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Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time

evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This

equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or

as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which

allows us to construct an exact solution using the well-known one-soliton solution to that equation. The

case of timelike delta function pulse fields is also briefly considered.
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I. INTRODUCTION

Vacuum pair production by a strong electric field, pre-
dicted by Schwinger in 1951 [1], may now finally be seen
due to the construction of ultrastrong laser systems [2].
However, the corresponding fields are very different from
the few special configurations for which an exact calcula-
tion of the pair creation rate is possible. Thus, recently
there has been increased interest in the development of
approximation schemes, such as semiclassical methods
[3–5] and Monte Carlo simulations [6].

A case that is relatively amenable to an exact treatment
is the one of a purely time-dependent electric field. Here
the spatial momentum is a good quantum number, which
allows one to reduce the time evolution of the system to a
collection of mode equations labeled by the fixed momen-
tum k. The pair-production calculation can then be further
reduced to a one-dimensional scattering problem, suitable
for standard numerical or WKB methods [7–9].
Alternatively, the mode equation can be transformed to
the quantum Vlasov equation, an integral equation for
N kðtÞ, the total expected number of created pairs in the
mode k [10–14] (see Ref. [15] for a comparison of the two
approaches).

In this paper, we reconsider the time evolution of the
QED Hamiltonian in a time-varying field using Lewis-
Riesenfeld invariant theory [16] and a suitable operator
basis forming a spectrum generating algebra SUð1; 1Þ. We
derive an exact nonadiabatic master equation for the time
evolution of the Schwinger pair-production rate. This
equation can be written equivalently as a first-order matrix
equation, as a quantum Vlasov equation, or as a third-order
differential equation. For a specific solution ansatz this
third-order equation relates to the Korteweg-de Vries
(KdV) equation, which allows us to construct an exact
solution using the well-known one-soliton solution to that

equation. We also consider the case of an alternating time-
like delta function pulse field, a type of field which is of
relevance for a recent proposal to apply Ramsey interfer-
ometry to the Schwinger effect [17].

II. DERIVATION OF THE MASTER EQUATION

Wewill give the derivation of the master equation for the
scalar QED case; the derivation for the spinor QED case is
similar, and will be included in a forthcoming, more de-
tailed publication [18]. A scalar particle with charge q and
mass m in a homogeneous time-dependent electric field
with the gauge potential AkðtÞ has the Fourier decomposed

Hamiltonian of time-dependent oscillators (in units of ℏ ¼
c ¼ 1),

ĤðtÞ ¼
Z d3k

ð2�Þ3 ½�
y
k�k þ!2

kðtÞ�y
k�k�; (1)

where

!2
kðtÞ ¼ ðkk � qAkðtÞÞ2 þ k2

? þm2: (2)

We will quantize the theory in the Schrödinger picture,
where the time-dependent quantum state obeys the func-
tional Schrödinger equation

i
@�ðtÞ
@t

¼ ĤðtÞ�ðtÞ: (3)

In this picture the field operators �̂ðxÞ and �̂ðxÞ ¼ _̂�
y
are

time independent with the momentum space commutation
relations

½�̂k; �̂k0 � ¼ ½�̂y
k ; �̂

y
k0 � ¼ ið2�Þ3�kk0 ; (4)

but the corresponding creation and annihilation operators
with the equal-time commutators
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½âkðtÞ; âyk0 ðtÞ� ¼ ½b̂�kðtÞ; b̂y�k0 ðtÞ� ¼ ð2�Þ3�kk0 (5)

are generally time dependent [19–22],

�̂k ¼ âkðtÞ’kðtÞ þ b̂y�kðtÞ’�
kðtÞ;

�̂k ¼ âyk ðtÞ _’�
kðtÞ þ b̂�kðtÞ _’kðtÞ:

(6)

Here ’k is an auxiliary field satisfying the classical mode
equation

€’ kðtÞ þ!2
kðtÞ’kðtÞ ¼ 0; (7)

as well as the Wronskian constraint

Wr ½’k; ’
�
k� � ’kðtÞ _’�

kðtÞ � ’�
kðtÞ _’kðtÞ ¼ i: (8)

Equation (7) and the Wronskian determine ’kðtÞ up to a
phase factor, which we fix by requiring that ’kðtÞ be real at
the initial time t0. Thus if t0 is finite, then for t � t0 one has

’kðtÞ ¼ e�i!kð0Þðt�t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kð0Þ

p (9)

(for t0 ¼ �1 this should hold in the asymptotic sense). We

note that the operators âkðtÞ, b̂�kðtÞ and their Hermitian
conjugates are Lewis-Riesenfeld invariants; that is, they
fulfill the Liouville-von Neumann equation

i
@ÎkðtÞ
@t

þ ½ÎkðtÞ; ĤkðtÞ� ¼ 0; (10)

as can be easily checked.
The ground state j0k; ti for the kth mode is annihilated

by both âkðtÞ and b̂�kðtÞ, and the nth excited state is

jnk; ti :¼ ½âyk ðtÞb̂y�kðtÞ�nk
nk!

j0k; ti: (11)

Thus the total time-dependent vacuum state is given by

j0; ti ¼ Y
k

j0k; ti: (12)

In the free theory, the time-dependent vacuum state re-
duces to the Minkowski vacuum, as expected. The scalar
product for the quantized fields and their Hermitian con-
jugates allows us to find the Bogoliubov transformation
between the past time t0 and the present time t, which is
given by

âkðt0Þ ¼ �kðt0; tÞâkðtÞ þ �kðt0; tÞb̂y�kðtÞ;
b̂y�kðt0Þ ¼ ��

kðt0; tÞb̂y�kðtÞ þ ��
kðt0; tÞâkðtÞ;

(13)

where

�kðt0; tÞ ¼ iWr½’�
kðt0Þ; ’kðtÞ�;

�kðt0; tÞ ¼ iWr½’�
kðt0Þ; ’�

kðtÞ�:
(14)

The Bogoliubov coefficients satisfy the relation for bosons
j�kðt0; tÞj2 � j�kðt0; tÞj2 ¼ 1. Our main object of interest,
the mean number of pairs present at time t assuming that

this number was nk at the initial time t0, can now be read
off from

hnk; tjâyk ðt0Þâkðt0Þjnk; ti ¼ j�kðt0; tÞj2ð2nk þ 1Þ þ nk:

(15)

Thus

N kðtÞ :¼ j�kðt0; tÞj2ð2nk þ 1Þ (16)

is the number of pairs spontaneously produced from the
initial vacuum by the electric field.
To obtain a time evolution equation for this quantity, we

observe that the time-dependent Hamiltonian (1) has
the spectrum generating algebra SUð1; 1Þ. Choosing the
Hermitian basis

M̂ð0Þ
k ðt0Þ ¼ 1

ð2�Þ3 ½â
y
k ðt0Þâkðt0Þ þ b̂�kðt0Þb̂y�kðt0Þ�;

M̂ðþÞ
k ðt0Þ ¼ 1

ð2�Þ3 ½âkðt0Þb̂�kðt0Þ þ âyk ðt0Þb̂y�kðt0Þ�;

M̂ð�Þ
k ðt0Þ ¼ i

ð2�Þ3 ½âkðt0Þb̂�kðt0Þ � âyk ðt0Þb̂y�kðt0Þ�;

(17)

this algebra becomes

½M̂ð0Þ
k ðt0Þ;M̂ð�Þ

k ðt0Þ� ¼ �2iM̂ð�Þ
k ðt0Þ;

½M̂ðþÞ
k ðt0Þ;M̂ð�Þ

k ðt0Þ� ¼ �2iM̂ð0Þ
k ðt0Þ:

(18)

The correlators are the expectation values of Eq. (17) with
respect to jnk; ti, that is, of the number of produced pairs
and of pair creation and annihilation:

1þ 2N kðtÞ ¼ ð2j�kðt0; tÞj2 þ 1Þð2nk þ 1Þ;
MðþÞ

k ðtÞ ¼ ð�kðt0; tÞ�kðt0; tÞ þ��
kðt0; tÞ��

kðt0; tÞÞ
� ð2nk þ 1Þ;

Mð�Þ
k ðtÞ ¼ ið�kðt0; tÞ�kðt0; tÞ ���

kðt0; tÞ��
kðt0; tÞÞ

� ð2nk þ 1Þ: (19)

Note that all three correlators are real and proportional to
the quantum number 2nk þ 1, and thus proportional to the
ones defined by the vacuum state.
Using Eq. (14) and the mode equation (7), we find the

first-order master equation

d

dt

1þ 2N k

Mð�Þ
k

MðþÞ
k

0
B@

1
CA ¼

0 �ð�Þ
k 0

�ð�Þ
k 0 �ðþÞ

k

0 ��ðþÞ
k 0

0
BB@

1
CCA

�
1þ 2N k

Mð�Þ
k

MðþÞ
k

0
B@

1
CA; (20)

where
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�ð�Þ
k ðtÞ :¼ !2

kðtÞ �!2
kðt0Þ

!kðt0Þ ; (21)

with the initial conditions N k ¼ nk, M
ð�Þ
k ¼ 0 at t ¼ t0

(where t0 may be �1). An immediate consequence of the
master equation (20) is the conservation of the quantity

ð1þ 2N kÞ2 � ðMðþÞ
k Þ2 � ðMð�Þ

k Þ2 ¼ ð1þ 2nkÞ2: (22)

This relates to the conservation of charge, as well as to the
invariance of the Casimir operator for the SUð1; 1Þ algebra
[18]. The spinor QED case can be treated analogously [18].
As far as the master formula (20) is concerned, the general-
ization to the fermionic case requires only changing
1þ 2N kðtÞ to 1� 2N kðtÞ, and replacing !2

kðtÞ by
!2

kðtÞ ¼ ðkk � qAkðtÞÞ2 þ iqEðtÞ þ k2
? þm2: (23)

III. ALTERNATIVE FORMULATIONS OF THE
MASTER EQUATION

The first-order matrix equation (20) can be equivalently
rewritten both as a single integral equation and as a third-
order linear differential equation. Since we work with a
fixed mode k, in this section we will generally suppress the
index k and abbreviate !0 :¼ !ðt0Þ. We will now also set
nk ¼ 0.

First, we combine the equations for Mð�Þ to a second-

order inhomogeneous equation for Mð�Þ,

d2Mð�Þ

dt2
�

_�ðþÞ

�ðþÞ
dMð�Þ

dt
þ ð�ðþÞÞ2Mð�Þ

¼ �ðþÞ d
dt

�
�ð�Þ

�ðþÞ ð1þ 2N Þ
�
: (24)

The homogeneous part of Eq. (24) has the exact solutions

M ð�ÞðtÞ ¼ C�e
�i
R

t

t0
dt0�ðþÞðt0Þ

(25)

with integration constants C�. Using those in the usual
way to construct the solution of the inhomogeneous equa-
tion with the appropriate initial conditions, we obtain the
quantum Vlasov equation as the integral equation

d

dt
ð1þ 2N ðtÞÞ ¼ �ð�ÞðtÞ

Z t

t0

dt0
�
�ð�Þðt0Þð1þ 2N ðt0ÞÞ

� cos

�Z t

t0
dt00�ðþÞðt00Þ

��
: (26)

Second, inspection of the master equation (20) shows
that its general solution can be parametrized by a function
fðtÞ fulfilling the integral equation

_fðtÞ ¼ �ð�ÞðtÞ
!0

� 2
Z t

t0

dt0fðt0Þð!2ðtÞ þ!2ðt0ÞÞ (27)

with the initial condition fðt0Þ ¼ _fðt0Þ ¼ 0. Then, the
correlators are given by

1þ 2N ¼ 1þ!0

Z t

t0

dt0fðt0Þ�ð�Þðt0Þ;

Mð�Þ ¼ !0fðtÞ;
MðþÞ ¼ �!0

Z t

t0

dt0fðt0Þ�ðþÞðt0Þ:
(28)

Alternatively the integral equation (27) can, taking one
derivative, be converted into a third-order linear differen-
tial equation,

F
:::þ 4!2 _Fþ 2ð!2Þ	F ¼ ð!2Þ	

!2
0

; (29)

where

FðtÞ :¼
Z t

t0

dt0fðt0Þ (30)

and the initial conditions are Fðt0Þ ¼ _Fðt0Þ ¼ €Fðt0Þ ¼ 0.
Observe that €F is absent in Eq. (29), which by Abel’s
theorem implies that the Wronskian of the solutions of
the corresponding homogeneous equation is constant.
The differential equation (29) bears an interesting rela-

tionship to the KdV equation. The form of the integral
equation (27) suggests the ansatz

fðtÞ ¼ ð!2Þ	ðtÞ
8!4

0

; FðtÞ ¼ !2ðtÞ �!2
0

8!4
0

: (31)

Defining rðtÞ :¼ !2ðtÞ=!2
0 and then uðx; tÞ :¼ �rðx�

10tÞ, one can show that u satisfies the KdV equation,

uxxx � 6uux þ ut ¼ 0: (32)

Thus we can use certain solutions of the KdV equation to
calculate pair creation rates for the corresponding electric
fields.

IV. EXACTLY SOLVABLE CASES

We will now study two exactly solvable cases. First, we
consider the following soliton-type solution of the KdV
equation (see, e.g., Refs. [23–25]):

uðx; tÞ ¼ �1� 2

cosh2ðx� 10tÞ ; (33)

which corresponds to

rðtÞ ¼ 1þ 2

cosh2ð!0tÞ
; FðtÞ ¼ 1

4!2
0cosh

2ð!0tÞ
:

(34)

This is a solution to Eq. (29) with the appropriate boundary
conditions at t0 ¼ �1. The gauge potential is

qAðtÞ ¼ kk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ

2!2
0

cosh2ð!0tÞ

s
: (35)

From Eq. (28) we get the exact pair creation rate
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N ðtÞ ¼ 1

8cosh4ð!0tÞ
: (36)

Note that N ðtÞ returns to zero for t ! 1, which is due
to the solitonic character that makes the scattering reflec-
tionless. In fact, the mode solution to Eq. (7) is given by

’ðtÞ ¼ e�i!0tffiffiffiffiffiffiffiffiffi
2!0

p AðtÞ; (37)

where the amplitude is

AðtÞ ¼ ðe2!0t þ 1Þ22F1ð2; 2� i; 1� i;�e2!0tÞ (38)

with 2F1 the hypergeometric function, and it does not have
a negative frequency part in the future. The Bogoliubov
coefficient (14) is

�ðtÞ ¼ e2i!0t

2!0

_A�ðtÞ; (39)

which approximately leads to N ðtÞ ¼ 2e4!0t for !0t 

�1 and N ðtÞ ¼ 2e�4!0t for !0t � 1, the leading ap-
proximation to the exact formula (36). Thus there is no
pair creation in this case, contrary to the somewhat simi-
larly looking Sauter field case [26]. This example also
shows clearly that, as emphasized in Ref. [14], no direct
physical meaning should be ascribed to N kðtÞ at inter-
mediate times.

Second, we consider an electric field consisting of two
opposite delta function pulses,

EðtÞ ¼ E0�ðtÞ � E0�ðt� t1Þ; (40)

which has the gauge potential of a potential well [17]:
Ak ¼ 0 for t < 0 and t > t1, corresponding to !kð0Þ, and
Ak ¼ �E0 for 0< t < t1, corresponding to!k. The master

equation (20), together with continuity at t ¼ 0, leads to
the pair production for the period 0< t < t1,

1þ 2N kðtÞ ¼ ð2nk þ 1Þ
�
�ðþÞ

k

2!k

�
2

�
�
1�

�
�ð�Þ

k

�ðþÞ
k

�
2
cosð2!ktÞ

�
; (41)

and for the period t > t1 it now remains constant, retaining
its value for t1. Note that for a single delta function pulse
N kðtÞ keeps oscillating, so that the limit t ! 1 cannot be
defined. This is presumably due to a combination of the
unphysical character of such a field and the non-Markovian
nature of the time evolution.

V. DISCUSSION AND CONCLUSIONS

The central results of this paper are the master equation
(20) and associated quantum Vlasov equation (26), each
describing the exact time evolution of the cumulative pair
creation variable N kðtÞ for an electric field that depends
only on time, but is arbitrary otherwise. To the best of our
knowledge, these equations are new. We have concentrated

here on scalar QED, leaving the details of the spinor QED
case to a more extensive publication [18].
In future work, we also plan to study the precise con-

ditions under which a nonadiabatic treatment is really
necessary. To define the adiabatic approximation, we write
the mode solution in terms of the adiabatic basis [11]

’kðtÞ ¼ �kðtÞ e�i�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðtÞ

p þ �kðtÞ ei�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðtÞ

p ; (42)

where �ðtÞ ¼ R
t
t0
dt0!kðt0Þ and the Bogoliubov relation

j�kj2 � j�kj2 ¼ 1 holds. We then replace j�kðt0; tÞj2 by
j�kðtÞj2 in the definition (16) of N ðtÞ.
From Eq. (14) one can easily show that for this approxi-

mation to hold it is sufficient to assume that�������������
ffiffiffiffiffiffiffiffiffiffiffiffi
!kðtÞ
!kð0Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffi
!kð0Þ
!kðtÞ

s �������������;

�������� _!kðtÞ
!2

kðtÞ
��������
 j�kðtÞj (43)

throughout the time evolution. This criterion is similar,
although not strictly equivalent, to the one given in [11],

_!

!2

 1;

€!

!3

 1: (44)

In any case, all the inequalities in (43) and (44) are cer-
tainly fulfilled for even the strongest laser sources which
are presently existing or in development. Those have a field
strength still much lower than the critical strength Ec ¼
m2=e and a characteristic time scale much longer than the
Compton time [2].
Concerning the relation of the master equation to the

KdV equation, although there is a well-known connection
between the latter equation and one-dimensional quantum
mechanical scattering (see, e.g., Refs. [23–25,27]), it ap-
pears not to have been previously applied to the Schwinger
pair creation problem. It will be interesting to see whether
the multisoliton solutions of the KdVequation may also be
used in this context.
Finally, let us mention that it is straightforward to extend

our master equation to the case of an initial state which is a
thermal state at temperature T. As will be shown in
Ref. [18], such a change leads again only to an overall
factor ðcothð�!kð0Þ=2Þ þ 1Þ multiplying all three correla-

tors 1þ 2N k, M
ð�Þ
k , so that the master equation itself

remains unaffected.
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