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Spin degrees of freedom of the Galilean covariant Dirac field in ð4þ 1Þ dimensions and its non-

relativistic counterpart in ð3þ 1Þ dimensions are examined. Two standard choices of spin operator, the

Galilean covariant and Dirac spin operators, are considered. It is shown that the Dirac spin of the Galilean

covariant Dirac field in ð4þ 1Þ dimensions is not conserved, and the role of non-Galilean boosts in its

nonconservation is stressed out. After reduction to ð3þ 1Þ dimensions the Dirac field turns into a

nonrelativistic Fermi field with a conserved Dirac spin. A generalized form of the Lévy-Leblond equations

for the Fermi field is given. One-particle spin states are constructed. A particle-antiparticle system is

discussed.
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I. INTRODUCTION

Galilean invariance underlies many low-energy systems
encountered in nuclear physics, condensed matter physics,
and many-body theory. It is used in the field theoretical
study of superfluids, superconductors, and Bose-Einstein
condensation [1–5].

A ð4þ 1Þ-dimensional covariant formulation of
Galilean covariance [6] based on an extended space-time
approach developed in [7,8] provides new insights into the
properties of these systems. A formulation of Galilean
covariance within a relativistic framework in one higher
dimension makes nonrelativistic theories similar to
Lorentz covariant theories. Many procedures and calcula-
tions can be carried out in the sameway as relativistic ones.
Some characteristic features of nonrelativistic theories are
likely to appear only after a reduction to ð3þ 1Þ dimen-
sions. Historically, a dimensional reduction from ð4þ 1Þ to
ð3þ 1Þ dimensions was first developed for Lorentz cova-
riant theories [9]. The extended space-time formulation
allows us to treat relativistic and nonrelativistic theories
in ð3þ 1Þ dimensions in a unified approach, depending on
how ð3þ 1Þ-dimensional space-time is embedded into a
ð4þ 1Þ-dimensional manifold. A similar approach was
used in the investigation of fluid dynamics in [10,11].

In the present paper, we study spin degrees of freedom of
nonrelativistic Fermi fields in both ð4þ 1Þ and ð3þ 1Þ
dimensions. We start with a Galilean covariant Fermi field
theory in ð4þ 1Þ dimensions and then perform a reduction
to ð3þ 1Þ dimensions. We want to determine to what
extent spin and its characteristics are affected by this
reduction.

In relativistic theories, the orbital angular momentum
and Dirac spin of a moving particle are not separately
conserved. The component of the Dirac spin in any fixed
direction therefore cannot be used to enumerate the parti-
cle’s spin states. Such enumeration is possible in the non-

relativistic case. Our aim is to demonstrate the Dirac spin
conservation in ð3þ 1Þ dimensions as a result of dimen-
sional reduction and to construct the spin states explicitly.
The concept of spin for nonrelativistic particles was

introduced in [12] through the theory of unitary irreducible
representations of the Galilei group [13–17]. A nonrelativ-
istic particle described by such representation is localiz-
able for any value of spin, if it has a nonzero mass.
Although the concept of spin appears here in the same
way as in the relativistic case, the nonrelativistic spin
particles are not involved in spin-orbit interactions and
do not possess electromagnetic multiple momenta [12].
Our paper is organized as follows. In Sec. II, we first

briefly review a covariant formulation of Galilean covari-
ance in ð4þ 1Þ dimensions. Then we construct the Galilean
covariant spin operator. The expression for this operator
was previously given in [15–18], and a possible connection
between spin and statistics was discussed in [19].We derive
the same expression in a different way, similar to the
Lorentz covariant procedure presented in [20].
We define the five-dimensional Galilei invariant Dirac

field model and determine the transformation properties of
the Dirac field. Conserved currents and the corresponding
generators are constructed. We observe that the model is
invariant with respect to non-Galilean transformations as
well and introduce non-Galilean boosts. We discuss sim-
ilarities and differences between the Galilean covariant and
Dirac spin operators and demonstrate the role of non-
Galilean boosts in the nonconservation of the Dirac spin.
Different choices of spin operator in the relativistic case
were studied in [21].
In Sec. III, we perform a reduction to ð3þ 1Þ dimen-

sions by eliminating the x5 coordinate and keeping the
model invariant under reduced Galilean transformations.
We obtain the effective Lagrangian density for a nonrela-
tivistic Fermi field in ð3þ 1Þ dimensions. The Fermi field
is quantized, and one-particle states are constructed. We
prove that the one-particle states are spin-1=2 and use the
third component of spin to enumerate them.*fuads@athabascau.ca
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Finally, we study a particle-antiparticle system. The
possibility to include antiparticles within a Galilean frame-
work was discussed in [16–22]. We show that particles and
antiparticles belong to two different mass sectors and con-
struct transition operators that connect states with different
numbers of particles and antiparticles. We conclude with a
discussion in Sec. IV.

II. GALILEAN COVARIANT FERMI FIELD
THEORIES IN ð4þ 1Þ DIMENSIONS

The Galilean covariant theories in ð4þ 1Þ dimensions
are built with Lorentz-like action functionals, except that
Galilean kinematics is based on the so-called Galilean five-
vectors [6],

ðx; x4; x5Þ ¼
�
x; �ct;

s

�c

�
;

where �c is a parameter with the dimensions of velocity,
which will be specified below, and s stands for the addi-
tional fifth coordinate. By rescaling

t ! x4 ¼ �ct; s ! x5 ¼ s

�c
;

the physical units of space and time are adjusted in such a
way that all the components of the Galilean five-vectors
have the same dimensions.

Under homogeneous Galilean transformations, these
vectors transform as follows:

x 0 ¼ Rx� �x4; x04 ¼ x4;

x05 ¼ x5 � ðRxÞ � �þ 1
2j�j2x4;

(1)

where � ¼ ðv= �cÞ, v is the relative velocity between two
reference frames, and R is a three-by-three orthogonal
rotation matrix.

These transformations leave invariant the scalar product,
g��x

�x�,�;� ¼ 1; . . . ; 5, defined with the Galilean metric

g�� ¼
�13�3 0 0

0 0 1
0 1 0

0
@

1
A: (2)

The momentum five-vector is

p� ¼ i@� ¼
�
ir; i @t

�c
; i �c@s

�
¼ ðp; p4; p5Þ:

With the usual identification i@t ! E, we have p4 ¼ E= �c.
Since p5= �c has the dimension of mass, it is identified with
the inertial mass m so that the coordinate x5 is canonically
conjugate to p5 ¼ m �c.

The inhomogeneous Galilei group also includes trans-
lations in space, time, and x5 direction, being a subgroup of
the Poincare group. While the Poincare group in ð4þ 1Þ
dimensions is generated by 15 elements, five translations
P�, and ten rotationsM�� with�< �, its Galilei subgroup
has 11 generators.

The nonzero commutation relations of the Galilei Lie
algebra are

½Ja; Jb�� ¼ i�abcJc; ½Ja; Kb�� ¼ i�abcKc;

½Ja; Pb�� ¼ i�abcPc; ½Ka; P4�� ¼ iPa;

½Pa; Kb�� ¼ igabP5;

(3)

where a; b; c ¼ 1; 2; 3, Pa, Ja ¼ ð1=2Þ�abcMbc and Ka ¼
Ma4 are generators of space translations, rotations, and
Galilean boosts, respectively, while P4 and P5 are gener-
ators of time and x5 translations. The explicit expressions
for these generators in the case of Fermi fields will be given
below.
Like the Poincare group in ð4þ 1Þ dimensions, the

Galilei group admits three Casimir invariants:

I1 ¼ P�P
�; I2 ¼ P5; I3 ¼ W5�W5

�; (4)

where

W�� � 1
2������P

�M��

is the five-dimensional Pauli-Lubanski tensor, ������

being the totally antisymmetric tensor in five dimensions.
We assume that �54abc ¼ �abc.
The invariant I2 is the inertial mass operator, which is

assumed to be positive (or negative) definite. The inertial
mass is conserved independently; that is a characteristic
feature of Galilean covariant theories. This implies the
so-called Bargmann superselection rule [23], the theory
factoring into sectors labeled by the eigenvalue of I2.
The invariant I1 is related to the rest (or internal) energy:

I1 ¼ 2P5P4 � P2 ¼ 2P5

�
P4 � P2

2P5

�
¼ 2P5P

ð0Þ
4 ;

where

Pð0Þ
4 � P4 � P2

2P5

(5)

is the rest energy operator. In Galilean theories the inertial
and rest masses are not, in general, the same [24]. They are
taken equal if the Galilean theory is considered to be the
limit of a Lorentz covariant one.
For a state with momentum p�,

P�jpi ¼ p�jpi;
assuming that

p�p
� ¼ k2 > 0; (6)

this gives us the dispersion relation

Ejpi ¼
�
p2

2m
þ k2

2m

�
jpi: (7)

The rest energy k2=2m takes the familiar form m0 �c
2 if �c is

defined as
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�c ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffi
2mm0

p ; (8)

wherem0 is the rest mass. Bothm0 and �c are constants with
respect to the Galilean transformations.

A. Spin operator

The axial vector W5� obeys the following relations:

P�W5� ¼ 0; (9)

½P�;W5��� ¼ 0; (10)

½W5�;W5��� ¼ i�5����W5
�P�: (11)

Since W55 ¼ 0, W5� has four nonvanishing components,

W5� ¼ ðW5a;W54; 0Þ;
where

W5a ¼ P5Ja � �abcKbPc; (12)

W54 ¼ PaJa: (13)

As a consequence of Bargmann’s superselection rule, the
Hilbert space is decomposed into a direct sum of subspaces
representing different inertial mass sectors including a
zero-mass one. Let us consider a nonzero inertial mass
subspace. In such a subspace the operator P5 is either
positive or negative definite and therefore P�1

5 is well

defined. As in Lorentz covariant theories [20,25] we define
the spin operator components Sa as linear combinations of
the components of W5�,

Sa ¼ A½W5
a � BW54P

a�; (14)

where the coefficients A and B depend only on the five-
momentum P�. We find A and B from the requirement that

the usual commutation relations for the spin operator hold:

½Sa; Sb�� ¼ i�abcSc: (15)

Substituting (14) into (15), this gives us a system of two
equations,

A2ðP5 � BP2Þ ¼ A; A2BP5 ¼ �AB:

For nonzero B, the system is solved by

A ¼ �P�1
5 ; B ¼ 2P5

P2
; (16)

while for B ¼ 0 we get

A ¼ P�1
5 : (17)

The first solution is singular in the rest frame limit jPj ! 0,
so it is excluded. The second one brings the spin operator in
the form

Sa ¼ P�1
5 W5

a: (18)

In terms of the Galilei group generators, the spin operator
is written as

S ¼ J� P�1
5 ½K� P�: (19)

From the relations (10) and (11), we obtain

½Sa; P��� ¼ 0; ½Ja; Sb�� ¼ i�abcSc;

i.e. Sa behaves like a three-dimensional vector under rota-
tions, being invariant under translations.
In contrast with the spin operator in Lorentz covariant

theories, which transforms in a noncovariant way under
Lorentz boosts, the spin operator given by Eq. (19) is
invariant under Galilean boosts as well,

½Ka; Sb�� ¼ 0:

An alternative way of introducing the Lorentz covariant
spin operator is by performing a transformation to the rest
frame and identifying the spin components as a spatial part
of the axial vector W5�. Along the same lines, we perform

the transformation

W 0
5� ¼ G�

�W5�; (20)

P0
� ¼ G�

�P�; (21)

whereG�
� is a Galilean boost matrix chosen in such a way

that

P0
a ¼ 0:

For G�
�, we obtain

Ga
b¼	a

b; Ga
5¼�G4

a¼�Pa

P5

; G4
5¼ P2

2P2
5

;

G4
4¼G5

5¼1; G5
4¼0; Ga

4¼G5
a¼0:

(22)

Using (22) in Eq. (21), this yields

P0
4 ¼ Pð0Þ

4 ;

demonstrating that (22) is a transformation to the rest
frame.
From Eq. (20), we also have

W 0
54 ¼ 0; W 0

5a ¼ W5a;

i.e. W5a is invariant under Galilean boosts. The operator

W 0
5� ¼ ðW5a; 0; 0Þ

has only three nonvanishing components, and we use them
to introduce the spin operator given again by Eq. (18).
The invariant I3 becomes

I3 ¼ P�2
5 SaS

a;

so that P2
5I3 is related to the magnitude of spin.

Multiplying both sides of Eq. (19) by P, we get the
relation PS ¼ PJ, which holds in the zero inertial mass
subspace as well. It shows that the component of the
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angular momentum J is along the direction of the linear
momentum P; i.e. helicity can be defined in all subspaces.

B. Galilean Dirac Lagrangian

The five-dimensional Dirac field model is given by the
Lagrangian density:

L 0ðxÞ ¼ ��ðxÞði
�@� � kÞ�ðxÞ; (23)

where k is given by Eq. (6), and �ðxÞ is a free Dirac field
defined on the five-dimensional manifold Gð4þ1Þ with the

Galilean metric in Eq. (2). The Dirac matrices 
� in
the extended space-time are four dimensional and obey
the usual anticommutation relations:

f
�; 
�g ¼ 2g��:

We use the following representation, which is convenient
for a particle-antiparticle interpretation [26]:


a ¼ 0 i�a

i�a 0

 !
;


4 ¼ 1ffiffiffi
2

p 1 1

�1 �1

 !
;


5 ¼ 1ffiffiffi
2

p 1 �1

1 �1

 !
;

where �1, �2, and �3 are the usual Pauli matrices. The
adjoint field is defined as

��ðxÞ ¼ �yðxÞ
0;

where


0 ¼ 1ffiffiffi
2

p ð
4 þ 
5Þ ¼ 1 0
0 �1

� �
:

The Euler-Lagrange equations of motion for �ðxÞ and
its adjoint ��ðxÞ, respectively, are
ði
�@� � kÞ�ðxÞ ¼ 0; ��ðxÞði
�@Q� þ kÞ ¼ 0; (24)

where �@Q� ¼ ð@�Þ�. The action corresponding to the
Lagrangian density in Eq. (23) is assumed to be invariant
with respect to the inhomogeneous Galilean transforma-
tions of coordinates.

A transition from one reference frame x to another x0
through a Galilean transformation corresponds to a homo-
geneous linear transformation of the Dirac field,

�ðxÞ ! �0ðx0Þ ¼ ��ðxÞ; (25)

where � is determined by the parameters of the Galilean
transformation.

In the manner of Lorentz covariant theories, � ¼ 1 for
space-time translations and for translations in the x5 direc-
tion. For spatial rotations, we have

� ¼ expf12
a
b�abccg; (26)

where ð1; 2; 3Þ are angles of rotation.
Now we compute� for Galilean boosts; that is, R ¼ I in

Eq. (1). From Eq. (1), we find the Galilean boost trans-
formations for the derivatives:

@0a ¼ @a � �a@5;

@04 ¼ @4 � �a@a þ 1
2j�j2@5;

@05 ¼ @5;

(27)

where ð@a; @4; @5Þ and ð@0a; @04; @05Þ are the derivatives with

respect to the original and the new coordinates,
respectively.
According to Galilean covariance, the Dirac equation

must retain its form in terms of the transformed coordinates
and fields; that is,

ði
�@0� � kÞ�0ðx0Þ ¼ 0: (28)

By multiplying Eq. (28) on the left by ��1, and by using
Eqs. (25) and (28), we obtain the following relations:

��1
a� ¼ 
a � �a
4; ��1
4� ¼ 
4;

��1
5� ¼ 
5 þ �a
a þ 1
2j�j2
4:

From these relations we find the transformation matrix for
Galilean boosts in the form

� ¼ expf12
4
a�ag ¼ 1þ 1
2


4
a�a; (29)

where we have used ð
4Þ2 ¼ 0.

C. Non-Galilean boosts

The Lagrangian density given by Eq. (23) preserves its
form under the replacement

x4 $ x5; 
4 $ 
5: (30)

This symmetry reflects itself in the invariance of the action
with respect to non-Galilean transformations of the form

x 0 ¼x��x5; x04¼x4�ðx ��Þþ 1
2j�j2x5; x05¼x5;

(31)

the transformation matrix for the Dirac field becoming

� ¼ 1þ 1
2


5
a�a: (32)

In accordance with (30), the transformation (31) can be
obtained from the Galilean one by applying x4 $ x5, and
the transformation matrix given by Eq. (32) results from
Eq. (29) by replacing 
4 with 
5. The parameters �a play
the same role as the parameters �a in the Galilean boosts,

�a ¼ dxa

dx5
¼ �c

dxa

ds
;

where the ‘‘velocity’’ dxa=ds determines the rate of change
of xa in the fifth coordinate s.
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Although I1 is invariant with respect to the transforma-
tion (31) as well, the invariance of I2 and I3 is violated. In
particular, the energy of the system in two reference frames
connected by (31) is the same, E0 ¼ E, while the inertial
mass transforms as follows:

m ! m0 ¼ m� ð�pÞ
�c

þ 1

2
j�j2 E

�c2
: (33)

Assuming that �c is the same in all reference frames, either
Galilean or non-Galilean, we conclude from Eq. (8) that

m0

m
¼ m0

m0
0

; (34)

i.e. the inertial and rest masses are transformed in such way
that the productmm0 remains unchanged. This gives us the
following expression for the transformed rest mass m0

0 in

terms of the original m and m0:

m0
0¼m0

0
@1�ð�pÞ

k

ffiffiffiffiffiffiffiffiffi
2m0

m

s
þ1

2
j�j2

�
1þp2

k2

�
m0

m

1
A�1

: (35)

The transformation (31) can be referred to as a boost in the
x direction with velocity dx=ds or a non-Galilean boost. A
general form of non-Galilean transformations includes
rotations in the way similar to Eq. (1).

D. Conserved currents and generators

As a consequence of the invariance of the action with
respect to translations, our model has five conserved
currents grouped together as an energy-momentum-mass
tensor T��:

@�T
�� ¼ 0; (36)

where

T�� ¼ ��ðxÞi
�@��ðxÞ �L0g
��:

By integrating Eq. (36) over a volume limited in the x4

direction by two four-dimensional hypersurfaces, x4 ¼
constant, and of infinite extent in other directions, and by
assuming that the fields vanish at the infinite boundaries,
we obtain the time-independent five-momentum of the
Galilean Dirac field:

P� ¼
Z

d3xdx5
ffiffiffi
2

p
T5�:

This gives the explicit expressions for generators P4 and
P5:

P4 ¼
Z

d3xdx5
ffiffiffi
2

p ð� ��ðxÞði
a@a � kÞ�ðxÞ
� ��ðxÞi
5@5�ðxÞÞ (37)

and

P5 ¼
Z

d3xdx5
ffiffiffi
2

p
��ðxÞi
4@5�ðxÞ: (38)

While the first term in the right-hand side of Eq. (37)
represents the kinetic and mass term contributions to the
total energy, which have the same form as in four-
dimensional relativistic theories, the x5 dependence intro-
duces a new type of interaction and therefore a new type of
energy contribution.
We rescale the generators P4 and P5 and define the

Hamiltonian H and the total mass M of the system as
follows:

�cP4 ¼ H;
1

�c
P5 ¼ M; (39)

As in the case of Lorentz covariant theories, we can
introduce the Belinfante tensor

��� ¼ T�� � 1
2@�½ ��ðxÞF����ðxÞ�; (40)

where

F��� � 
�F �� � 
�F �� � 
�F ��

and

F �� ¼ � i

4
½
�; 
���;

which satisfies the same conservation law as T��,

@��
�� ¼ 0; (41)

and provides us with the same expression for the time-
independent five-momentum:

P�
� �

Z
d3xdx5

ffiffiffi
2

p
�5� ¼ P�: (42)

This means that ��� can also be regarded as the energy-
momentum-mass tensor. The explicit expression for��� is

��� ¼ 1
2
��ðxÞið
�@

$� þ 
�@
$�Þ�ðxÞ �L0g

��; (43)

where a @b
$ � 1

2 ½a@b� ð@aÞb�, ��� being symmetric,

��� ¼ ���.
The invariance of the action with respect to spatial

rotations and boosts gives us another set of conserved
currents:

@�M
�;�� ¼ 0; (44)

where

M�;�� � x���� � x����: (45)

The conservation ofM�;�� is provided by the symmetry of
���. Integrating Eq. (45) in the same way as in the case of
translations, we obtain the time-independent tensor

M�� ¼
Z

d3xdx5
ffiffiffi
2

p
M4;��: (46)
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For spatial components of indices � and �, Mab is the
angular momentum tensor related to rotations in the xaxb

planes. As in Lorentz covariant models, Mab consists of
two parts,

Mab ¼ Mab
0 þ Sab;

where

Mab
0 �

Z
d3xdx5

ffiffiffi
2

p ðxaT4b � xbT4aÞ

is the orbital part of Mab, while

S ab �
Z

d3xdx5
ffiffiffi
2

p
��ðxÞ
4F ba�ðxÞ

is its spin part.
The tensor Mab has three independent components that

can be represented by the vector Ja in (3),

Ja � Ja0 þ Sa;

where Ja0 ¼ ð1=2Þ�abcMbc
0 . The spin part of this vector is

S ¼ 1ffiffiffi
2

p
Z

d3xdx5 ��ðxÞ
4��ðxÞ;

which is often called the Dirac spin operator, where

�a ¼ �a 0
0 �a

� �
¼ i

2

að
4
5 � 
5
4Þ:

The Galilean covariant and Dirac spin operators are related
as

S ¼ S � P�1
5 ½K� P� þ J0: (47)

Like S, the Dirac spin operator S is invariant under
Galilean boosts. In particular, under the transformation
(22) �a transforms as follows:

�a ! ��1�a� ¼ �a þ i
4�abc
b Pc

2P5

;

where � is given by Eq. (29) with va ¼ Pa=P5, while S
does not change. In the rest frame, the last two terms in the
right-hand side of Eq. (47) vanish, so the operators S and S
coincide. However, there is an important difference be-
tween the two spin operators. The Dirac spin is not, in
general, conserved in time. This is specific to Galilean
covariant theories in ð4þ 1Þ dimensions.

When we set � ¼ a and � ¼ 4 or vice versa, Eq. (46)
gives us the Galilean boost generator

Ka ¼ Ma4 ¼ x4Pa �
Z

d3xdx5
ffiffiffi
2

p
xaT55: (48)

The spin part of Ma4 is

Sa4 ¼ 1ffiffiffi
2

p
Z

d3xdx5 ��ðxÞFa44�ðxÞ:

Since Fa44 ¼ 0, it vanishes and does not contribute to
Eq. (48).

E. Nonconservation of Dirac spin

The remaining nonzero components of the tensor (46)
are M45 and Ma5. The conservation of

M45 ¼ x4P4 �
Z

d3xdx5
ffiffiffi
2

p
x5�55 (49)

is another form of Eq. (42) for � ¼ 4. Using Eq. (41), we
can rewrite P4 as

P4 ¼ d

dx4

Z
d3xdx5

ffiffiffi
2

p
x5�55:

Integrating this expression over x4, this gives us the time-
independent quantity represented by Eq. (49).
The component ~Ka � Ma5 is a generator of non-

Galilean boosts. In contrast with the Galilean boost gen-
erator, it has a nonvanishing spin part

~S a � Sa5 ¼ 1ffiffiffi
2

p
Z

d3xdx5 ��ðxÞ
4 ~�a�ðxÞ; (50)

where ~�a � ��a
5.
The nonzero commutation relations including ~Ka are

½Ja; ~Kb�� ¼ i�abc ~Kc;

½Pa; ~Kb�� ¼ igabP4;

½ ~Ka; P5�� ¼ iPa

[compare to the corresponding commutators in (3)]. In
addition, we get

½Ka; ~Kb�� ¼ �i�abcJc � igab ~Q;

i.e. the Galilean and non-Galilean boost generators do not

commute, ~Q � M45 playing the role of the central charge.

The nonzero commutation relations for ~Q are

½ ~Q;Ka�� ¼ iKa; ½ ~Q; ~Ka�� ¼ �i ~Ka;

½ ~Q;P5�� ¼ iP5; ½ ~Q;P4�� ¼ �iP4:

The nonconservation in time of the Dirac spin is repre-
sented as

d

dx4
S ¼ 1ffiffiffi

2
p

Z
d3xdx5 ��ð
4½~��r� � ½~��r�
4Þ�;

(51)

being related to the spin part of the non-Galilean boost
generator.
The x4 $ x5 symmetry and the role of the x5 coordinate

become more obvious if we represent the four-component
spinor �ðxÞ as a set of two two-component spinors �1ðxÞ
and �2ðxÞ as follows:

�ðxÞ ¼ �1ðxÞ
�2ðxÞ

� �
:

For the linear combinations of these spinors,
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�ðxÞ ¼ �1ðxÞ
�2ðxÞ

� �
� �1ðxÞ þ�2ðxÞ

�1ðxÞ ��2ðxÞ
� �

; (52)

the Dirac equation given in Eq. (24) reduces to the system
of two equations

@4�1 ¼ ip��2; @5�2 ¼ �ipþ�1; (53)

where

p� � 1ffiffiffi
2

p ð�a@a � kÞ:

We see that the second component �2 is not dynamically
independent. Its time evolution is completely determined
by �1, while the x

5 dependence of the first component �1

is governed by�2. Acting on both sides of these equations
by @5 and @4, respectively, this gives us

@4@5�1 ¼ p�pþ�1; @4@5�2 ¼ p�pþ�2;

i.e. the second order form of these equations is the same.
The generators of the Galilei Lie algebra can be ex-

pressed in terms of �1 only. For instance, the generators
of translations and the spin operator take the form

P� ¼
Z

d3xdx5�y
1 i@��1

and

S a ¼ 1

2

Z
d3xdx5�y

1�
a�1:

However, �2 contributes to the spin part of the non-
Galilean boost generator:

~S a ¼ � 1ffiffiffi
2

p
Z

d3xdx5�y
1�

a�2

¼ 1ffiffiffi
2

p
Z

d3xdx5�y
1�

apþi@�1
5 �1;

making its density nonlocal in x5.
Equation (51) becomes

d

dx4
Sa ¼ 1ffiffiffi

2
p

Z
d3xdx5@5ð@�1

5 �y
1�

ap�pþ@�1
5 �1Þ:

Because of the nonlocality in x5, d
dx4

Sa does not vanish

unless the x5 coordinate is compactified and/or boundary
conditions on @�1

5 �1 are imposed.

III. REDUCTION TO ð3þ 1Þ DIMENSIONS

The reduction to ð3þ 1Þ dimensions is performed by
factoring the x5 coordinate out of the original field�ðxÞ as
[6]

�ðxÞ ¼ e�im �cx5cþðx; tÞ: (54)

The field cþðx; tÞ is a nonrelativistic Fermi field which
represents particles with positive inertial massm in ð3þ 1Þ
dimensions. The integral over x5, for instance in Eqs. (37)

and (38), is then interpreted as
R
dx5 ! liml!1ð1=lÞ�Rl=2

�l=2 dx
5, where l is an arbitrary length; i.e. the x5 coor-

dinate is first compactified and factorized and then inte-
grated out.
In two reference frames connected by the reduced

Galilean transformation ðx; x4Þ ! ðx0; x04Þ, the fields
c 0þðx0; t0Þ and cþðx; tÞ are related as

c 0þðx0; t0Þ ¼ e�i�ðx;tÞ�cþðx; tÞ; (55)

where, in addition to the transformation matrix � dis-
cussed above, we have a space-time-dependent phase fac-
tor with

�ðx; tÞ � m �c½ðRxÞ � �� 1
2j�j2x4�: (56)

This phase factor is caused by the nontrivial cohomology
of the Galilei group [16,27].
The ansatz (54) breaks the invariance of the original

theory with respect to non-Galilean boosts. Assuming for a
moment that the field �ðxÞ in (54) transforms under non-
Galilean boosts in accordance with that invariance, i.e. like
in Eq. (25) with � given by Eq. (32), this yields

c 0þðx0; t0Þ ¼ eiðm0�mÞ �cx5�cþðx; tÞ
or

@5c
0þðx0; t0Þ ¼ iðm0 �mÞ �cc 0þðx0; t0Þ;

where ðx0; t0Þ and ðx; tÞ are related by the transformation
(31), while m0 � m according to Eq. (33). Therefore, even
if we start with a Galilean reference frame in which
cþðx; tÞ is x5 independent, non-Galilean boosts bring us
to a non-Galilean one where the factorization (54) does not
hold.
The ansatz (54) is not invariant under translations in the

x5 direction either. However, the factor expf�im �cdg,
which appears in Eq. (54) after the translation x5 ! x5 þ
d, can be removed by performing a global phase
transformation:

cþðx; tÞ ! eim �cdcþðx; tÞ:
With the factorization given by Eq. (54), the total mass of
the system is

M ¼ mNþ:

The symbol Nþ,

Nþ �
Z

d3xN þðx; tÞ ¼
Z

d3x
ffiffiffi
2

p
�cþðx; tÞ
4cþðx; tÞ;

(57)

is the number of particles. We assume that the particles
have the electric chargeþ1, so that Nþ stands for both the
total number of particles and the total electric charge.
By substituting this factorization into the action, we

rewrite the Lagrangian density of Eq. (23) as
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L 0ðxÞ ! L0;þðx; tÞ ¼ �cþðx; tÞði
 ��@
$

�� � kIþÞcþðx; tÞ;
(58)

where �� runs from 1 to 4, and the matrix Iþ is defined by

I� ¼ I �m �c

k

5;

I being the identity matrix. Below we will also use
the matrix I� that differs from Iþ in the sign of m.
Equation (58) is the effective Lagrangian density in
ð3þ 1Þ dimensions. The corresponding action is invariant
under global phase transformations of the field cþðx; tÞ
and under reduced Galilean transformations of coordinates
ðx; x4Þ ! ðx0; x04Þ.

A. Nonrelativistic Fermi field in ð3þ 1Þ dimensions

The Euler-Lagrange equation of motion for the field
cþðx; tÞ is

ði
 ��@ �� � kIþÞcþðx; tÞ ¼ 0: (59)

Representing the field cþðx; tÞ as

cþðx; tÞ ¼ c 1;þðx; tÞ
c 2;þðx; tÞ

� �
;

and introducing the independent and dependent fields,
�1;þðx; tÞ and �2;þðx; tÞ, respectively, in the same way as

above for the Dirac field in ð4þ 1Þ dimensions,

�þðx; tÞ ¼ �1;þðx; tÞ
�2;þðx; tÞ

� �
� c 1;þðx; tÞ þ c 2;þðx; tÞ

c 1;þðx; tÞ � c 2;þðx; tÞ
� �

;

(60)

we bring the system given by Eq. (59) to the following
form:

i@4�1;þþp��2;þ¼0; pþ�1;þ�m �c�2;þ¼0; (61)

where

p� � 1ffiffiffi
2

p ð�a@a � kÞ;

i.e. the independent field �1;þðx; tÞ obeys a Schrödinger-

type equation. For k ¼ 0, the rest mass is equal to zero, and
this system coincides with the Lévy-Leblond equations
[12]. In what follows, we will assume that m ¼ m0.

Another way of separating the independent and the
dependent fields is by introducing the four-component
spinors

þ ¼ 1ffiffiffi
2

p I�
4cþ (62)

and

�þ ¼ 1
2I�


4
5cþ (63)

for the independent and dependent fields, respectively. The
inverse transformation is

cþ ¼ 1

4

5
4I�þ þ 1

2
ffiffiffi
2

p 
4I��þ: (64)

The equations of motion become

i@4þ ¼ � 1

2
ffiffiffi
2

p ði
a�@a � kð
0 þ IÞÞ�þ;

k

2
��þ ¼

�
i
a@a þ k

2
�

�
þ;

(65)

where

� � 1ffiffiffi
2

p ð
4 � 
5Þ þ 2iF 45;

�2 ¼ 0:

Equations (65) reproduce Eq. (61) if we takeþ and �þ in
the form

þ ¼ �1;þ
0

� �
; �þ ¼ �2;þ

0

� �
:

With the transformation, Eq. (60), and eliminating �2;þ in

favor of �1;þ, this gives us the Lagrangian density in the

form

L 0;þðx; tÞ ¼ �y
1;þðx; tÞ

�
iffiffiffi
2

p @4 þ pþp�
k

�
�1;þðx; tÞ

reflecting once more the Schrödinger nature of the inde-
pendent field.

B. Quantization

As in Lorentz covariant models, the general solution to
Eq. (59) may be expanded in terms of the plane wave
solutions as in Ref. [26]:

cþðx; tÞ ¼ 1

ð2�Þ3=2
X
r

Z
d3paðrÞðpÞuðrÞðpÞe�ip ��x

��
;

where r ¼ 1, 2, the scalar product p ��x
�� is

p ��x
�� ¼ �pxþ E

�c
x4;

with E given by Eq. (7), and aðrÞðpÞ and ayðrÞðpÞ are
annihilation and creation operators of positive mass
particles.

The positive-energy spinors uðrÞðpÞ ¼ uðrÞðp; E;mÞ obey
the equations

ð
 ��p �� � kIþÞuðrÞðpÞ ¼ 0

and the orthonormality conditions

�u ðrÞðpÞuðsÞðpÞ ¼ 	rs; (66)

which are solved by

uðrÞðpÞ ¼ duð
 ��p �� þ kI�ÞuðrÞð0Þ;
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where

du ¼ 1

2k

�
4m �c2

Eþ 3m �c2

�
1=2

:

The rest frame spinors uðrÞð0Þ ¼ uðrÞðp ¼ 0Þ are taken in
the form

uðrÞð0Þ ¼ �ðrÞð0Þ
0

 !
; (67)

with

�ð1Þð0Þ ¼ 1
0

� �
; �ð2Þð0Þ ¼ 0

1

� �
:

By using Eqs. (66) and (67), we find

X
r

uðrÞðpÞ �uðrÞðpÞ ¼ 1

2k
ð
 ��p �� þ kI�Þ:

Quantizing the field cþðx; tÞ by assuming that the annihi-
lation and creation operators obey the anticommutation
relations,

faðrÞðpÞ; ayðsÞðqÞg ¼ 	rs	ðp� qÞ;
we obtain, at equal times x4 ¼ y4 ¼ t, the following anti-
commutator:

fcþðx; tÞ; �cþðy; tÞg ¼ Dþðx� yÞ
� 1

2k2
ffiffiffi
2

p 
4r2	ðx� yÞ;

where

Dþðx� yÞ � 1

2
ð
0 þ IÞ	ðx� yÞ þ 1

2k
i
a@a	ðx� yÞ:

The appearance of terms that do not vanish unless k ! 1
is the contribution of the dependent field to the anticom-
mutator. For the independent field we have

f�1;þðx; tÞ; �y
1;þðy; tÞg ¼ 	ðx� yÞ;

which is the standard equal-time anticommutation relation
for Fermi fields.

C. One-particle states

The plane wave solution expansion for the independent
field �1;þðx; tÞ is

�1;þðx; tÞ ¼ 1

ð2�Þ3=2
X
r

Z
d3paðrÞðpÞuðrÞþ ðpÞe�ip ��x

��
;

where

uðrÞþ ðpÞ ¼ uðrÞ1 ðpÞ þ uðrÞ2 ðpÞ ¼ duði�apa þ 2kÞ�ðrÞð0Þ
and

uðrÞþ ð0Þ ¼ �ðrÞð0Þ:

The spinors uðrÞþ ðpÞ obey the same orthonormality condi-

tions as uðrÞðpÞ in Eq. (66).
Using the ansatz (54) in the expressions for generators

constructed in the previous section in the same way as in
the expression for the total mass, this gives us the corre-
sponding generators in ð3þ 1Þ dimensions. In terms of the
annihilation and creation operators, the generators Pa and
H, for instance, become

Paþ ¼ X
r

Z
d3ppaayðrÞðpÞaðrÞðpÞ

and

Hþ ¼ X
r

Z
d3pEpa

yðrÞðpÞaðrÞðpÞ

with

Ep ¼ p2

2m
:

The orbital angular momentum and Dirac spin are now
separately conserved. For the corresponding operators, we
get

Ja0;þ ¼ X
r;s

Z
d3payðrÞðpÞ

�
�
�i	rs�

abcpb

@

@pc

� Sa2;þðr; s;pÞ
�
aðsÞðpÞ

and

S aþ ¼ X
r;s

Z
d3payðrÞðpÞ½Sa1;þðr; sÞ þ Sa2;þðr; s;pÞ�aðsÞðpÞ;

respectively, where

Sa1;þðr; sÞ � 1
2�

yðrÞð0Þ�a�ðsÞð0Þ; (68)

Sa2;þðr; s;pÞ � d2u�
yðrÞð0Þfðpapb�

b � p2�aÞ
þ k�abcðpc�

b � pb�
cÞg�ðsÞð0Þ: (69)

The numbers Sa1;þðr; sÞ can be represented as entries of the
following ð2� 2Þ matrices in the ðr; sÞ space:

S11;þ ¼ 1

2

0 1

1 0

 !
;

S21;þ ¼ 1

2

0 �i

i 0

 !
;

S31;þ ¼ 1

2

1 0

0 �1

 !
;

while Sa2;þðr; s;pÞ satisfies
paS

a
2;þðr; s;pÞ ¼ 0:
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The Sa2;þðr; s;pÞ contributions to the orbital angular mo-

mentum and Dirac spin operators are opposite in sign, so
that these contributions cancel each other in the expression
for the total angular momentum.

For bilinear combinations of Sa1;þðr; sÞ and Sa2;þðr; s;pÞ,
we get the conditionsX

q

Sa1;þðq; rÞSa1;þðs; qÞ ¼
3

4
	rs; (70)

X
q

Sa2;þðq; r;pÞSa2;þðs; q;pÞ ¼ 2d2up
2	rs; (71)

andX
q

ðSa1;þðq; rÞSa2;þðs; q;pÞ þ Sa2;þðq; r;pÞSa1;þðs; qÞÞ

¼ �2d2up
2	rs: (72)

Let us now introduce one-particle states as

jr;p;þi � ayðrÞðpÞj0;þi; (73)

where j0;þi is the vacuum state that contains no particles,

aðrÞðpÞj0;þi ¼ 0 for all r and p;

and belongs to the zero inertial mass subspace. Since

Mjr;p;þi ¼ mjr;p;þi;
Paþjr;p;þi ¼ pajr;p;þi;
Hjr;p;þi ¼ Epjr;p;þi;

the states jr;p;þi are characterized by the mass m, the
momentum p, and the energy Ep.

On one-particle states, the Galilean covariant spin
operator

Saþ ¼ Saþ � 1

m �c
"abcKbþPcþ þ Ja0;þ;

where Kaþ is the Galilean boost generator in ð3þ 1Þ di-
mensions, reduces to the Dirac one,

Saþjr;p;þi ¼ Saþjr;p;þi;
so that we can use any of them. With the conditions given
by Eqs. (70)–(72), we get

ðSaþÞ2jr;p;þi ¼ 3
4jr;p;þi

indicating that jr;p;þi are spin-1=2 states.
For a given momentum p, there are two different states

ðr ¼ 1; 2Þ, corresponding to two possible values of the
third component of spin. The action of S3þ on the states
jr;p;þi is as follows:

S3þj1;p;þi ¼ ð12 � f1Þj1;p;þi þ f2j2;p;þi;
S3þj2;p;þi ¼ �ð12 � f1Þj2;p;þi þ f?2 j1;p;þi;

where

f1 ¼ p2
1 þ p2

2

p2 þ 4k2
; f2 ¼ ðp1 þ ip2Þðp3 � i2kÞ

p2 þ 4k2
;

and

f2f
?
2 ¼ f1ð1� f1Þ:

For p1 ¼ p2 ¼ 0, we have p ¼ ð0; 0; p3Þ, f1 ¼ f2 ¼ 0,
and

S3þj1;p3;þi ¼ 1
2j1;p3;þi;

S3þj2;p3;þi ¼ �1
2j2;p3;þi;

so that the states j1;p3;þi and j2;p3;þi correspond to the
values of 1=2 and ð�1=2Þ of the third component of spin,
respectively.
For p1 � 0, p2 � 0, j1;p;þi and j2;p;þi are not

eigenstates of S3þ. However, we can introduce their linear
combinations

j ";p;þi � 1� f1
f2

j1;p;þi þ j2;p;þi;

j #;p;þi � j1;p;þi � 1� f1
f?2

j2;p;þi

which correspond to the same values of the third compo-
nent of spin:

S3þj ";p;þi ¼ 1
2j ";p;þi;

S3þj #;p;þi ¼ �1
2j #;p;þi:

This is in agreement with the fact that for nonrelativistic
particles the third component of spin can be used to enu-
merate the spin states for any value of momentum [28].
According to Eqs. (55) and (56), in two Galilean refer-

ence frames connected by a pure Galilean boost, the com-
ponents of the momentum of a particle are related as
follows:

p ! p0 ¼ p�m �c�:

Choosing � as

� ¼
�
p1

m �c
;
p2

m �c
; 0

�
;

we can always make a transition from a reference frame
with p1 � 0, p2 � 0 to another one in which these two
components of the momentum are zero and the enumera-
tion of spin states is straightforward. This represents an-
other way of identifying spin states for nonzero values of
p1 and p2.

D. Particle-antiparticle system

We can study the system of n particles of different mass
as well. In this case, the theory includes n sectors corre-
sponding to masses m1; m2; . . . ; mn. The masses can be
either positive (particles) or negative (antiparticles).
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Let us consider a particle-antiparticle system with
masses m and �m, respectively. In addition to the field
cþðx; tÞ we get the field c�ðx; tÞ representing antiparti-
cles. The Lagrangian density of the system becomes

L 0ðx; tÞ ¼
X

i¼ðþ;�Þ
L0;iðx; tÞ

¼ X
i¼ðþ;�Þ

�c iðx; tÞði
 ��@
$

�� � kIiÞc iðx; tÞ: (74)

The mass superselection rule forbids the superposition of
states of different mass in ð3þ 1Þ dimensions. However,
we can use a linear combination of cþðx; tÞ and c�ðx; tÞ
in transition from ð4þ 1Þ dimensions to ð3þ 1Þ dimen-
sions [26].

As in the case with a single mass sector, we can start
with the five-dimensional Dirac field model given by
Eq. (23) and then perform the reduction to ð3þ 1Þ dimen-
sions by applying the factorization

�ðxÞ ¼ e�im �cx5cþðx; tÞ þ eim �cx5c�ðx; tÞ: (75)

By substituting this factorization into the corresponding
action, we find that the particle and antiparticle fields
contribute separately. The mixed terms contain the oscil-

lating factors e�2im �cx5 so that their contribution to the
action vanishes and the effective Lagrangian density in
ð3þ 1Þ dimensions takes the form given in Eq. (74).

The conserved currents and generators, including the
Dirac spin operator, contain two parts, one for the positive
mass sector and the other for the negative one. For in-
stance, P ¼ Pþ þ P�, K ¼ Kþ þK�, etc. The total
mass of the system becomes

M ¼ mðNþ � N�Þ;
where N� stands for the total number of antiparticles being
given by Eq. (57) with cþðx; tÞ replaced by c�ðx; tÞ.

The exception is the Galilean covariant spin operator.
The operators Sþ and S� are not additive [25], and in the
case of nonzero total mass the total spin operator S is given
by

S ¼ P5;þ
P5

Sþ þ P5;�
P5

S� þ J0;rel;

where

P5 ¼ P5;þ þ P5;�; P5;� ¼ �m �cN�;

and

J0;rel � 1

P5

ð½K� � Pþ� þ ½Kþ � P��Þ

�
�
P5;�
P5

J0;þ þ P5;þ
P5

J0;�
�

can be interpreted as an orbital angular momentum related
to the relative motion of particles and antiparticles.
The states that only contain particle and antiparticle pairs

belong to the zero inertial mass subspace. For those states
the Galilean covariant spin operator cannot be defined.
The field c�ðx; tÞ obeys the equation

ði
 ��@ �� � kI�Þc�ðx; tÞ ¼ 0

and can be quantized in the same way as the field cþðx; tÞ.
Let bðrÞðpÞ and byðrÞðpÞ be annihilation and creation opera-
tors of antiparticles and j0;�i be the vacuum state for the
negative mass sector:

bðrÞðpÞj0;�i ¼ 0 for all r and p:

One-antiparticle states are defined as

jr;p;�i � byðrÞðpÞj0;�i; (76)

being characterized by the mass ð�mÞ, the momentum p,
the energy ð�EpÞ, and the spin polarization r. The total

vacuum state that contains neither particles nor antiparti-
cles is

j0i ¼ j0;þi � j0;�i:
We can connect one-particle and one-antiparticle states

by making use of the transition operators

T�þðr; sÞ �
Z

d3pbyðrÞðpÞaðsÞðpÞ

and

Tþ�ðr; sÞ �
Z

d3payðrÞðpÞbðsÞðpÞ

with

Ty
þ�ðr; sÞ ¼ T�þðs; rÞ:

The operator T�þðr; sÞ transforms a one-particle state with
the spin polarization s to a one-antiparticle state with the
spin polarization r, while Tþ�ðr; sÞ performs an inverse
transformation:

T�þðr; sÞjs;p;þi � j0;�i ¼ j0;þi � jr;p;�i;
Tþ�ðs; rÞj0;þi � jr;p;�i ¼ js;p;þi � j0;�i:

In the transition performed by T�þðr; sÞ the mass of the
state decreases by 2m, and in the transition performed by
Tþ�ðr; sÞ it increases by 2m. This is reflected in the follow-
ing commutation relations:

½Tþ�ðr; sÞ;M�� ¼ �2mTþ�ðr; sÞ;
½T�þðr; sÞ;M�� ¼ 2mT�þðr; sÞ:

On one-particle (-antiparticle) states,

Ja0;reljs;p;þi � j0;�i ¼ Ja0;relj0;þi � jr;p;�i ¼ 0

and

Sajs;p;þi � j0;�i ¼ Saþjs;p;þi � j0;�i;
Saj0;þi � jr;p;�i ¼ Sa�j0;þi � jr;p;�i;
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so that the operators Tþ�ðr; sÞ and T�þðr; sÞ commute with
ðSaÞ2,

½Tþ�ðr; sÞ; ðSaÞ2��j0;þi � jr;p;�i ¼ 0;

½T�þðr; sÞ; ðSaÞ2��js;p;þi � j0;�i ¼ 0;

indicating that the magnitude of spin does not change in
these transitions.

The transition operators can be used to connect many-
particle states, too. Since the mass gap between the positive
and negative mass sectors is 2m, the mass difference
between such many-particle states should be an integer

multiple of 2m. By applying ayðrÞðp1ÞayðsÞ�
ðp2Þ . . .ayðtÞðpNþÞ and byð �rÞðq1Þbyð �sÞðq2Þ . . . byð�tÞðqN�Þ, for
instance, on the total vacuum state, we create a many-
particle state with Nþ particles and N� antiparticles. The
operator T�þðr; sÞ transforms this state to a state with
ðNþ � 1Þ particles and ðN� þ 1Þ antiparticles, and the
operator Tþ�ðr; sÞ transforms it to a state with ðNþ þ 1Þ
particles and ðN� � 1Þ antiparticles. In transitions between
many-particle states, the magnitude of spin is not, in gen-
eral, conserved.

IV. DISCUSSION

1. In ð4þ 1Þ dimensions, the characteristics of spin of
the Galilean covariant Dirac field are shown to be similar to
those of the Lorentz covariant one in ð3þ 1Þ dimensions.
The Galilean covariant and Dirac spin operators are intro-
duced in the same way as in the relativistic case, the
Galilean covariant spin operator being invariant under
time translations. The Dirac spin is not conserved in
time, and this is related to an extra symmetry with respect
to non-Galilean transformations. These transformations
include boosts that connect a Galilean reference frame to
non-Galilean ones in which the system has the same energy
but different values of the inertial and rest masses. It is

shown that the non-Galilean boost generator has a non-
vanishing spin part and its spin density is responsible for
the nonconservation of Dirac spin.
Reduction to ð3þ 1Þ dimensions eliminates the extra

symmetry and makes boosts to non-Galilean reference
frames impossible. The Dirac spin of the resulting non-
relativistic Fermi field is conserved. On one-particle states
the Galilean covariant and Dirac spin operators coincide
and can be equally used in the construction of spin states.
2. The inertial mass of a nonrelativistic particle is an

invariant quantity, while its rest mass can be, in principle,
changed. Two regimes are possible. (i) The inertial and rest
masses are equal; in this case the Galilean theory can be
obtained as a limit of a Lorentz covariant one, and the
parameter �c can be identified with the speed of light c.
(ii) The rest mass differs from the inertial one, then there is
no direct relation between the Galilean and Lorentz cova-
riant theories, and the parameter �c differs from c. Whether
transitions between these two regimes are allowed or not
depends on the choice of interactions. If we could design
interactions that change the rest mass, this would allow the
system to undergo such transitions. If in these transitions
the rest energy is conserved, then mc2 ¼ m0 �c

2, and this
gives us the following relation between the parameters �c
and c:

�c ¼ c

�
1þ�m

m

��1=2
;

where �m ¼ m0 �m is the difference between the rest
and inertial masses.
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[22] A. Horzela and E. Kapuścik, Electromagnetic Phenomena
3, 63 (2003).

[23] V. Bargmann, Ann. Math. 59, 1 (1954).
[24] R. Jackiw and V. P. Nair, Phys. Lett. B 480, 237 (2000); C.
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