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In this paper we investigate a solution of the Dirac equation for a spin- 12 particle in a scalar potential

well with full spherical symmetry. The energy eigenvalues for the quark particle in s1=2 states (with

� ¼ �1) and p1=2 states (with � ¼ 1) are calculated. We also study the continuous Dirac wave function

for a quark in such a potential, which is not necessarily infinite. Our results, at infinite limit, are in good

agreement with the MIT bag model. We make some remarks about the sharpness value of the wave

function on the wall. This model, for finite values of potential, also could serve as an effective model for

the nucleus where UðrÞ is the effective single particle potential.
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I. INTRODUCTION

In 1964 Gell-Mann and Zweig independently proposed a
quark model in which all known hadrons were described as
bound states of only three fundamental particles [1,2].
Each of these spin-1=2 particles, which Gell-Mann named
quarks, has their corresponding antiparticles. However, a
precise mechanism of the bound states and quark confine-
ment has still not been established. Gell-Mann’s model
requires that the valid quark states should be colorless
and so a free quark is not allowed. Since a free single
quark has not yet been observed, the model assumes that
quarks appear as bound states. The baryons are bound
states of three quarks (or antiquarks) and the mesons are
made up of one quark and one antiquark. As a model, to
describe this behavior, one can think of a hadron as a cavity
in which the quark wave function is confined, and the
cavity is surrounded by the QCD vacuum [3]. Therefore
in a simple model, quarks are confined in a sphere with
radius R, and the Dirac equation should be solved within
this sphere.

From this point of view, the solution of the Dirac equa-
tion in a three-dimensional scalar potential, apart from its
interesting theoretical aspects, provide useful tools for
studying the properties of elementary particles. For ex-
ample, the MIT bag model [4–6] and its chirally invariant
versions, such as the chiral bag model [7–9] and the cloudy
bag model [10–13], are some models for describing the
physics of the nucleon and other baryons. A bag is a region
of space in which quarks and gluons are confined, i.e. they
are forced by an external constant pressure B, which can be
fitted using experimentally determined hadron masses, to
move only inside the bag. Historically, Chodos et al. have
considered the MIT bag model through the Dirac equation
(except the bag pressure B) [4]. They solved bag equations
for the massless Dirac fields in three space dimensions.
Their solutions are for the special case of static spherical

boundary. They also computed charge radius and found it
to be 1.0 fm. Degrand et al., in the other case of this model,
calculated the masses and the static parameters of the light
hadrons [5]. In the cloudy bag model a baryon is treated as
a three-quark bag that is surrounded by a cloud of pions.
Thomas et al. investigated the static properties of the
nucleon within this model [10]. They found the bag radius
to be about 0.8 fm by a fit to pion-nucleon scattering in the
(3, 3)-resonance region. The chiral bag model for the
nucleon is a hybrid of quark and meson degrees of free-
dom, interpolating the two limits of the skyrme model at
R ! 0 and the MIT bag model at R ! 1 [7,14,15]. In the
skyrme model mesons acts as gauge particles so that
baryons would interact with each other by the exchange
of mesons [16]. Skyrmions are the solutions of the field
equations. These solutions are solitons and no longer plain
wave. One may interpret these skyrmions as coherent states
of baryons and excited baryons [17]; however, the physical
interpretation is still not completely resolved. With this
model, it is also possible to calculate nucleon masses and
other particle properties [18]. Both the MIT bag and sky-
rme model are useful to calculate masses and other prop-
erties of hadrons. In Ref. [7], Hosaka and Toki investigated
the static properties of the nucleon such as masses and
magnetic moments as a function of R, in both the original
chiral bag model and models with vector mesons. The MIT
bag model introduces many free parameters for energy
corrections that could be helpful in understanding the
physical processes inside the nucleus.
It is a curious and complex situation to solve the rela-

tivistic quantummechanics problems in a finite potential in
comparison with the equivalent problem in nonrelativistic
quantum mechanics. In the Dirac equation, the wave func-
tion is continuous, its first derivative is discontinuous, and
the second derivative has a very large jump, whereas, in the
Schrödinger equation the wave function and its first de-
rivative are continuous, but the second derivative has a
certain jump related to the potential jump. The solutions
of the Dirac equation in a � potential exist in the literature,*r.layeghnejad@mail.yu.ac.ir
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see for example [19–22]. However, for a finite spherical
potential well, as far as we are aware of, there is no solution
in the literature.

In this paper, we consider the solution of the Dirac
equation in a spherically symmetric scalar potential well,
which is not necessarily infinite. The origin of this scalar
potential could be a strong force that binds quarks together
in clusters to make more familiar subatomic particles, such
as protons and neutrons. It also holds together the atomic
nucleus and underlies interactions between all particles
containing quarks [23,24]. Although this model is not
compatible with the quark confinement at finite potential,
it could serve a dual purpose. First, one could observe the
evolution of the wave functions as U0 ! 1, where one
could recover the MIT bag model results. Second, for finite
values of U0 this could serve as an effective model for
the nucleus where UðrÞ is the effective single particle
potential emerging from the meson exchange of the nucle-
ons. Here we obtain eigenvalue equations for the energies
and numerically calculate the energy eigenvalues for the
s1=2 and p1=2 states. These states are derived normally from

the continuity of the wave function and imposing boundary
conditions on the cavity [25], with different radii R ¼ 0:8,
1, 1.18 fm and the quark masses m ¼ 0, 1 fm�1. We then,
compare the values of the energy levels in each of specific
conditions and also with the energy eigenvalue obtained in
the previous MIT bag model. The relation between energy
eigenvalues and the radius of cavity and the mass of the
quark is considered. We also obtain the Dirac wave func-
tion components for a quark particle and depict them in
figures. As a result, when the strength of the potential is
increased, the wave function components on the boundary
of cavity fall down and it would have the sharper point,
which are in good agreement with the MIT bag model.
Finally, we obtain the magnitude of sharpness of the rela-
tivistic wave function component when crossing the wall.

The paper is organized as follows: Section II is devoted
to an introduction of the Dirac equation with a central
scalar potential. In Sec III we calculate the energy eigen-
values for a Dirac particle in a scalar potential with full
spherical symmetry for the s1=2 and p1=2 states. Then we

discuss the sharpness of the wave function components on
the boundary. Finally, in Sec IV we summarize our results.

II. SOLUTIONS OF THE DIRAC EQUATION IN
A CENTRAL POTENTIAL (SCALAR COUPLING)

In the Dirac equation, the scalar potential UðxÞ and the
fourth component of a vector potential, V0ðxÞ are accom-
panied by mass m and energy E, respectively. Although
V0ðxÞ is not a vector potential, since it is the fourth com-
ponent of a four vector, it is called a vector potential. The
general form of the equation of motion for a spin-1=2
particle with these two potential is (in relativistic units,
ℏ ¼ 1 and c ¼ 1)

½�:pþ �ðmþUðxÞÞ þ V0ðxÞ�c ðx; tÞ ¼ i
@

@t
c ðx; tÞ; (1)

where p ¼ �ir is the three-dimensional momentum op-
erator. In the above equation � and � are the 4� 4 Dirac
matrices which, in the usual representation, are given by

� ¼ 0 �i

�i 0

� �
; � ¼ 0 I

�I 0

� �
; (2)

where I is the 2� 2 unit matrix. The subscript i can take
the values of 1, 2, 3, and �i are the 2� 2 Pauli matrices.
For a Dirac particle in a spherically symmetric potential
field, the total angular momentum operator J, and the spin-
orbit matrix operator K ¼ ��ð�:Lþ 1Þ, commute with
the Dirac Hamiltonian. Here L is the orbital angular mo-
mentum. The complete set of the conservative quantities
with their eigenvalues can be written as follows:

H ! E K ! �� J2 ! jðjþ 1Þ J3 ! j3;

(3)

so that,

½H;K� ¼ 0; ½H; J� ¼ 0;

½J2; J3� ¼ 0; ½J; K� ¼ 0;
(4)

and

� ¼ �
�
jþ 1

2

�
; for l ¼ j� 1=2: (5)

Therefore, the quantum number � is a nonzero integer
number. Given stationary solutions c �

jj3
ðx; tÞ ¼

c �
jj3
ðxÞe�iEt, we have

c �
jj3
ðxÞ ¼

g�ðrÞyj3jl
if�ðrÞyj3jl0

0
@

1
A; (6)

where g�ðrÞ and f�ðrÞ are real square-integrable functions,
and y

j3
jl and y

j3
jl0 can be written in terms of the spherical

harmonic functions with the relevant Clebsch-Gordan co-
efficients. Then the two coupled equations for the radial
parts of the Dirac equation with a given scalar potential
turn out to be

df�ðrÞ
dr

þ 1� �

r
f�ðrÞ ¼ ðmþUðrÞ � EÞg�ðrÞ (7)

dg�ðrÞ
dr

þ 1þ �

r
g�ðrÞ ¼ ðmþUðrÞ þ EÞf�ðrÞ: (8)

The solutions of Eqs. (7) and (8) for a scalar potential
well, Uðr � RÞ ¼ 0 and Uðr > RÞ ¼ U0, are the spherical
Bessel functions and modified spherical Bessel functions
of the first kind, for the regions r � R and r > R, respec-
tively. Therefore, for region I, r < R with UðrÞ ¼ 0, and
we have

R. LAYEGHNEJAD, M. ZARE, AND R. MOAZZEMI PHYSICAL REVIEW D 84, 125026 (2011)

125026-2



for � < 0:

�g�ðrÞ ¼ Njj�j�1ðprÞ
f�ðrÞ ¼ �N p

mþE jj�jðprÞ;
(9a)

for � > 0:

� g�ðrÞ ¼ N0j�ðprÞ
f�ðrÞ ¼ N0 p

mþE j��1ðprÞ;
(9b)

and for region II, r > R with UðrÞ ¼ U0,

for � < 0:

� g�ðrÞ ¼ MKj�j�1ðqrÞ
f�ðrÞ ¼ �M q

mþU0þEKj�jðqrÞ; (10a)

for � > 0:

� g�ðrÞ ¼ M0K�ðqrÞ
f�ðrÞ ¼ �M0 q

mþU0þEK��1ðqrÞ; (10b)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
and q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþU0Þ2 � E2

p
, and N,

N0, M, and M0 are the normalization factors [3,25,26].

III. A DIRAC PARTICLE IN A POTENTIALWELL
WITH FULL SPHERICAL SYMMETRY

In this section we compute the energy eigenvalues for a
Dirac particle in a full spherically symmetric scalar poten-
tial. Reported eigenvalues, for which the massless spin-1=2
field is confined to an infinite spherical potential well of
radius R ¼ 1 fm, are listed in Table I. These values have
been computed through an equation of motion and bound-
ary condition [4].

The solution of the Dirac equation for a particle with
mass m, which moves in a spherically symmetric static
cavity, is physically similar to a scalar potential well with
the full spherical symmetry. To confine the wave function
of the particle in a bag, as the vector potential is zero
V0 ¼ 0, the depth of the well should be infinite. This
method, which is applicable as U0 ! 1, has been devel-
oped by theMIT bag model [3]. However, here we consider
the scalar potential which is not necessarily infinite.

A. The energy Eigenvalues for s1=2 states

The wave functions for s1=2 states (� ¼ �1) in a finite

scalar potential (with no vector potential, V0 ¼ 0) can be
written using Eqs. (9a) and (10a). For two regions, inside
and outside the static spherical cavity, we have

for r < R: g�1ðrÞ ¼ Nj0ðprÞ ¼ N
sinðprÞ
pr

; (11a)

f�1ðrÞ ¼ �N
p

mþ E
j1ðprÞ

¼ � Np

mþ E

�
sinðprÞ
ðprÞ2 � cosðprÞ

pr

�
; (11b)

for r > R: g�1ðrÞ ¼ Mk0ðqrÞ ¼ M
e�qr

qr
; (12a)

f�1ðrÞ ¼ � Mq

mþ EþU0

k1ðqrÞ

¼ � Mqe�qr

mþ EþU0

�
1

qr
þ 1

ðqrÞ2
�
: (12b)

Using Eqs. (11a) and (12a) and continuity of the g�1ðrÞ at
r ¼ R one can find M as follows:

M ¼ N
q

p
eqR sinðpRÞ: (13)

From the normalization condition for wave functions
(
R1
0 ½g2�ðrÞ þ f2�ðrÞ�r2dr ¼ 1) and Eqs. (11) and (12), after

some cumbersome calculations, we get the following ex-
pression for N:

N ¼
�
R

2p2
þ R

2ðmþ EÞ2 þ
sinð2pRÞ

4p3

�
p2

ðmþ EÞ2 � 1

�

� sin2ðpRÞ
p2Rðmþ EÞ2 þ

sin2ðpRÞ
2p2

�
�
1

q
þ 1

ðmþ EþU0Þ2
�
qþ 2

R

����ð1=2Þ
: (14)

The continuity of the wave function components at r ¼ R
implies

f

g
ðr < RÞ

��������r¼R
¼ f

g
ðr > RÞ

��������r¼R
: (15)

Now using Eqs. (11), (12), and (15), we find the following
expression:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�m

Eþm

s
cot

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p �
� 1

RðEþmÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþU0 � E

mþU0 þ E

s
þ 1

RðmþU0 þ EÞ ¼ 0: (16)

This eigenvalue equation gives us the energy of the particle in
a scalar potential as a function ofR andm for the states s1=2.
We have numerically calculated the eigenvalues energy

for s1=2 states for different values of R and m and plotted

them in Fig. 1. It is understood from numerical solutions
[see Fig. 1 and Table II] that as U0 ! 1 for the case of
m ¼ 0 and R ¼ 1 fm the value of the energy ground state
becomes 2.0428 and for 2s1=2 state this value is 5.3960,

which are in good agreement with previously established
results [4] (cf. Table I). As the potential goes to infinity the
particle is completely confined inside the bag. We have
also depicted the eigenvalues of the s1=2 states for different
values of R and m in Fig. 1, and some of the energy
eigenvalues are listed in Table II. In Fig. 2 the wave
functions for the s1=2 states for a specific case (R¼1 fm,

m ¼ 0) are shown.We see that, as the depth of the potential
well increases, the wave function components on the
boundary of cavity become sharper, i.e. if the quarks are
turned back at the edge of the nucleon by a strong inter-
action, the wave function will be strongly damped in that
region which is in line with the MIT bag model.

TABLE I. Energy eigenvalues for a massless quark in an
infinite potential well with R ¼ 1 fm.

State 1s1=2 2s1=2 1p1=2 2p1=2

Eðfm�1Þ 2.04 5.40 3.81 7.00
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B. Energy eigenvalues for p1=2 states

We derive the wave functions for p1=2 states (� ¼ 1)
using Eqs. (9b) and (10b), as follows:

for r<R: g1ðrÞ¼N0j1ðprÞ¼N0
�
sinðprÞ
ðprÞ2 �cosðprÞ

pr

�
(17a)

f1ðrÞ¼ N0p
mþE

j0ðprÞ¼ N0p
mþE

sinðprÞ
pr

; (17b)

for r > R: g1ðrÞ ¼ M0k1ðqrÞ ¼ M0e�qr

�
1

qr
þ 1

ðqrÞ2
�
(18a)

f1ðrÞ ¼ �M0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþU0 � E

mþU0 þ E

s
K0ðqrÞ

¼ �M0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþU0 � E

mþU0 þ E

s
e�qr

qr
: (18b)

As for the s1=2 states we can compute the normalization

factor M0 from Eqs. (17b) and (18b), and imply the con-
tinuity condition of f1ðrÞ at r ¼ R, to have

M0 ¼ �N0 mþU0 þ E

mþ E
eqR sinðpRÞ: (19)

We have also computed N0 from the normalization condi-
tion to be

N0 ¼
�

1

ðmþ EÞ2
�
R

2
� sinð2pRÞ

4p

�
� 1

2Rp4
þ R

2p2

þ sinð2pRÞ
4p3

þ cosð2pRÞ
2Rp4

þ sin2ðpRÞ
ðmþ EÞ2

�
�
1

2q
þ ðmþ EþU0Þ2

�
1

2q3
þ 1

Rq4

����1=2
: (20)

Now using Eqs. (15), (17), and (18), we have

TABLE II. Energy eigenvalues (in fm�1) for the s1=2 states for a Dirac particle in a spherically symmetric potential well.

States Potential m ¼ 0 m ¼ 1 fm�1 m ¼ 0 m ¼ 1 fm�1 m ¼ 0 m ¼ 1 fm�1

U0ðfm�1Þ R ¼ 0:8 fm R ¼ 0:8 fm R ¼ 1 fm R ¼ 1 fm R ¼ 1:18 fm R ¼ 1:18 fm

15 2.4492 2.9949 1.9758 2.5342 1.6829 2.2529

1s1=2 50 2.5218 3.0625 2.0225 2.5772 1.7166 2.2835

1 2.5535 3.0932 2.0428 2.5966 1.7312 2.2973

15 6.4655 6.6608 5.2178 5.4262 4.4451 4.6663

2s1=2 50 6.6614 6.8464 5.3424 5.5437 4.5344 4.7501

1 6.7450 6.9284 5.3960 5.5960 4.5729 4.7875

15 10.2508 10.3833 8.2845 8.4197 7.0611 7.2029

3s1=2 50 10.5885 10.7020 8.4922 8.6164 7.2078 7.3417

1 10.7219 10.8336 8.5776 8.7004 7.2691 7.4019

15 13.9259 14.0606 11.3090 11.4184 9.6498 9.7590

4s1=2 50 14.4868 14.5694 11.6192 11.7094 9.8620 9.9594

1 14.6706 14.7509 11.7365 11.8251 9.9462 10.0423

15 � � � � � � 14.2597 14.3819 12.2134 12.3104

5s1=2 50 18.3745 18.4400 14.7382 14.8094 12.5096 12.5863

1 18.6098 18.6725 14.8878 14.9572 12.6168 12.6921

FIG. 1 (color online). Energy levels for s1=2 states for a Dirac particle in a spherically symmetric potential well.
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cotðR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�mÞðmþU0 þ EÞp ð1þ 1

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþU0Þ2�E2

p ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþmÞðmþU0 � EÞp � 1

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

p ¼ 0: (21)

This eigenvalue equation gives the particle energy for a
given scalar potential as a function of R and m for p1=2

states. We have depicted the eigenvalues for p1=2 states,

found numerically from Eq. (21), in Fig. 3. At infinite
limit (U0 ! 1) we see the energy eigenvalues for 1p1=2

and 2p1=2 states are 3.8115 and 7.0020 (for m ¼ 0 and

R ¼ 1 fm) which are in good agreement with previously
reported values (see Table I) [4]. Again, in the infinite
potential the particle is completely confined inside the
bag. We have listed some of the energy eigenvalues in
Table III. We have also illustrated the wave functions of
the p1=2 states for R ¼ 1:18 fm and m ¼ 1 fm�1 in Fig. 4.

Comparing the results of energy eigenvalues for the
quark particle in the different static spherical cavity radius
R, and different quark masses m, [Figs. 1 and 3, and
Tables II and III] one can see that an increase in R

decreases the energy eigenvalues. Also, an increase in m
leads to the increase in energy. Therefore, the energy
eigenvalues of a quark particle confined in a static spheri-
cal cavity highly depend on its mass and the radius of the
cavity. These results are in agreement with the relativistic
statistical mechanics. The quark particles inside the bag
behave similar to a relativistic gas, so that the quarks
kinetic pressure is equal to the pressure of the gas [3,27].

C. Additional remarks about the sharpness
of the wave function

In the case of the scalar potential discussed in previous
sections, it is also interesting to investigate the wave func-
tion continuity at r ¼ R for any �. To study the situation,
we use Eqs. (7) and (8) along with the definitions G�ðrÞ ¼
rg�ðrÞ and F�ðrÞ ¼ rf�ðrÞ for r > R, then we have

g 1 r

f 1 r
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FIG. 2 (color online). Wave functions for the 1s1=2 and 5s1=2 states for R ¼ 1 fm and m ¼ 0. Dot-dashed, dashed, and solid lines
denote U0 ¼ 15 fm�1, U0 ¼ 50 fm�1 and U0 ¼ 1, respectively. We see that as the potential well becomes deeper (bag limit) the
wave function at the boundary fall down.

FIG. 3 (color online). Energy levels for p1=2 states for a Dirac particle in a spherically symmetric potential well.
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d2G�ðrÞ
dr2

� �ð�þ 1Þ
r2

G�ðrÞ � ½ðmþUðrÞÞ2 � E2�G�ðrÞ

�
dUðrÞ
dr

dG�ðrÞ
dr

mþ EþUðrÞ �
�G�ðrÞ dUðrÞ

dr

r½mþ EþUðrÞ� ¼ 0: (22)

Wherever UðrÞ has a sharp point, dUðrÞ
dr has a certain

jump. As UðrÞ goes to infinity we have the Dirac � poten-
tial, whose first derivative is a larger infinity. In this case, to

compensate for such a large jump, d2G�ðrÞ
dr2

should have the

same large jump. Therefore, we can conclude that dG�ðrÞ
dr

has a jump.
We know thatG�ðrÞ is a continuous wave function. Now

integrating Eq. (22) in the small interval ½R� "; Rþ "�,
and taking the limit " ! � lead to the zero contribution for
the second and third terms. On the other hand, we have

Z b

a
�ðr� RÞFðrÞdr ¼

8<
:
FðRÞ r 2 ½a; b�
FðRÞ
2 r ¼ a or b

0 r2½a; b�;
(23)

and

dUðrÞ
dr

¼ U0�ðr� RÞ: (24)

Using Eqs. (23) and (24) we can compute the remaining
terms of integration to get

lim
"!0

�
dG�ðrÞ
dr

��������Rþ"

R�"

�
¼ U0

mþ Eþ U0

2

�G0
�ðRÞ

þ �U0

R½mþ Eþ U0

2 �
G�ðRÞ; (25)
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FIG. 4 (color online). Wave functions for the p1=2 and 5p1=2 states for R ¼ 1:18 fm and m ¼ 1. Dot-dashed, dashed, and solid lines
denote U0 ¼ 15 fm�1, U0 ¼ 50 fm�1 and U0 ¼ 1, respectively. We see that as the potential well becomes deeper (bag limit) the
wave function at the boundary fall down.

TABLE III. Energy eigenvalues (in fm�1) for the p1=2 states for a Dirac particle in a spherically symmetric potential well.

States Potential m ¼ 0 m ¼ 1 fm�1 m ¼ 0 m ¼ 1 fm�1 m ¼ 0 m ¼ 1 fm�1

U0ðfm�1Þ R ¼ 0:8 fm R ¼ 0:8 fm R ¼ 1 fm R ¼ 1 fm R ¼ 1:18 fm R ¼ 1:18 fm

15 4.5719 4.7840 3.6878 3.9207 3.1410 3.3928

1p1=2 50 4.7056 4.9098 3.7738 4.0007 3.2030 3.4498

1 4.7644 4.9669 3.8115 4.0370 3.2301 3.4756

15 8.3835 8.5171 6.7686 6.9107 5.7671 5.9189

2p1=2 50 8.6440 8.7642 6.9325 7.0659 5.8840 6.0293

1 8.7525 8.8709 7.0020 7.1341 5.9339 6.0781

15 12.1192 12.2330 9.8080 9.9169 8.3629 8.4755

3p1=2 50 12.5457 12.6315 10.0621 10.1569 8.5403 8.6434

1 12.7042 12.7879 10.1633 10.2567 8.6130 8.7149

15 � � � � � � 12.8059 12.9075 10.9389 11.0341

4p1=2 50 16.4353 16.5026 13.1823 13.2561 11.1888 11.2689

1 16.6445 16.7093 13.3156 13.3878 11.2844 11.3632

15 � � � � � � � � � � � � 13.4807 13.5764

5p1=2 50 20.3185 20.3744 16.2979 16.3588 13.8337 13.8995

1 20.5799 20.6327 16.4639 16.5227 13.9525 14.0167

R. LAYEGHNEJAD, M. ZARE, AND R. MOAZZEMI PHYSICAL REVIEW D 84, 125026 (2011)

125026-6



where �G0
�ðRÞ denotes the mean value of the first derivative

of G�ðrÞ on the wall. This relation gives the sharpness of
the wave function G�ðrÞ while crossing the wall. In a
similar way, one can obtain the sharpness of F�ðrÞ

lim
"!0

�
dF�ðrÞ
dr

��������Rþ"

R�"

�
¼ U0

m� Eþ U�
2

�F0
�ðRÞ

� �U0

R½m� Eþ U�
2 �

F�ðRÞ: (26)

IV. CONCLUSIONS

In this paper we have computed the energy eigenvalues
for a Dirac particle in a scalar potential with full spherical
symmetry. Although in finite potential this model is not
compatible with quark confinement, however here we ob-
served the evolution of the wave functions as U0 ! 1,
where we recovered the MIT bag model results. We have
found the components of the wave function and depicted
them in Figs. 2 and 4. As a conclusion energy eigenvalues

of a particle for any potential value are positive values. For
both cases of s1=2 and p1=2 states in infinite potential the

particle is completely confined inside the bag. It is pleasing
that all of our results are in good agreement with that which
exists in the literature for the infinite potential limit (the
MIT bag model). We also have additional remarks about
the continuity and sharpness of the wave function. In the
case of the Dirac equation with a finite potential, the wave
function is continuous; however, it has a sharp point at
r ¼ R. We have calculated the sharpness of the wave
function for any �, and we see as the potential goes to
the infinity (U0 ! 1), the wave function becomes discon-
tinuous. We saw the results preserved the relativistic sta-
tistical mechanics, so that the quark particle inside the bag
behaves as a relativistic gas.
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