. The only exception is for the
RMF-FUKU08 transitions, that present the same qualita-
tive behavior shown in Fig. 5 for the calculations done with
the original value b ¼ 0:03�3.
We still highlight here a very important physical con-

sequence of the construction of the hadron-quark phase
transitions via connection of the RMF and PNJL models.
The panels in Fig. 5 clearly show us that the hadronic
degrees of freedom present in the RMF models, make the
system much more resistant to the quark liberation, in
function of the density/chemical potential increasing,
when compared with a system only described by the
PNJL model. The physical origin of this important differ-
ence is due to the very known repulsive nature of the
nuclear force, represented in the RMFmodels by the vector
interaction, which strength is controlled by the coupling
constant g!, see Eq. (22) (in nuclear matter equations of
state, this strength is actually controlled by the ratio G! ¼
g!=m!). The repulsion makes the system support more
strongly isothermal compressions. In other words, the
RMF-PNJL transitions predict confined (hadron) phases
larger than those obtained exclusively with the PNJL mod-
els. This region of highly compressed matter of the hadron-
quark phase diagram, is expected to be reached in the new
experiments, such as the planned to occur in the new
facilities FAIR/GSI [1], and NICA/JINR [2]. Therefore,
it will be explicit what is the magnitude of the role played
by the repulsive interaction part of the nuclear force, even
guiding possible selections of better parametrizations.
The difference between the RMF-PNJL and the PNJL

transitions can be decreased if we use PNJL models that
also contain repulsive interactions, i.e., that present vector
fields in its structure. Notice that the PNJL models used
here are based on a structure that present only attractive
interactions. There is no explicit terms proportional to the
quark density in Eq. (6), coming from vector-type fields.
Moreover, as pointed out in Ref. [36], there is no constraint
at all for the choice of the strength of this kind of interac-
tion in the PNJL model. A study about the determination of
this magnitude, by making minimum the difference shown
in Fig. 5, is underway.

B. Comparison with RMF-MIT transitions

We perform now, systematic comparisons between the
RMF-PNJL transitions with RMF-MIT ones, in order to
verify explicitly the role played by the dynamical confine-
ment of the PNJL models in the hadron-quark phase dia-
grams. To construct such curves, we use the particular
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value of B1=4 ¼ 238 MeV, that furnish a critical tempera-
ture at vanishing chemical potential consistent with the
lattice simulation results.

Firstly, we show in Fig. 6 the behavior of RMF-MIT curves
in the T ��B plane for all the hadronic parametrizations.

Some interesting points about these particular transi-
tions have to be mentioned here. Notice that differently
from the RMF-PNJL diagrams, all the RMF-MIT curves
start at the same temperature, Tcð� ¼ 0Þ ¼ 168 MeV.
There is no critical end points as shown in Fig. 5. Similar
behavior between the curves can be seen at T ¼ 0, since all
used models are lied in a narrow band in this region. They
lie in the range around 1190 MeV<�B < 1310 MeV
(1730 MeV<�B < 1810 MeV) for the RMF-PNJL
(RMF-MIT) curves. For the RMF-MIT transitions, this
behavior is strongly changed if the RMF models with
higher order terms in the vector field, or even mixing terms
between � and !� are used on the hadronic side. This is

the case, for example, for the models used in Ref. [22]. We
stress that the behavior shown in Figs. 5 and 6 is character-
istic of the transitions in which the used RMF parametri-
zations only contain cubic and quartic self-coupling terms
in the scalar field �, see Eq. (22).

This almost model independent result for the hadron-
quark transition at T ¼ 0 for the RMF-PNJL/MIT match-
ings, see Figs. 5 and 6, is not surprising from the point of
view of the PNJL models, since the Polyakov potentials
related to the RRW06, RTW05, and FUKU08 models van-
ish in the zero temperature regime, see Eqs. (15)–(17), and
the modified Fermi-Dirac distributions, Eqs. (9) and (10),
behave as the conventional ones in the T ! 0 limit. In
particular, the DS10 Polyakov potential vanish at T ¼ 0
also due to � ¼ 0, see Eq. (18). That is, all the PNJL
models used here are converted in the same model at
T ! 0, in this case, the NJL one on the quark side. This
is also the case in the RMF-MIT transitions, i.e., one has
only one parametrization of the quark model since we

fixed B and �s in Eq. (3) to construct the diagrams shown
in Fig. 6. We remark that by construction, at T ¼ 0 all the
RMF models lead to different bulk nuclear matter proper-
ties. We stress here that this almost model independence in
the�B value at T ¼ 0 can be relevant to the study of hybrid
stars, composed by a quark core and a hadron crust [59,60].
In order to see the effect of the dynamical confinement

present in the PNJL models in the RMF-PNJL transition
curves, we explicitly compare the phase diagrams of both,
RMF-PNJL/RMF-MIT phase diagrams in the same Fig. 7.
In this figure one can clearly see that the hadronic region

predicted for the RMF-PNJL matchings is always smaller
than that obtained from the RMF-MIT ones, i.e., the quark
degrees of freedom emerge before in the RMF-PNJL
curves. Although we have presented only the transition
curves shown in Fig. 7, we streamline that all the other
diagrams follow the same pattern, thus the respective
RMF-PNJL/RMF-MIT curves can be considered as repre-
sentatives of all the models treated in this work. An en-
larged view of these features can be viewed in Fig. 8.
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In this figure, despite present the larger hadron regions,
that are delimited by the left branches of the curves, the
RMF-MIT diagrams show that the mixed phase containing
both hadrons and quarks is actually smaller in such dia-
grams. This difference, specifically at T ¼ 0 is extremely
important to the study of hybrid stars, since its quark core is
directly affected by the maximum density of the mixed
phase [59,60].

As our final remark, we point out that in the construction
of the RMF-PNJL diagrams, we proceed in a different
way that used in Ref. [61]. In this reference, the authors
used a bag constant also in the PNJL pressure in
order to ensure that the quark pressure is less than the
hadronic one in the confined phase. Here we force
PPNJLðT ¼ �q ¼ 0Þ ¼ 0, by subtracting from the grand-

potential its vacuum value.

V. SUMMARYAND CONCLUSIONS

In this work we have studied the hadron-quark phase
diagrams using two different models in the description of
the distinct phases. The quark degrees of freedom were
described via the recently suggested PNJL model [26]
which incorporates the confinement phenomenon in the
previous NJL one. As one of our results, we compared
the current PNJL parametrizations that differ each other by
the Polyakov potential Uð�;��; TÞ. We used the polyno-
mial form RTW05 [27], the logarithmic RRW06 [28–35],
the FUKU08 [36], and also included the DS10 [37] one
that presents a chemical potential dependence. The Fig. 2
show the good agreement with the lattice data, specially for
the RRW06 and RTW05 parametrizations even the PNJL
models being treated in the two-flavor system. It was also
shown that the parametrizations furnish similar results for
the analyzed thermodynamical quantities. The good agree-
ment with the lattice data remains valid even for the
transition temperature at vanishing chemical potential,
predicted to be given by Tcð� ¼ 0Þ ¼ 173� 8 MeV
[56]. Our calculations give the values of Tcð� ¼ 0Þ ¼
179 MeV, 181.8 MeV, 177.3 MeV, and 174.5 MeV,
respectively, for the RRW06, RTW05, FUKU08 and
DS10 PNJL models used in this work. We still remark
that these nice values are obtained with the rescaling
of the parameters T0 (RRW06, RTW05 and DS10) and b
(FUKU08).

On the hadronic side, we have used the well known RMF
nonlinear Walecka models in its version that contains cubic
and quartic self-coupling in the scalar field. We chose to
deal with a set of these models that encompasses several
incompressibilities values, representing very hard and soft
equations of state.

Regarding the phase diagrams, we have constructed the
RMF-PNJL curves using the Gibbs criteria and the addi-
tional constraint that the RMF pressure matches the PNJL
one only in its deconfined phase. This condition is exem-
plified in Figs. 4(a) and 4(b), and played an important role

in the final diagrams, since it determines the critical end
points given approximately by (�CEP

B ¼ 650 MeV,
TCEP ¼ 149 MeV), (750 MeV, 142 MeV), (750 MeV,
126 MeV), and (750 MeV, 138 MeV), respectively, for
the RMF-RRW06, RMF-RTW05, RMF-FUKU08, and
RMF-DS10 transitions. Moreover, it is also important to
stress that all these transitions furnish very similar results
in a such way that one can define a very narrow band in the
T �� plane encompassing all the RMF-PNJL curves,
being the WAL-PNJL and NLB1-PNJL the limiting curves
of these bands, see Fig. 5. This is a surprising result since
we are dealing with a very large class of RMF models. In
principle, there is no reason to the hadron-quark phase
diagram behaves in a very similar way with such variety
of RMF parametrizations.
Other important result concerning the RMF-PNJL phase

diagrams is their different predictions compared to those
obtained exclusively with the PNJL quark models. We
found that the hadron phase described by the RMF-PNJL
transitions is meaningfully larger than that predicted by the
PNJL ones, i.e., the RMF-PNJL hadron phase is more
resistant to the isothermal compressions. Physically, such
difference is due to the repulsive part of the nuclear force
described in the RMF models by the vector field interac-
tion. Therefore, one become clear that there are very differ-
ent results in treating the hadron-quark phase transition via
two distinct models, taking into account the different de-
grees of freedoms (hadrons and quarks), or only via quark
models, even being the latter very realistic ones as the
PNJL models that nicely agree with lattice QCD data,
and where the dynamical confinement is considered in
the NJL model through the Polyakov loop. We also remark
that the region where the different descriptions do not
agree each other will can be accessed in the future experi-
ments planned to occur in the new facilities FAIR/GSI [1],
and NICA/JINR [2].
As a final result, we compared the RMF-PNJL curves

with that constructed by the matching between the had-
ronic models and the MIT Bag one, that incorporates the
confinement via inclusion of the bag constant B. The
Figs. 7 and 8 show that the dynamical confinement pre-
dicted in the PNJL model force the hadronic phase of the
RMF-PNJL diagrams be smaller than the RMF-MIT ones.
Curiously, the opposite occurs for the mixed phase, where
hadrons and quarks coexist, see Fig. 8. These comparisons

were done by assuming the value of B1=4 ¼ 238 MeV for
the MIT bag model, that nicely predicts a value of
168 MeV for the transition temperature at vanishing
chemical potential, see Fig. 6.
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APPENDIX A: ZERO TEMPERATURE
EXPRESSIONS FOR THE PNJL MODEL:

NJL SECTOR

In this appendix we show the zero temperature
expressions of the PNJL model, that actually are exactly
the NJL ones, and give the remaining parameters needed to
define the PNJL models presented in our work. We refer
here only to that parametrizations that do not present
contributions containing the traced Polyakov loop in the
T ¼ 0 regime, i.e., we only consider the cases in which
Uð�;��; T ¼ 0Þ ¼ 0.

In the T ¼ 0 regime, the energy density given in Eq. (13),
and the scalar density in Eq. (8), are replaced by

EPNJLðT ¼ 0Þ ¼ G�2
sq

2 þ �q

8�2

�
k4Fq


�
Mq

kFq

�
��4


�
Mq

�

��
;

and (A1)

�sqðT ¼ 0Þ ¼ �qMq

4�2

�
k2Fq�

�
Mq

kFq

�
��2�

�
Mq

�

��
(A2)

with


ðzÞ ¼
�
1þ z2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
� z4

2
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ 1

z

�
; and

(A3)

�ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
� z2

2
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

� 1

�
; (A4)

where kFq is the Fermi momentum of the quark. The quark

density is �q ¼ �q

6�2 k
3
Fq, and the pressure reads

PPNJLðT ¼ 0Þ ¼ �q�q � EPNJLðT ¼ 0Þ; (A5)

with the quark chemical potential given by �q¼
ðk2FqþM2

qÞ1=2.
Thus, the respective vacuum expressions obtained at

kFq ¼ 0 are

E vac ¼
G�vac2

sq

2
� �q�

4

8�2



�
Mvac

q

�

�
; and (A6)

�vac
sq ¼ ��qM

vac
q �2

4�2
�

�
Mvac

q

�

�
: (A7)

So, fixing the values m�¼140:51MeV, f�¼
94:04MeV, and jh �uuij1=3¼251:32MeV, and using
Eq. (A7) together with the Gell-Mann-Oakes-Renner rela-
tion m2

�f
2
� ¼ �M0�sq, and

f2� ¼ NsNcM
2
q

2�2Nf

Z �

0

k2dk

ðk2 þM2
qÞ3=2

; (A8)

one obtains � ¼ 651 MeV, M0 ¼ 5:5 MeV, and G ¼
10:08 GeV�2. The constituent vacuum quark mass
obtained from these values is Mvac

q ¼ 325:53 MeV.

The assumption EPNJLðT ¼ �q ¼ 0Þ ¼ 0 leads to the

following final expression for the energy density,

EPNJLðT¼0Þ¼G�2
sq

2
þ �q

8�2

�
k4Fq


�
Mq

kFq

�
��4


�
Mq

�

��

��vac; (A9)

where �vac � Evac. Notice that the same condition also
ensures that PPNJLðT ¼ �q ¼ 0Þ ¼ 0. For the parameters

aforementioned one has that j�vacj1=4 ¼ 409:15 MeV. In
this work we have considered this value of �vac in the
Polyakov potentials, even for the DS10 parametrization.

APPENDIX B: PARAMETRIZATIONS OF
THE RMF MODELS

Some important saturation quantities of the RMF mod-
els used in our work are listed in the next table.
The binding energy is calculated from the energy density

at T ¼ 0,

ERMF ¼ G2
!�

2

2
þ ð�MÞ2

2G2
�

þ að�MÞ3
3

þ bð�MÞ4
4

þ �

2�2

Z kF

0
ðk2 þM�2Þ1=2dk; (B1)

by B0 ¼ ERMF=��M at � ¼ �0. The incompressibility,
K ¼ 9 @P

@� , reads

KRMF ¼ 9G2
!�þ 3k2F

E�
F

� 9M�2�
E�2
F ½ 1

G2
�
þ 2a�Mþ 3bð�MÞ2 þ 3ð�s

M� � �
E�
F
Þ� ;

(B2)

with E�
F ¼ ðk2F þM�2Þ1=2.

TABLE II. Saturation properties of the RMF models.

Model �0 (fm�3) B0 (MeV) m� K (MeV)

Walecka (WAL) 0.150 �15:75 0.54 554.38

NLB 0.148 �15:75 0.61 420.00

NL2 0.146 �17:03 0.67 399.20

NLSH 0.146 �16:35 0.60 355.36

NLB1 0.162 �15:74 0.62 280.00

NL3 0.148 �16:30 0.60 271.76

NLB2 0.162 �15:73 0.56 245.10

NLC 0.148 �15:75 0.63 225.00

NL1 0.152 �16:42 0.57 211.70

NLZ2 0.151 �16:07 0.58 172.00
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