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Nonadiabatic quantum Vlasov equation for Schwinger pair production
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Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time
evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This
equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or
as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which
allows us to construct an exact solution using the well-known one-soliton solution to that equation. The
case of timelike delta function pulse fields is also briefly considered.
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I. INTRODUCTION

Vacuum pair production by a strong electric field, pre-
dicted by Schwinger in 1951 [1], may now finally be seen
due to the construction of ultrastrong laser systems [2].
However, the corresponding fields are very different from
the few special configurations for which an exact calcula-
tion of the pair creation rate is possible. Thus, recently
there has been increased interest in the development of
approximation schemes, such as semiclassical methods
[3-5] and Monte Carlo simulations [6].

A case that is relatively amenable to an exact treatment
is the one of a purely time-dependent electric field. Here
the spatial momentum is a good quantum number, which
allows one to reduce the time evolution of the system to a
collection of mode equations labeled by the fixed momen-
tum k. The pair-production calculation can then be further
reduced to a one-dimensional scattering problem, suitable
for standard numerical or WKB methods [7-9].
Alternatively, the mode equation can be transformed to
the quantum Vlasov equation, an integral equation for
N (1), the total expected number of created pairs in the
mode k [10-14] (see Ref. [15] for a comparison of the two
approaches).

In this paper, we reconsider the time evolution of the
QED Hamiltonian in a time-varying field using Lewis-
Riesenfeld invariant theory [16] and a suitable operator
basis forming a spectrum generating algebra SU(1, 1). We
derive an exact nonadiabatic master equation for the time
evolution of the Schwinger pair-production rate. This
equation can be written equivalently as a first-order matrix
equation, as a quantum Vlasov equation, or as a third-order
differential equation. For a specific solution ansatz this
third-order equation relates to the Korteweg-de Vries
(KdV) equation, which allows us to construct an exact
solution using the well-known one-soliton solution to that
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equation. We also consider the case of an alternating time-
like delta function pulse field, a type of field which is of
relevance for a recent proposal to apply Ramsey interfer-
ometry to the Schwinger effect [17].

I1. DERIVATION OF THE MASTER EQUATION

We will give the derivation of the master equation for the
scalar QED case; the derivation for the spinor QED case is
similar, and will be included in a forthcoming, more de-
tailed publication [18]. A scalar particle with charge g and
mass m in a homogeneous time-dependent electric field
with the gauge potential A;|(¢) has the Fourier decomposed
Hamiltonian of time-dependent oscillators (in units of 7 =
c=1,

3
A@) = f (;ﬂ'; (7l 7 + wl(Db) i) (1)

where
w?() = (ky — qAy(1)* + kK + m% ()

We will quantize the theory in the Schrodinger picture,
where the time-dependent quantum state obeys the func-
tional Schrodinger equation

oW (r)

e H()Y (7). (3)

i

In this picture the field operators ¢(x) and 7(x) = qSJr are
time independent with the momentum space commutation
relations

[bi 7] =[], 7] = iQ7) 84, 4)

but the corresponding creation and annihilation operators
with the equal-time commutators
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[ax(0), af (0] =[b(1), BT, (0] = @764 (5)
are generally time dependent [19-22],

b = (D e(t) + bT (D} (), ©)
= al (D) + b (D2).

Here ¢, is an auxiliary field satisfying the classical mode
equation

¢ () + wi(e(r) =0, (7
as well as the Wronskian constraint
Wrlow @p] = o)1) — e @i(t) =i (8)

Equation (7) and the Wronskian determine ¢(f) up to a
phase factor, which we fix by requiring that ¢,(¢) be real at
the initial time #,. Thus if ¢ is finite, then for ¢ = 7, one has

o~ 10 0)1—15)

o) = —— ©))
V2w, (0)
(for t; = —oo this should hold in the asymptotic sense). We

note that the operators a,(r), b_,(z) and their Hermitian
conjugates are Lewis-Riesenfeld invariants; that is, they
fulfill the Liouville-von Neumann equation

Al (1)
ot

as can be easily checked.
The ground state |0y, 7) for the kth mode is annihilated
by both d(r) and b_,(z), and the nth excited state is

_[af @bt (01
nk!

+ [1i(0, Hy (D] = 0, (10)

i

|nk’ t> : |Ok’ t> (1 1)

Thus the total time-dependent vacuum state is given by

10, ) = [0 2. (12)
k

In the free theory, the time-dependent vacuum state re-
duces to the Minkowski vacuum, as expected. The scalar
product for the quantized fields and their Hermitian con-
jugates allows us to find the Bogoliubov transformation
between the past time #, and the present time #, which is
given by

ay(ty) = pi(to, ag(t) + vi(to, Z)Eik(f), (13)
Eik(to) = (o, f)buik(l‘) + vi(t, )a (1),
where
o, ) = Wil g}(1), €,(0)) i

vi(to, 1) = iWt[ @i (to), @i (1)].

The Bogoliubov coefficients satisfy the relation for bosons
[ i (to, 1)1? — |wi(ty, £)|> = 1. Our main object of interest,
the mean number of pairs present at time ¢ assuming that
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this number was n;, at the initial time f;, can now be read
off from

(n, tI&Z(to)&k(to)Ink, 1y = |v(to, DI*2ny + 1) + ny.
(15)

Thus
N (1) == |vy(tg, DI*2ny + 1) (16)

is the number of pairs spontaneously produced from the
initial vacuum by the electric field.

To obtain a time evolution equation for this quantity, we
observe that the time-dependent Hamiltonian (1) has
the spectrum generating algebra SU(1, 1). Choosing the
Hermitian basis

ﬁ’lg))(fo) = #[&2 (to)ay (1) + l;*k(tO)Bik(tO)]’
M 00) = (2717- sLa(i)b_y(1o) + af (1)bT (1)), (I7)
B 00) = s lintt0b- o) = L1 (o),

this algebra becomes

[MO(1y), M (1)] = +2i M7 (1),
[M (1), M (16)] = =20 ML (1),

(18)

The correlators are the expectation values of Eq. (17) with
respect to |ny, 1), that is, of the number of produced pairs
and of pair creation and annihilation:

14 2N (1) = Qly(t, 1)I> + D20y + 1),

M) = (wilte, Dvelto, 1) + pilty, DVi(t0, 1))
X (Zl’lk + 1),

fMi_)(l‘) = i(ui(t0, Dvy(t, 1) — pi(to, )vi(to, 1))
X 2n; + 1). (19)

Note that all three correlators are real and proportional to
the quantum number 2n; + 1, and thus proportional to the
ones defined by the vacuum state.

Using Eq. (14) and the mode equation (7), we find the
first-order master equation

. 142N, o 9 o
K e I S
1+2N,
x| MmO, (20)
M
where
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(1) £ wilty)

Qiﬁ)(t) - wy(to)

: 2D
with the initial conditions N, = ng, j\/lf) =0atr=t
(where t, may be —o0). An immediate consequence of the
master equation (20) is the conservation of the quantity

(142N )2 = (M2 = (M) =1+ 2% (22)

This relates to the conservation of charge, as well as to the
invariance of the Casimir operator for the SU(1, 1) algebra
[18]. The spinor QED case can be treated analogously [18].
As far as the master formula (20) is concerned, the general-
ization to the fermionic case requires only changing
1+ 2N (1) to 1 — 2N (1), and replacing w?(z) by

w%(l) = (k“ — qA||(l))2 + in(l) + ki + m2. (23)

III. ALTERNATIVE FORMULATIONS OF THE
MASTER EQUATION

The first-order matrix equation (20) can be equivalently
rewritten both as a single integral equation and as a third-
order linear differential equation. Since we work with a
fixed mode k, in this section we will generally suppress the
index k and abbreviate wg := w(f,). We will now also set
n, = 0.

First, we combine the equations for M) to a second-
order inhomogeneous equation for M (),

2ME QD amO)
dr? Q) dr

=)
= QH)%[gH) (1+ 23\[)].

The homogeneous part of Eq. (24) has the exact solutions

+ Q)2 M)

(24)

- [t 1O (+) (4
+eiljr0dl‘ﬂ ()

M) =C* (25)

with integration constants C*. Using those in the usual
way to construct the solution of the inhomogeneous equa-
tion with the appropriate initial conditions, we obtain the
quantum Vlasov equation as the integral equation

%(1 + 2N (1) = Q) f; dt’[Q(*)(t’)(l + 2N (1))

X cos([t dt”QH)(t”))].
t/

Second, inspection of the master equation (20) shows
that its general solution can be parametrized by a function
f(¢) fulfilling the integral equation
Q(*)([)

wo

(26)

o) = —2 [ A @) + X)) @T)

with the initial condition f(f) = f(t,) = 0. Then, the
correlators are given by
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142N =1+ w, [ "l (),
fo
M) = w,f(r), (28)
MD) = —w, [; dt' f(i) Q).
0
Alternatively the integral equation (27) can, taking one

derivative, be converted into a third-order linear differen-
tial equation,

2 .
F ot 402F + 202 F =2 (29)
wy
where
F(r) = [ Ldr () (30)

and the initial conditions are F(ty)) = F(t,) = F(t,) = 0.
Observe that £ is absent in Eq. (29), which by Abel’s
theorem implies that the Wronskian of the solutions of
the corresponding homogeneous equation is constant.

The differential equation (29) bears an interesting rela-
tionship to the KdV equation. The form of the integral
equation (27) suggests the ansatz

(@0?) (1) (1) — i
f@) S (1) Sl 31
Defining r(t) := w?(t)/®} and then u(x,?):= —r(x —
107), one can show that u satisfies the KdV equation,
Uy — 6ul, +u, = 0. (32)

Thus we can use certain solutions of the KdV equation to
calculate pair creation rates for the corresponding electric
fields.

IV. EXACTLY SOLVABLE CASES

We will now study two exactly solvable cases. First, we
consider the following soliton-type solution of the KdV
equation (see, e.g., Refs. [23-25]):

2

) =—1—-—F—, 33
u(x, 1 cosh?(x — 107) (33)
which corresponds to
1
HN=1+—5—, F(t) = ———5—.
r(®) cosh?(wy?) @) dwicosh?(w1)
(34)
This is a solution to Eq. (29) with the appropriate boundary
conditions at f, = —oo. The gauge potential is
2w3
At=k—‘/k2+—°. 35
qA[) I I cosh?(wor) (35)

From Eq. (28) we get the exact pair creation rate
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1

N = 8cosh*(wt)

(36)

Note that N (¢) returns to zero for t — oo, which is due
to the solitonic character that makes the scattering reflec-
tionless. In fact, the mode solution to Eq. (7) is given by

—iwyt

l =
o0 = s
where the amplitude is

A1) = (2 + 1)%,F,(2,2 —

A(1), (37)

i;1—i;—e?)  (38)

with , F, the hypergeometric function, and it does not have
a negative frequency part in the future. The Bogoliubov
coefficient (14) is

thot

(1) = A*(t), (39)

which approximately leads to J\f (1) = 2e*0" for wyt <
—1 and N (1) = 2e *' for wyt > 1, the leading ap-
proximation to the exact formula (36). Thus there is no
pair creation in this case, contrary to the somewhat simi-
larly looking Sauter field case [26]. This example also
shows clearly that, as emphasized in Ref. [14], no direct
physical meaning should be ascribed to N (¢) at inter-
mediate times.

Second, we consider an electric field consisting of two
opposite delta function pulses,

E(t) = Eg6(1) — Ego(t — 1), (40)

which has the gauge potential of a potential well [17]:
A =0 for t <0 and ¢ > 1, corresponding to w;(0), and
A = —Efor0 <t <1, corresponding to ;. The master
equation (20), together with continuity at t = 0, leads to
the pair production for the period 0 <t <1,

1+ 2N, () = (2 + )( M)

Q(_) 2
X [1 - (Qg”) Cos(2wkt):|, (41)

and for the period ¢ > ¢, it now remains constant, retaining
its value for #,. Note that for a single delta function pulse
N () keeps oscillating, so that the limit  — oo cannot be
defined. This is presumably due to a combination of the
unphysical character of such a field and the non-Markovian
nature of the time evolution.

V. DISCUSSION AND CONCLUSIONS

The central results of this paper are the master equation
(20) and associated quantum Vlasov equation (26), each
describing the exact time evolution of the cumulative pair
creation variable N () for an electric field that depends
only on time, but is arbitrary otherwise. To the best of our
knowledge, these equations are new. We have concentrated
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here on scalar QED, leaving the details of the spinor QED
case to a more extensive publication [18].

In future work, we also plan to study the precise con-
ditions under which a nonadiabatic treatment is really
necessary. To define the adiabatic approximation, we write
the mode solution in terms of the adiabatic basis [11]

e~ i0(0) £i0(1)

1) = au(t 42
ei(t) = k()m Bk()m (42)
where 0(r) = [ o di' w,(¢') and the Bogoliubov relation
la|?> — |Bx]> = 1 holds. We then replace |v(t,, t)|> by
| B(1)|? in the definition (16) of N (r).
From Eq. (14) one can easily show that for this approxi-
mation to hold it is sufficient to assume that

o () |wi(0)

w(0) wi (1)
throughout the time evolution. This criterion is similar,
although not strictly equivalent, to the one given in [11],

wk(l)

< |Bi()]  (43)

(0]
—2<< L,

L3 (44)
w w-

In any case, all the inequalities in (43) and (44) are cer-
tainly fulfilled for even the strongest laser sources which
are presently existing or in development. Those have a field
strength still much lower than the critical strength E, =
m?/e and a characteristic time scale much longer than the
Compton time [2].

Concerning the relation of the master equation to the
KdV equation, although there is a well-known connection
between the latter equation and one-dimensional quantum
mechanical scattering (see, e.g., Refs. [23-25,27]), it ap-
pears not to have been previously applied to the Schwinger
pair creation problem. It will be interesting to see whether
the multisoliton solutions of the KdV equation may also be
used in this context.

Finally, let us mention that it is straightforward to extend
our master equation to the case of an initial state which is a
thermal state at temperature 7. As will be shown in
Ref. [18], such a change leads again only to an overall
factor (coth(Bw(0)/2) + 1) multiplying all three correla-

tors 1 + 2N, ngf) , so that the master equation itself
remains unaffected.
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