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We develop an analytic formalism that allows one to quantify the stability properties of X-type and

Y-type junctions in domain wall networks in two dimensions. A similar approach might be applicable to

more general defect systems involving junctions that appear in a range of physical situations, for example,

in the context of F- and D-type strings in string theory. We apply this formalism to a particular field theory,

Carter’s pentavac model, where the strength of the symmetry breaking is governed by the parameter j�j<
1. We find that for low values of the symmetry breaking parameter X-type junctions will be stable,

whereas for higher values an X-type junction will separate into two Y-type junctions. The critical angle

separating the two regimes is given by �c ¼ 293�
ffiffiffiffiffiffij�jp

and this is confirmed using simple numerical

experiments. We go on to simulate the pentavac model from random initial conditions, and we find that the

fraction of X-type junctions to Y-type junctions is higher for smaller �, although X-type junctions do not

appear to survive to late time. We also find that for small � the evolution of the number of domain walls

Ndw in Minkowski space does not follow the standard / t�1 scaling law with the deviation from the

standard lore being more pronounced as � is decreased. The presence of dissipation appears to restore the

t�1 lore.

DOI: 10.1103/PhysRevD.84.125032 PACS numbers: 11.27.+d

I. INTRODUCTION

Understanding the dynamics of junctions in networks of
topological defects is of great interest in a large variety of
physical systems. The relevance of junctions in cosmic
string networks has recently been motivated by develop-
ments in string theory where the interaction of F and
D strings [1] can be modeled by junctions between com-
posite ðp; qÞ superstrings [2–4]. They are also relevant in
condensed matter systems [5] and in building field theo-
retic models of dark energy [6–8]. These dark energy
models are postulated to be formed by a frozen network
of domain walls, but it has remained a challenge to build
models in which the freezing of the network is natural. The
differences between systems which favor Y-type and
X-type junctions have been highlighted, for example
[9–12], with the perception being that models with
X-type junctions are more likely to lead to frustration. In
addition it has been suggested to introduce a field coupled
to the domain wall forming field with an unbroken con-
tinuous Uð1Þ symmetry and hence a conserved Noether
charge [13,14] or a discrete topological charge in an
SUð5Þ � Z2 theory [15]. It has been shown that both
such models can possibly lead to a frozen network.

In this paper we aim to develop an understanding of the
stability properties of X-type junctions in the pentavac field

theory that was first proposed by Carter [16,17]. The
Lagrangian is that for two scalar fields � ¼ j�je�, � ¼
j�jec which is invariant under global Uð1Þ �Uð1Þ trans-
formations except for the symmetry breaking term in the
potential

Vbreak ¼ �½cosð2�þ c Þ þ cosð2c ��Þ�: (1.1)

Carter showed that this model prefers X-type over Y-type
junctions in the limit � ! 0; in this work wewill consider a
range of values of � � 0.
In recent work Avelino et al. [18] studied this model and

made the claim that, although X-type junctions do form,
their effect is not sufficient to prevent the relaxation of the
system into a scaling regime where the number of domain
walls, NdwðtÞ, scales like t�1. Moreover, they suggest that
the X-type junctions which are seen are as a result of the
algorithm [19] they employ to model the expansion of the
Universe. However their simulations probe a limited range,
taking 0:05 � � � 0:2.
We will present a perturbative calculation of the energy

associated with domains walls in this model which we use
to determine the stability of X-type junctions with particu-
lar intersection angle�. This allows us to determine�c, the
angle above which the X-type junction is stable and below
which it splits into two Y-type junctions, as a function of �.
We check this result against that found in numerical simu-
lations of the full field theory and find excellent quantita-
tive agreement. This result suggests that, for sufficiently
low �, X-type junctions will be stable in all but the most
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extreme circumstances, for example, when junctions which
have very small � are generated by the dynamics. We
investigate this using simulations starting with random
initial conditions.

The structure of this paper is as follows. We explain
what junctions are and present the general model we use to
investigate junction stability in Sec. II A. In Sec. II B we
present our perturbative analytical method we use to under-
stand the stability of an X-type junction against decay into
two Y-type junctions. We present Carter’s pentavac model
in Sec. III, and simulate X-type junctions within the model.
We present results from numerical simulations of Carter’s
pentavac model from random initial conditions in Sec. IV
and some concluding remarks in Sec. V.

II. BASIC PICTURE

A. Walls and junctions

When a field theory has multiple disconnected vacua,
the interpolation of the field between spatially adjacent
vacuum states is a domain wall (see, for example, [20]).
If more than two vacuum states meet at a point in space the
intersection of the set of domain walls produces junctions.
Four vacua cycled around a point produce X-type junc-
tions, and three vauca produce Y-type junctions. See Fig. 1
for a schematic representation of X-type and Y-type junc-
tions. The tension of the walls is given by the ‘‘distance’’
(calculated via nontrivial integration) between points in the
field configuration space.

An X-type junction can decay into two Y-type junctions
if the energy of the configuration is reduced, as depicted in
Fig. 1(b). As the X-type junction splits apart a high tension
wall TII is created, with all other walls being low tension
TI. One can think of an X-type junction as being two
Y-type junctions ‘‘glued’’ together and separated by a
high tension wall. Hence we can investigate their stability

by considering whether two Y-type junctions, separated by
a high tension wall, are in equilibrium. By simple inspec-
tion of the middle panel of Fig. 1(b) and resolving forces,
X-type junctions are stable if

TII > 2 cosð12�ÞTI: (2.1)

If this condition is satisfied, the horizontal high tension
wall is strong enough to overcome repulsion of the two low
tension walls, and the X-type junction retains its form.
There will be a critical angle�c, dependent upon the model
parameter, above which X-type junctions will be stable and
below which there will be separation into two Y-type
junctions.

B. General formalism

We will consider a static domain wall configuration,
where the field � (say) interpolates from �ðx ¼ þ1Þ ¼
A to �ðx ¼ �1Þ ¼ B, giving rise to a domain wall be-
tween the vacua A and B. Integrating the energy density of
the relevant field theory over the domain wall (between
x ¼ �1) gives the tension of the wall separating A and B.
An alternative method of finding the tension is to integrate
through the field manifold itself, rather than through the
spacetime manifold. We will show how to convert between
these two approaches. In Fig. 2 we schematically depict a
domain wall in the spacetime manifold with coordinates
fxig and field manifold with coordinates f�ig.
Integrating the energy density E of a one-dimensional

static manifold with Cartesian coordinate x 2 ð�1;þ1Þ,
having Riemannian kinetic metric Gij, gives the tension

T ¼ E ¼
Z 1

�1
dxE ¼

Z
dx

�
1

2
Gij

d’i

dx

d’j

dx
þ V

�
; (2.2)

where the f’ig are field coordinates and V is a potential
function which has zero value at its minimum, Vmin ¼ 0.
Introducing an affine parameter � in the field manifold,
one finds that the tension can be written as

T ¼
Z

d�

�
1

2x0
Gij’

0i’0j þ Vx0
�
; (2.3)

where

x0 � dx

d�
; ’0 � d’

d�
: (2.4)

To eliminate the dependence of the tension on the spatial
coordinate x, we minimize the integrand with respect to x0
(i.e. setting �T=�x0 ¼ 0), giving

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gij’

0i’0j

2V

s
; (2.5)

which can be substituted into (2.3) to give

T ¼
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VGij’

0i’0j
q

: (2.6)

A B

C

A

B

C

D

FIG. 1. Schematics of Y-type and X-type junctions. In (a) we
show three vacua ABC cycled around a point to produce a Y-type
junction and four vacua ABCD to produce an X-type junction. In
(b) we give a schematic view of an X-type junction decay to two
Y-type junctions. The relative thickness of the lines denotes the
relative tensions of the corresponding domain wall: The thick
horizontal wall is a high tension wall TII and the thin lines are
low tension walls TI.
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This expression will form the starting point of our subse-
quent discussions. If the endpoints of integration are taken
to be different vacuum states, then T is the tension of the
domain wall between the vacua.

So far the computation of the tension has been per-
formed over some continuous manifold, such as the circle
S1 or torus S1 � S1, having continuous symmetry. The
vacuum manifold of a field theory such as the pentavac
model is found by constraining motion to some submani-
fold via a small symmetry breaking parameter %, say. We
now perturbatively expand the tension (2.6), by writing the
potential and metric in orders of %,

V ¼ %Vð1Þ þ %2Vð2Þ; Gij ¼ �ij þ %Gð1Þ
ij ; (2.7)

where �ij is the Kronecker-delta symbol and we used the

fact that Vmin ¼ 0. Substituting the expansions (2.7) into
(2.6), the tension can be written perturbatively as

T �
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2%Vð1Þ

q �
1þ %

2

�
Vð2Þ

Vð1Þ þGð1Þ
ij ’

0i’0j
�
þOð%2Þ

�
;

(2.8)

where we have used �ij’
0i’0j ¼ 1. We require Vð1Þ% > 0, a

necessary condition for this analytic method to work.

C. Specific form of the energy density

We now derive an expression that can be used to calcu-
late the tension of a domain wall in models with energy
density given by

E ¼ 1

2
½jr�j2 þ jr�j2� þ �

4
½ðj�j2 � 1Þ2 þ ðj�j2 � 1Þ2�

þ %j�j2j�j2Fð�; c Þ; (2.9)

where

� ¼ j�jei�; � ¼ j�jeic : (2.10)

We now perturb about the solution for the % ¼ 0 model
and integrate along the geodesic trajectories in the vacuum
manifold to give the tension. In particular we write

� ¼ ð1þ %�1Þei�; � ¼ ð1þ %�2Þeic :

Substituting this perturbation into the energy density (2.9)
while keeping terms up to Oð%2Þ gives

E ¼ 1
2½ðr�Þ2ð1þ 2%�1 þ %2�2

1Þ þ ðrc Þ2ð1þ 2%�2

þ %2�2
2Þ þ %2½ðr�1Þ2 þ ðr�2Þ2�� þ %Fð�; c Þ

þ %2½2ð�1 þ �2ÞFð�; c Þ þ �ð�2
1 þ �2

2Þ� þOð%3Þ:
(2.11)

This can be written as

E � 1

2
Gij

d’i

dx

d’j

dx
þ 1

2
Mij

d�i

dx

d�j

dx
þ V;

’i ¼ f�; c g; Mij ¼ %2�ij;

if one makes the identifications in terms of the expansion
(2.7)

FIG. 2. Schematic of a domain wall configuration. In (a) we show a configuration where there are regions of space occupying
different vacua, separated by a domain wall whose energy density is depicted by the dotted line. In (b) we show a field trajectory
between two different vacuum states, signifying the presence of a domain wall.
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Vð1Þ ¼ Fð�; c Þ;
Vð2Þ ¼ 2ð�1 þ �2ÞFð�; c Þ þ �ð�2

1 þ �2
2Þ;

Gð1Þ
ij ¼ 2diagð�1; �2Þ:

Then using (2.8) one finds

T ¼
Z

d�
ffiffiffiffiffiffiffiffiffiffi
2%F

p �
1þ %

�
�1ð1þ�02Þ þ �2ð1þ c 02Þ

þ �

2F
ð�2

1 þ �2
2Þ
�
þOð%2Þ

�
: (2.12)

The trajectories �i that extremize this functional are found
to be

�1 ¼ �F

�
ð1þ�02Þ; �2 ¼ �F

�
ð1þ c 02Þ;

and, using the condition �02 þ c 02 ¼ 1, (2.12) becomes

T ¼
Z

d�
ffiffiffiffiffiffiffiffiffiffi
2%F

p �
1� %

F

2�
ð4þ�04 þ c 04Þ þOð%2Þ

�
:

(2.13)

This can be written as

T ¼ U� %

�
W þOð%2Þ; (2.14)

where the zeroth and first order terms in the tension are
given by

U ¼
Z

d�
ffiffiffiffiffiffi
2%

p
F1=2; W ¼ A

Z
d�

ffiffiffiffiffiffi
2%

p
F3=2;

A � 1

2
ð4þ�04 þ c 04Þ: (2.15)

To finally obtain stability criteria, one must integrate these
expressions for a particular theory [i.e. choice of Fð�; c Þ],
over particular trajectories (such as high and low tension
walls). This is a task we leave for the next section, where
we continue with a specific example of a field theory.

III. SPECIFIC EXAMPLE: THE PENTAVACMODEL

In this section we will consider a specific field theory:
Carter’s pentavac model [16,17]. We will begin with a
discussion of the salient aspects of the pentavac model
and continue to give an understanding of the stability of
X-type and Y-type junctions. Specifically we will use the
perturbative expression for the tension (2.15) to obtain an
analytic dependence of the critical internal intersection
angle �c, as a function of �.

A. Pentavac potential

Carter’s pentavac model [16,17] has two scalar fields
�ðx�Þ, �ðx�Þ 2 C whose dynamics are described the
Lagrangian density

L ¼ 1
2@��@� ��þ 1

2@��@� ��� Vð�;�Þ; (3.1)

interacting in the potential

V ¼ �

4
ðj�j2 � �2Þ2 þ �

4
ðj�j2 � �2Þ2

þ %j�j2j�j2ðcos	þ cos
þ V0Þ; (3.2)

where

� ¼ j�jei�; � ¼ j�jeic ;
	 � 2�þ c ; 
 � 2c ��;

(3.3)

and V0 is chosen so that Vmin ¼ 0, to be in accord with the
requirements of the analytic calculation we will perform.
One can easily show that by rescaling the fields according
to � � ��, � � �� and the space-time coordinates

x � x=
ffiffiffiffi
�

p
�, there is only one meaningful combination

of model parameters, namely � � %=�. Hence, without
loss of generality we will set the model parameters � ¼
� ¼ 1 throughout; thus, the limit � ! 0 corresponds to
%=� ! 0 which can be achieved by � ! 1. With the
rescaling the potential (3.2) becomes

V ¼ 1
4ðj�j2 � 1Þ2 þ 1

4ðj�j2 � 1Þ2
þ �j�j2j�j2ðcos	þ cos
þ V0Þ: (3.4)

So that the � < 0 sector can be understood on the same
analytical footing as the � > 0 calculation presented in the
previous section, we must be able to identify a transforma-
tion that relates the � > 0 and � < 0 sectors. For the
pentavac model let us write

Jð	; 
; �; V0Þ � �ðcos	þ cos
þ V0Þ; (3.5)

then, the transformation (and invariance) is

Jð	; 
; �; V0Þ � ~Jð	; 
; �; V0Þ
¼ Jð	þ �;
þ �;��;�V0Þ
� Jð	; 
; �; V0Þ: (3.6)

If � ¼ 0 the theory has continuous Uð1Þ �Uð1Þ sym-
metry, meaning that the vacuum manifold is a torus, S1 �
S1. When � � 0 the continuous symmetry is broken and
there are discrete minima on the torus. One can easily find
that in the vacuum the field moduli are

j�j2 ¼ j�j2 ¼ 1

1� 4j�j : (3.7)

This specific choice of symmetry breaking potential is
periodic, and therefore it is natural to look for transforma-
tions of the phases ð�; c Þ that leave the Lagrangian in-
variant. Transformations of the form,

� � ~� ¼ �þ ��; c � ~c ¼ c þ �c ; (3.8)

leave the symmetry breaking potential unchanged if the
argument of the cosine terms in the potential increment by
an integer multiple of 2�, i.e. if
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2�þ c ! 2�þ c þ 2�n;

2c �� ! 2c ��þ 2�m;
(3.9)

where n, m 2 Z and hence

�� ¼ 2�

5
ð2n�mÞ; �c ¼ 2�

5
ð2mþ nÞ: (3.10)

Therefore, we can introduce two winding numbers ðn;mÞ
which can be used to construct transformations of the fields
which leave the Lagrangian density invariant, and there-
fore construct the phase combinations that constitute the
vacuum manifold. In the � < 0 sector the five vacua of the
theory are given in terms of the phases ð�; c Þ by
ð0; 0Þ; A: ð�2�=5; 4�=5Þ; B: ð4�=5; 2�=5Þ;
C: ð2�=5;�4�=5Þ; D: ð�4�=5;�2�=5Þ;

and when � > 0, by the phase combinations

ð�;�Þ; A: ð�3�=5; �=5Þ B: ð�=5; 3�=5Þ;
C: ð3�=5;��=5Þ; D: ð��=5;�3�=5Þ:
We present an illustration of the vacuum manifold in

Fig. 3 in the � > 0 sector (the � < 0 manifold has the
same structure, but with the maxima and minima reversed).
The plot we present is in the space of field phases, ð�; c Þ,
where the figure is periodic in both directions (i.e. toroidal).
Marked onto the figure are two energetically different tra-
jectories between the vacua B and C, i.e. the two different

types of domain wall: high tension TII and low tension TI.
Two such trajectories exist between all pairs of vacua.
In the limit � ! 0 the vacuum j�j ¼ j�j ! 1, which

has the interesting consequence of decoupling the field
phases; that is, taking j�j ¼ j�j ¼ 1 the Lagrangian den-
sity can be written to leading order in � as

L ¼ 1

10
ð1� 4�Þ½@�	@�	þ @�
@

�
� � 2�ðcos2ð	=2Þ
þ cos2ð
=2Þ � 1Þ þOð�2Þ: (3.11)

This describes two noninteracting sine-Gordon kinks and
provides us with a very useful result: in the asymptotic
� ! 0 limit an X-type junction is absolutely stable.

B. Analytic calculation of �cð�Þ
If we define f ¼ J=� then for � > 0, fð�; c Þ ¼ cos	þ

cos
þ 2 [n.b. for � < 0, fð�; c Þ ¼ cos	þ cos
� 2]
and we used this to compute (2.15). Now we pick typical
high and low tension trajectories and perform the necessary
steps to compute �cð�Þ:
(i) Low tension TI: The low tension trajectory has 
 ¼

�, so that fI ¼ 2cos2ð	=2Þ and d� ¼ 1ffiffi
5

p d	. The

variation of the field phases�, c along a low tension
trajectory is found by inspecting the vacuum mani-
fold and deducing the equation of a line linking
vacua. One finds �02 ¼ 1=5, c 02 ¼ 4=5.

(ii) High tension TII: The high tension has 
 ¼ 	, so

that fII ¼ 4cos2ð	=2Þ and d� ¼ 1ffiffi
5

p
ffiffiffi
2

p
d	. The

variation of the field phases along a high tension
trajectory is found to be �02 ¼ 1=10, c 02 ¼ 9=10.

From these expressions one can find that the zeroth order
tensions satisfy

UII ¼ 2UI: (3.12)

Using these ingredients in (2.15), one can easily compute

WII

UII

¼ 1928

300
;

WI

UI

¼ 468

150
: (3.13)

The stability of an X-type junction is assured if the
internal intersection angle � satisfies (2.1). We take �c to
be the intersection angle at equality. In the notation of
(2.15), we can expand to first order to find

TII

2TI

¼ cos

�
1

2
�c

�
¼ UII

2UI

�
1� �

�
WII

UII

�WI

UI

�
þOð�2Þ

�
:

Using our computed values (3.13), this becomes

cos

�
1

2
�c

�
¼ 1� �

248

75
þOð�2Þ: (3.14)

And expanding cosð12�cÞ � 1� 1
8�

2
c , one finds

�c � 293�
ffiffiffi
�

p
; (3.15)

which holds for 0< � 	 1. In fact, we see that by the
transformation/invariance relationship (3.6) we can extend

FIG. 3 (color online). The vacuum manifold of the pentavac
model in the � > 0 sector. We have marked on two wall trajec-
tories between the vacua B and C: the low tension interpolation,
TI, and high tension, TII (remembering that this grid has the
topology of a torus). The minima of the theory correspond to the
blue (dark) regions, and the maxima to the orange (light) regions.
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(3.15) to include � < 0, and write �c � 293�
ffiffiffiffiffiffij�jp

. Hence,
we see that the expression predicts that systems with low �
are more stable to acute perturbations than those systems
with high �.

C. Numerical simulation of X-type junctions

In order to check the veracity of the analytic calculation,
we have performed a suite of simulations evolving the
equations of motion. We will investigate the stability of
X-type junctions by constructing an X-type junction with a
particular � and investigate the conditions under which it
decays, if indeed it does decay.

In our numerical investigations we discretize space to
fourth order, and time to second order—evolution is per-
formed with a leapfrog algorithm, on a grid ofNx � Ny grid

points. We use space step size �x ¼ 0:5 and time step size
�t ¼ 0:1. To smooth out initial unphysical discontinuities
we damp the fields for the first 200 time steps (i.e. t < 20)
and then remove damping, allowing the system to freely
evolve. All simulations use periodic boundary conditions.
We will display images of the field, where each color corre-
sponds to the vacua closest to the field at a given location.

The initial conditions for our numerical simulations have
X-type junctions with a ‘‘tunable’’ initial internal angle� by
choosing � ¼ 2tan�1ðNy=NxÞ as shown in Fig. 4.
To make the model numerically tractable we cast each

complex field as two real fields,� ¼ �1 þ i�2,� ¼ �3þ
i�4, and then one finds that the potential can be written as

Vð�iÞ¼ 1
4ð�2

1þ�2
2�1Þ2þ 1

4ð�2
3þ�2

4�1Þ2

þ�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3þ�2
4

q
ð�3ð�2

1��2
2Þ�2�1�2�4Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1þ�2
2

q
ð�1ð�2

3��2
4Þþ2�2�3�4Þ�: (3.16)

In Fig. 5 we present the evolution of the field for an
initial configuration with an X-type junction having an
initial internal angle � ¼ 53� (achieved by setting the
number of horizontal and vertical grid points to Nx ¼
256, Ny ¼ 128, respectively). The case of � ¼ 0:1 is in

the top row. The X-type junction clearly breaks apart into
two Y-type junctions. However, for the � ¼ 0:03 case
presented in the bottom row, the X-type junction retains
its form. Clearly �c ¼ 53� for some value of � between
� ¼ 0:1 and � ¼ 0:03.
A plot of the distribution of the phases ð�; c Þ at a given

time will show where the points are located on the vacuum
manifold, and will highlight any fundamental differences
between systems whose X-type junctions have and have
not decayed. Referring back to the vacuum manifold in
Fig. 3, we note that if any phases are found across the
origin then high tension walls exist. Conversely, if this is
not the case no high tension walls exist between opposing
vacua and adjacent vacua must wrap the torus to produce
high tension walls. We present the phases for � ¼ 0:1 and
� ¼ 0:01 in Fig. 6, for an initial X-type junction with � ¼
53�. One can clearly observe that there exists high tension
walls in the � ¼ 0:01 case, and only low tension walls in
the � ¼ 0:1 case. These images represent the final state of
the system.
The potential energy density isosurfaces for the case of

� ¼ 0:1 are presented in Fig. 7. The value of the potential
energy density is denoted by the relative brightness at a

FIG. 4 (color online). The initial field configuration for setting
up the X-type junction under investigation. There are 8 equiva-
lent X-type junctions in this configuration, with the figure being
periodic in both directions.

FIG. 5 (color online). Evolution of the field in the pentavac model, at times t ¼ 0, 10, 20, and 30 (left to right) for � ¼ 0:1, 0.03 (top
to bottom) and initial internal angle � ¼ 53�. Each color represents one of the vacua in the theory. For � ¼ 0:1 the X-type junction
with � ¼ 53� is not the lowest energy state and it breaks apart into two Y-type junctions. In the � ¼ 0:03 case the X-type junction is
the energetically preferred state and the X-type junction retains its form.
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given location. We see that in the second image a high
tension wall has formed, which subsequently decays to a
low tension wall. This is compatible with the schematic
decay process depicted in Fig. 1(b). At first sight it appears
that there is some sort of discontinuous jump as an X-type
decays into a Y-type junction: The field trajectories tran-
sition from wrapping around the toroidal vacuum to not
wrapping. This transition is energetically driven and is
therefore not a cause for concern.

We have developed an automated algorithm to compute
the critical angle, �c, at which an X-type junction becomes
unstable as a function of �. We first compute the length and
width of the wall for the junction at the center of the grid, L
and � respectively. If the junction is of X type then the
walls will be of comparable length, L=� � 1; however, if
the junction is of Y type then the horizontal wall will be
much longer than the vertical wall, L=� 
 1. We compute
the value of L=� after simulation time t ¼ �, for initial
conditions with an internal intersection angle �. If L=� <

 , the junction is deemed to be of X type and the vertical
size of the box is reduced to lower �. This process
continued until a Y-type junction with L=� � 
 is found.
We take � ¼ 30 for Nx ¼ 256, and 
 ¼ 2:5 whose value
was determined by convergence tests.

We present numerical estimates of �c in Fig. 8 for a
range of positive and negative values of the symmetry
breaking parameter. Our algorithm suffers from resolution

effects as � ! 0 since the domain wall width widens, and
therefore we only show results for j�j � 0:02. The results
show that (1) �c is largely independent of the sign of �,
something which is understood by the structure of the
vacuum manifold (the manifolds for � > 0 and � < 0

FIG. 6. The phases of the fields, ð�; c Þ, evaluated at each point in space when t ¼ 30 following relaxation of a configuration having
an initial X-type junction with � ¼ 53� for two different values of the symmetry breaking parameter �. The case of � ¼ 0:01 has
retained its form as an X-type junction, while the case of � ¼ 0:1 has relaxed into a Y-type junction configuration. One can clearly see
that one crosses the origin in the � ¼ 0:01 case, which corresponds to high tension walls, whereas this does not take place in the
� ¼ 0:1 case with all walls being low tension.

FIG. 7. Images of the potential energy density at times t ¼ 0, 5, 10, and 15 (left to right) for a decaying � ¼ 0:1 X-type junction. The
value of the potential energy at a given location is denoted by the relative brightness of the coloring. One observes a high tension wall
initially being generated, but this swiftly decays into a low tension wall.

FIG. 8. The values of �c (in degrees) deduced numerically for
various symmetry breaking parameters � in the pentavac model.
The solid line is the best fit to the data, whereas the dotted line is
that predicted by the theory presented in the first section.
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have identical structure); (2) the numerical results have the
same dependence on � as the analytical prediction, how-
ever, their values are �10% lower which can be under-
stood as a rather trivial numerical resolution effect—the
calculation predicts the value of �c for the moment an
X-type junction breaks apart by an infinitesimal distance
whereas the numerical calculation has to wait until L=� ¼
2:5. Unfortunately we are unable to reduce 
 any more due
to numerical resolution effects.

We note that it is not possible within our framework to
perform the reverse process. It is not energetically possible
to start off with two Y-type junctions and for them to
contract into a high tension wall.

IV. SCALING DYNAMICS FROM RANDOM
INITIAL CONDITIONS

In the previous section we have shown that both X-type
and Y-type junctions can be stable, dependent on the
intersection angle � and �. We now develop this further

by testing how the dynamics of random domain wall net-
works are affected by varying the symmetry breaking
parameter �. From our investigation of idealized X-type
junctions in the previous section we have seen that a lower
� implies that an X-type junction is stable for a wider range
of intersection angles, for example, if � ¼ 0:01 then X-type
junctions will be stable for �> 30�. Performing simula-
tions of a random network will allow us to put a measure on
the probability distribution of � in realistic situations.
We have evolved the equations of motion in Minkowski

space with random initial domain occupation on lattices
with P ¼ 4096 grid points in each direction, and space step
size �x ¼ 0:5 and an initial correlation length of one grid
square. We apply a damping term of magnitude 0.5 for the
first 200 time steps to smooth out unphysical discontinu-
ities that result from our initial conditions. We present
images of the resulting field configurations as a function
of time in Figs. 9 and 10 for various values of �. The
‘‘mottled’’ appearance of the � � 0:01 simulations is due

FIG. 9 (color online). Evolution of fields in the pentavac model, for � ¼ 0:1, 0.05, 0.03, and 0.01 (top to bottom) from random initial
conditions on a P ¼ 4096 square grid. Images are at t ¼ 80, 160, 320, 640, and 1280 (left to right) and the colors correspond to the
vacua of the pentavac theory. Each color represents one of the vacua in the theory and is assigned by finding which of the vacua the
field is closest to at each location.
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to the rather shallow potential wells defining the domains
as � ! 0; however domains still clearly form. By carefully
inspecting the field images we have been able to find that
there is a higher fraction of X-type junctions to Y-type
junctions in simulations with lower �; however, the X-type
junctions that are present at early time do not seem to
survive to late time.

To understand how the wall network evolves we calcu-
late the number of domain walls at every time step and
build up a plot of the evolution of the number of domain
walls NdwðtÞ and compute the scaling exponents � defined
by Ndw / t�. A domain wall is numerically defined when
the vacuum that the field occupies at a given lattice site is
different from the vacuum occupied by any of its neighbor-
ing lattice sites. The standard lore is � ¼ �1 [21–25] in
which case the network collapses as fast as causality
allows. Deviation from this value signals the existence of
some force resisting the collapse of the wall network and
the possible formation of a lattice.

We plot the evolution of the number of domain walls for
the systems in Figs. 9 and 10 in Fig. 11(a). For � � 0:03 the

number of domain walls follows the standard t�1 power
law. However there is substantial deviation for � � 0:01.
Plotting the evolution of the scaling exponents �ðtÞ in
Fig. 11(b) confirms this.
Onemight be concerned that this effect is due to the finite

resolution and dynamic range of the simulations particularly

since the width of the domain wall is expected to be �w /
��ð1=2Þ. To test our results we have performed a number of
convergence tests. Simulationswith various space step sizes,
correlation lengths, and a variety of different physical sizes
of grids were used. A correlation length � is imposed by
making the system have blocks of �� � grid points initially
in the same vacuum. We will focus on the case of � ¼ 0:01
since it is close to the parameter range where the nonstan-
dard behavior starts to become noticeable. First we evolved
withP ¼ 512, 1024, 2048with correlation lengths� ¼ 1, 2,
4 and space step sizes �x ¼ 0:5, 0.25, 0.125 respectively;
these fix the physical size of the box while varying its
resolution. Secondly we change the physical size but retain
the number of grid points. To ensure that the Courant con-
dition is satisfied we changed the time step size for systems

FIG. 10 (color online). Evolution of the fields in the pentavac model, for systems with � ¼ 0:01, 0.008, 0.005, and 0.001 (top to
bottom) at times t ¼ 80, 160, 320, 640, and 1280 (left to right), on a grid with P ¼ 4096 lattice sites and space step size �x ¼ 1:0.
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with�x ¼ 0:125 to�t ¼ 0:05. In Fig. 12 we show a plot of
the evolution of the number of domain walls for these test
systems. All are consistent with the same deviation from
� ¼ �1 shown in Fig. 9, and all have qualitatively the same
scaling dynamics.

A separate concern is that the effect is due to the energy
that was originally localized on the wall network as walls
collapse. As previously pointed out the energy required to
create a wall is very low for small �. As a wall network
collapses energy becomes released from the walls into
radiation which may be sufficient to create new ‘‘second-
ary’’ walls. As the original wall network collapses the
amount of radiation increases with a consequent increase
in the rate of secondary wall production. Such a mecha-
nism could account for the deviation from the standard
scaling behavior we observed.

If this ‘‘background radiation’’ can be removed by some
means then the scaling dynamics may revert to the standard
t�1 law. This has been tested by evolving a modified set of
field equations, where radiation is removed. This can be
done by including a constant damping term (but very
small) or by using a modified version of the algorithm by

Press, Ryden, and Spergel (PRS), where the damping term
is time dependant, which has been suggested as a way of
modeling an expanding universe [18,19]. These equations
of motion are of the form

€�þD _��r2�þ dV

d�
¼ 0: (4.1)

In each of the modified evolution algorithms the coefficient
D of the damping term takes on the following form:

D PRS ¼ 3

t
; Dconstant ¼

�
D0 t < 20;
10�3D0 t > 20:

(4.2)

We take D0 ¼ 0:5. The Euler-Lagrange equations in
Minkowski spacetime have D ¼ 0:5 for t < 20 and D ¼
0 thereafter. In Fig. 13 we compare the evolution of the
number of domain walls in these ‘‘constant damping’’ and
PRS algorithms (as well as with the standard Euler-
Lagrange equations in Minkowski spacetime). It is clear
that in the � ¼ 0:01 simulation the evolution is substan-
tially different in these damped algorithms to the evolution
in the Euler-Lagrange equations in Minkowski spacetime.

FIG. 11 (color online). Evolution of the number of domain walls Ndw and scaling exponents � from random initial conditions, in the
pentavac model, for various symmetry breaking parameters �, where the grid size is P ¼ 4096. In the left-hand panels, �x ¼ 0:5 is
used, with scaling exponents being computed in bins of 100 units of time. In the right-hand panels, �x ¼ 1:0 is used and scaling
exponents are computed in time bins of 200. One can easily observe that the scaling dynamic NdwðtÞ is different in the cases � > 0:01
and � � 0:01. The exponent, �ðtÞ, of the power law that NdwðtÞ satisfies clearly changes as � changes, with � ! 0 as � ! 0.
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Because the inclusion of a dissipative term restores the
t�1 scaling law (at least for a substantial period of time) it
is no longer obvious which evolution algorithm corre-
sponds to results relevant in cosmology. This issue may
be resolved by an extensive systematic study of the results
of the equations of motion for a range of models with as
large a dynamic range as feasible.

V. CONCLUSIONS

In this paper we have furthered the understanding of the
stability of X-type and Y-type junctions. We have calcu-
lated that if an X-type junction has an internal intersection
angle �, then if �> �c the X-type junction is stable,
whereas if �< �c the X-type junction decays into
two Y-type junctions. In Carter’s pentavac model the de-
pendence on the critical intersection angle �c upon the

models symmetry breaking parameter � has been derived
to be

�c ¼ 293�
ffiffiffiffiffiffi
j�j

p
: (5.1)

The validity of this calculation has been verified by nu-
merical experimentation and is found to hold regardless of
the sign of �.
A consequence of this relationship is that if � is relatively

large (for example, � ¼ 0:05) the X-type junctions cannot
withstand much ‘‘squashing’’ before they break apart; they
can withstand squashing only to an angle of � � 65�.
Therefore, X-type junctions cannot be expected to survive
in physically relevant systems. This is what was observed
by Avelino et al. [18] but they expanded the statement to
include all systems with X-type junctions. However, if � is
taken to be small (for example � ¼ 0:01) X-type junctions
are stable for intersection angles above � � 30� and

FIG. 12 (color online). Evolution of the number of domain walls with � ¼ 0:01, with varying resolution: (a) P ¼ 512, 1024, and
2048 with varying space step size �x ¼ 0:5, 0.25, and 0.125 and initial correlation lengths � ¼ 1, 2, and 4 respectively; (b) P ¼ 2048
and varied �x, keeping � ¼ 1.

FIG. 13 (color online). Evolution of the number of domain walls for three ‘‘different’’ evolution algorithms with � ¼ 0:1, 0.01; we
use �x ¼ 0:5, �t ¼ 0:1, P ¼ 4096 and random initial conditions. The line denoted ‘‘E-L M’’ is the evolution of the standard Euler-
Lagrange equations in Minkowski spacetime. The line denoted ‘‘constant’’ has a constant damping. The line denoted ‘‘PRS’’ uses the
PRS algorithm in the radiation era. The implementation of these algorithms is given in (4.2).
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therefore could be expected to survive in physically relevant
systems. The ability of an X-type junction to retain its form
under much more extreme intersections is increased as � is
decreased.

While X-type junctions become more frequent in simu-
lations from an initially random configuration of vacua
when � is small, the X-type junctions do not survive to
late time. For systems with � � 0:01 the scaling dynamics
of the resulting network becomes modified compared to
that of a system with � > 0:01. The amount by which the

evolution is modified was clearly shown to depend on the
value of � and we believe that this effect is due to back-
ground radiation being sufficient to create walls.
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