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We describe in detail a physical situation in which instantons are necessarily complex, not just Wick

rotations of classical solutions to Euclidean spacetime. These complex instantons arise in the semiclas-

sical evaluation of vacuum pair production rates, based on Feynman’s worldline path integral formulation.

Even though the path integral is a sum over all real closed trajectories in spacetime, the semiclassical

description of nonperturbative pair production is dominated by closed classical trajectories that are

generically complex. These closed trajectories contain segments associated with nonperturbative instanton

suppression factors as well as segments producing phase factors that incorporate quantum interference

effects. For a class of time-dependent electric fields we implement this procedure and demonstrate

excellent quantitative agreement with alternative methods.
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I. INTRODUCTION

The Heisenberg-Schwinger effect is the nonperturbative
production of electron-positron pairs from the quantum
electrodynamical (QED) vacuum under the influence of
an external electric field [1–5]. The general quantum field
theoretic formalism for computing the associated proba-
bility was developed by Schwinger in terms of the QED
effective action [3]. However, there are still serious ob-
stacles to the implementation of a reliable quantitative
computation when the external electric field is taken to
be that for realistic high-intensity laser pulses. Interest in
this problem has been revived recently, spurred by new
experimental developments in ultra-high-intensity lasers
[6]. Models of laser pulses with one-dimensional inhomo-
geneities, such as time-dependent linearly polarized elec-
tric fields are well understood (although the question of
pulse sequence optimization still stands), but the situation
is much less clear for fields with multidimensional inho-
mogeneities, such as occur naturally in more realistic
physical configurations of colliding high-intensity, spa-
tially focussed, laser pulses [7]. This is a pressing matter,
because recent theoretical progress suggests [8] that the
critical peak field intensity required to observe this effect
may in fact be several orders of magnitude lower than the
estimate based on assuming a constant electric field [1,2],
raising hopes that the effect may be observed experimen-
tally in the not too distant future. In turn, this also raises
important unresolved questions about back-reaction and
cascading effects [9].

In the quantum field theoretic approach [3], the technical
problem is to compute the nonperturbative imaginary part
of the ‘‘effective action’’, �½A� ¼ �iℏ lndet½mc� i 6D�,
where the Dirac operator, 6D � ��ð@� � i e

ℏc A�Þ, defines
the coupling between electrons and the applied (classical)
electromagnetic field A� that represents the field produced

by the laser pulse. The conventional approach to this
problem in the case of a one-dimensional inhomogeneity

reduces it to a 1d scattering problem [10–12], invoking
Feynman’s picture of antiparticles as particles traveling
backward in time [13]. There are then many possible
approaches to compute pair production rates and the mo-
mentum spectra of the produced particles [10–12,14–17].
However, these one-dimensional methods do not general-
ize in a simple, efficient way to the multidimensional
situation. There have been recent developments for multi-
dimensional fields concerning finite-plane-wave fields
[18], and the numerical implementation [19] of the
Dirac-Heisenberg-Wigner formalism [20]. On the other
hand, a natural semiclassical formulation of the general
problem is in terms of worldline instantons, a semiclassical
approximation to Feynman’s worldline path integral ex-
pression for the QED effective action. This method has
been quantitatively confirmed for certain one-dimensional
field configurations, and the general formalism has been
outlined for multidimensional field configurations [21–23].
A technical obstacle to the implementation of the worldline
instanton method in higher dimensions has been the
physical interpretation of the complex classical trajectories
that naturally arise. The purpose of this paper is to clarify
the physical meaning of such complex classical trajecto-
ries, using a one-dimensional example for which we can
confirm our results by comparison with other methods.
Usually instantons appear as solutions to the Euclidean

classical equations of motion, in which x0 ! x4 ¼ ix0. In
fact, this definition is too restrictive for the worldline
picture, and a more natural definition is to seek solutions
with imaginary proper-time: � ! s ¼ i�, as proposed by
Rubakov et al. [24]. In simple textbook cases this trans-
formation to imaginary proper-time goes hand-in-hand
with the Wick rotation to imaginary (Euclidean) time,
but there are examples in which the spacetime instanton
trajectories x�ð�Þ should be viewed as lying in complex
Minkowski space [24,25]. In the case of QED, as studied
here, the situation is even more interesting because
the gauge coupling produces a Lorentz-force term in the
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relativistic classical equations of motion, €x� ¼ F��ðxÞ _x�,
which acquires a factor of ‘‘i’’ after rotating to imaginary
proper time, so that the instanton equations are manifestly
complex from the very beginning. [This is analogous to the
effect of a magnetic field on a tunneling problem in non-
relativistic quantum mechanics [26]; it breaks time-
reversal symmetry and makes the tunneling instanton
equations complex.] In this paper, we show that for the
problem of QED vacuum pair production, complex instan-
tons are needed to capture the physics of quantum inter-
ference between distinct instanton trajectories. This
phenomenon of quantum interference arises for laser
pulses with temporally localized electric field pulse shapes
having subcycle structure, such as ‘‘carrier-envelope-
phase’’ or ‘‘chirp’’ features [27–29]. In addition, appropri-
ately chosen temporal sequences of pulses can produce
significant coherent enhancement in certain momentum
modes, an explicit time-domain realization of multiple-
slit interference [30]. We treat both scalar and spinor
QED to show explicitly how the interference terms are
affected by the quantum statistics of the particles. We
also note as motivation for studying complex instantons
in QED the fact that complex trajectories are well-known
in multidimensional tunneling phenomena in nonrelativis-
tic quantum mechanics [31–35]. Furthermore, the physical
meaning of complex classical trajectories has recently been
further elucidated by the study of PT-symmetry in quantum
mechanics [36] The role of complex actions in path inte-
grals has been studied in [37].

In Sec. II, we recall the worldline instanton formalism
for the QED effective action, and explain why complex
instanton solutions appear. In Sec. III, we present the
worldline instanton solution for the more general problem
of finding the momentum spectrum for the produced
electron-positron pair, and state the appropriate boundary
conditions for finding the semiclassically important solu-
tions of the complex classical equations of motion.
Quantitative results are presented in Sec. IV, demonstrating
excellent agreement with alternative methods of solution,
and Sec. V contains our conclusions. An Appendix dis-
cusses an important and interesting numerical instability
that occurs for certain ranges of values of the longitudinal
momentum, and we present a simple resolution of this
instability by taking advantage of the reparametrization
invariance of the worldline path integral.

II. WORDLINE INSTANTON FORMALISM

A. Worldline form of the QED effective action

Following Schwinger [3], we compute the nonperturba-
tive pair production probability P from the imaginary part
of the effective action �eff½A� for the QED vacuum in a
prescribed classical background field A�ðxÞ:

P ¼ 1� e�2 Im½�eff �=ℏ � 2

ℏ
Im�eff½A� (1)

For physically relevant configurations, Im�eff½A�=ℏ is ex-
tremely small, which justifies the approximation in the last
step. The effective action �eff½A� is defined, for spinor and
scalar QED,, respectively, as (henceforth we set ℏ ¼ 1) [3]:

�
spinor
eff ½A� ¼ �i lndet½mc� i 6D� ¼ � i

2
tr ln½m2c2 þ 6D2�

(2)

�scalar
eff ½A�¼ i lndet½m2c2þD2

��¼ itr ln½m2c2þD2
��: (3)

The covariant derivative operator D� has been defined

above, in the Introduction, and we adopt the space-time
metric convention g�� ¼ diagð1;�1;�1;�1Þ. Both

Schwinger [3] and Feynman [38] interpreted these effec-
tive actions in terms of quantummechanical propagation in
four-dimensional spacetime:

�spinor
eff ½A� ¼ i

2

Z 1

0

dT

T
e�iðm2c2=2ÞT tr e�iH spT;

H sp ¼ 1

2
6D2 (4)

�scalar
eff ½A� ¼ �i

Z 1

0

dT

T
e�iðm2c2=2ÞT tr e�iH scT;

H sc ¼ 1

2
D2

�: (5)

The factor of 1=2 inH is a convention [38], introduced by
simple analogy with the form of the Hamiltonian in non-
relativistic quantum mechanics. The integration variable T
can be thought of as the total propagation ‘‘time’’, which
leads naturally [38] to a path integral expression for the
effective action. For scalar QED:

�scalar
eff ½A�¼�i

Z 1

0

dT

T
e�iðm2c2=2ÞTZ d4x

Z
xð0Þ¼xðTÞ

Dxe�iS½x�

(6)

where S is the classical action for a relativistic scalar
charged particle, coupled to the gauge field A�ðxÞ, prop-
agating around the closed trajectory x�ðuÞ with a propa-
gation period T:

S½x�ðuÞ;T� ¼
Z T

0

�
1

2

dx�

du

dx�

du
� e

c

dx�

du
A�ðxÞ

�
du

�
Z T

0
L

�
x;
dx

du

�
du: (7)

The paths x�ðuÞ are closed paths in four-dimensional
spacetime, parametrized by a parameter u, which we relate
to proper-time in the following subsection. For spinor QED
there is an additional spin interaction, because 6D2 ¼ D2

� �
e
2c �

��F��, and the effective action for spinor QED can

be written with an additional Grassmann path integration
[39–41]:
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�spinor
eff ½A�¼ i

2

Z 1

0

dT

T
e�iðm2c2=2ÞTZ d4x

Z
xð0Þ¼xðTÞ

Dxe�iS½x�

�
Z
Dc e�i

R
T

0
ðic �ðdc �=duÞ�iðe=cÞc �F

��ðxÞc �Þdu

(8)

where S is as in (7).

B. Semiclassical approximation: worldline instantons

The path integrals in (6) and (8) are of course only
analytically calculable in special idealized cases, so we
must resort to approximation methods. For nonpertubative
questions such as the the pair production probability one
can use the numerical worldline approach [42], or a semi-
classical evaluation based on worldline instantons [21,22].
In this paper we follow the worldline instanton approach,
in which we search first for a saddle-point solution to
the bosonic path integral by solving the classical equations
of motion for relativistic motion of a charged spinless
particle:

d2x�

du2
¼ e

c
F��ðxÞdx�

du
: (9)

A closed trajectory solution to these classical equations is
called a ‘‘worldline instanton’’. In certain physical situ-
ations, such as for nonperturbative pair production from
vacuum, these classical solutions give a dominant contri-
bution to the path integral in (6) and (8).

The classical Eqs. (9) have an obvious first integral, the

‘‘energy’’ H ¼ p�
dx�

du � L ¼ 1
2

dx�
du

dx�

du , which is a con-

stant of motion. This constant is fixed by making also a
saddle-point approximation to the T integral, which gives a
critical condition:

m2c2

2
þ @S

@T
¼ 0: (10)

Since the variation of the action with respect to the period
T, namely @S

@T , is equal to minus the conserved energy, this

implies the normalization

dx�

du

dx�

du
¼ m2c2: (11)

Using the relation, dt
d� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v2=c2

p
, between time t ¼

x0=c and proper-time �, this identifies the propagation
parameter u as a multiple of the proper-time:

u ¼ �

m
: (12)

We can therefore identify mT with the total proper-time of
the quantum mechanical evolution in (5). [We shall see
later, in the Appendix, that a different scaling of the proper-
time evolution parameter leads to some numerical advan-
tages in certain situations.]

The critical saddle-point period Tc is determined by the
condition (10), and when we evaluate the full exponent of
the T integral in (6) we obtain Hamilton’s characteristic
function W½x�ðuÞ; 12m2c2� ¼ S½x�ðuÞ;T� þ 1

2m
2c2T. We

will refer to this as the classical action for the motion of
the relativistic charged particle to traverse its closed tra-
jectory with a prescribed energy, equal to 1

2m
2c2. This is

just the familiar Legendre transform of classical mechan-
ics, relating the action S½x;T� and the characteristic func-
tion W½x; E� ¼ S½x;T� þ ET, which implies: @S

@T ¼ �E,
and @W

@E ¼ T. Here, in this relativistic problem the role of

the energy E is played by 1
2m

2c2, in complete agreement

with Feynman’s interpretation of the Klein-Gordon and
Dirac equation in terms of proper-time [38] (based on
results of Fock and Nambu [43,44]). Thus, on the classical
solution, the characteristic function becomes

W

�
x�ðuÞ; 1

2
m2c2

�

¼
Z T

0

�
1

2

dx�

du

dx�

du
� e

c

dx�

du
A�ðxÞ þ 1

2
m2c2

�
du

�
Z T

0
p�

dx�

du
du: (13)

This is the classical function that appears in the exponent
after making a semiclassical approximation. Note that
there may be several classical saddle-point trajectories
x�ðuÞ relevant to the semiclassical approximation.

C. The need for complex worldline instantons

The worldline instanton approach was originally sug-
gested for QED with a constant background electric field
[21], then extended to QED in background fields with one-
dimensional inhomogeneities in [22], and a general for-
malism was also proposed for more general fields, based on
an analogy with Gutzwiller’s trace formula [23]. The most
difficult part of the computation is to find the semiclassi-
cally important classical trajectories. The first observation
is that we seek closed trajectory solutions; this is because
the effective action involves a trace, so that the quantum
mechanical path integral in (6) and (8) is expressed as a
sum over closed paths in four-dimensional spacetime. But
we still need to specify some initial conditions in order to
search for appropriate saddle-point solutions. Previously, it
had been suggested to look for closed trajectory solutions
to the Euclidean classical equations of motion [22,23],
obtained from (9) by a Wick rotation, x0 ! x4 ¼ ix0. We
show here that this prescription needs to be refined and
extended, in order to describe quantum interference
effects.
We begin with the formalism of Rubakov et al.

[24,25,34], that an instanton solution is associated with a
deformation of the contour of the T integral onto the
imaginary axis, so that we look for solutions with imagi-
nary ‘‘proper-time’’ parameter: u ! s ¼ iu. In the familiar
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case of scalar [nonderivative] couplings, the classical equa-
tions of motion acquire a sign change:

d2x�

du2
¼ � @VðxÞ

@x�
! d2x�

ds2
¼ þ@VðxÞ

@x�
: (14)

Note that the equations of motion remain real under this
operation. On the other hand, for the gauge coupling of the
QED case, imaginary proper-time introduces a factor of
‘‘i’’ into the classical equations of motion

d2x�

du2
¼ e

c
F��ðxÞdx�

du
! d2x�

ds2
¼ i

e

c
F��ðxÞdx�

ds
: (15)

Therefore, the instanton equations are generically com-
plex, and so the solutions will be generically complex, as
will be the classical action evaluated on such a solution.
This raises the question: what is the physical significance
of such complex classical solutions? We answer this ques-
tion in the remainder of this paper.

An important comment concerning previous work on
worldline instantons [21,22], as well as on early work on
the WKB scattering approach [10–12], is that they con-
centrated on two particular subclasses of problems. The
first class consists of time-dependent electric fields linearly
polarized along a particular spatial axis [say, the x3 axis],
so that the gauge field can be written with only one nonzero
component A3ðx0Þ. Classic cases are: A3ðx0Þ ¼ Ex0, for a
uniform field; A3ðx0Þ ¼ E=! sinð!x0Þ for a monochro-
matic sinusoidal field; A3ðx0Þ ¼ E=! tanhð!x0Þ for a tem-
porally localized single-pulse field. All these examples
have the important property that A3ðx0Þ is an odd function
of time. The second class of fields involves static but
spatially inhomogeneous fields represented by a scalar
potential A0ð ~xÞ. Now, observe that in each of these cases,
the complex classical equations of motion in (15) reduce
again to real equations if we combine the analytic continu-
ation, u ! s ¼ iu, with the Wick rotation, x0 ! x4 ¼ ix0,
and A0 ! A4 ¼ iA0. In the former case, this is only true if
A3ðx0Þ is an odd function. Otherwise, the equations remain
complex. This explains why the previous analyses were
able to produce consistent and correct results using as

worldline instanton equations the classical Euclidean
equations of motion with imaginary proper-time.
As a simple illustrative example, consider the case of a

constant electric field, of strength E. Then the classical

trajectories are hyperbolic paths: x0ðuÞ ¼ mc2

eE sinhðeEu=cÞ,
and x3ðuÞ ¼ mc2

eE coshðeEu=cÞ. These are not periodic

closed paths, but we can make them closed and periodic
if we take u ! s ¼ iu. We then obtain complex solutions,

x0 ¼ �i mc2

eE sinðeEs=cÞ, and x3 ¼ mc2

eE cosðeEs=cÞ, which
become real again when expressed in terms of the
Euclidean time x4 ¼ ix0. But the reality of the worldline
instanton solution in Euclidean spacetime is an ‘‘accident,’’
a direct result of A3ðx0Þ being an odd function of x0. For
this solution, the period is Tc ¼ 2�c

eE , and we can evaluate

the characteristic function (13) as:

W

�
x�ðuÞ; 1

2
m2c2

�
¼

Z ð2�c=eEÞ

0

�
p0

dx0

ds
þ p3

dx3

ds

�
ds

¼ i
Z ð2�c=eEÞ

0

�
dx0

ds

�
2
ds ¼ �i

m2c3�

eE
:

(16)

Then, the semiclassical approximation to the scalar QED
effective action leads to

Im �scalar
eff � Pe�iWinstanton � P e�ðm2c3�=eEÞ; (17)

which is the familiar result of Sauter [1], Euler and
Heisenberg [2], and Schwinger [3], and P is a simple
prefactor. Other examples in which the explicit worldline
instanton trajectories and actions can be evaluated in
closed form are given in [22], with results in agreement
with the corresponding WKB treatment [10,11] (including
also the prefactors).
In more realistic time-dependent electric fields, such as

those having an envelope structure as well as an oscillatory
structure, there are quantum interference effects, which can
produce both enhancement and suppression [27]. These
cases are associated with vector potentials that cannot be
written as an odd function of time, as sketched in Fig. 1.
The semiclassical analysis of such systems, incorporating
quantum interference, has been given in [28] using the

FIG. 1 (color online). Sketch of basic shapes of gauge fields [solid, blue curves] A3ðx0Þ and the corresponding electric field [dotted,
red, curves] E3ðx0Þ. In the first case, the gauge field is a monotonic odd function of time and the electric field is a single localized pulse.
In this case there are no quantum interference effects. For the next two cases, the gauge field is an even function of time, the electric
field is an odd function of time, and there are significant quantum interference effects, as discussed in [28] using WKB.
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WKB approach. Here, we explain how to solve these
quantum interference problems using the more general
formalism of worldline instantons. Since the worldline
instanton equations remain manifestly complex, we con-
front directly the problem of the physical meaning of
complex instantons. Our motivation for studying this class
of problems first is that we have results with which to
compare, so that we can quantitatively verify the validity
of our approach.

There may be several classical saddle-point trajectories,
x
�
ðjÞðuÞ, labeled by an index ðjÞ, and the imaginary part of

the effective action is then approximated by

Im �scalar
eff � X

j

P ðjÞe�iWðjÞ
instanton (18)

where WðjÞ
instanton is the characteristic function (13), eval-

uated on the jth saddle-point solution, and P ðjÞ is a (readily
calculable) prefactor. In the case of spinor QED, the
saddle-point trajectory is the same, but there is an addi-
tional spin factor coming from the evaluation of the
(Gaussian) spinor path integral in (8), evaluated on the

critical trajectory xðjÞcl ðuÞ [41]:
Im�spinor

eff ��X
j

P ðjÞdet1=2

�
�
���

d

du
� i

e

mc
F��ðxðjÞcl ðuÞÞ

�
e�iWðjÞ

instanton : (19)

The determinant spin factor can be computed straightfor-
wardly using the Gelfand-Yaglom method, since it only
involves ordinary differential operators, as can the prefac-
tors [22,23,41].

III. MOMENTUM SPECTRA FOR
PARTICLES PRODUCED IN TIME-DEPENDENT

ELECTRIC FIELDS

A. General formalism

In this section we extend the worldline instanton method
of [21,22] to compute not only the total probability of pair
production, but also the momentum spectrum of the pro-
duced particles. In the situation where the vector potential
A3ðx0Þ is a function only of x0, the spatial momenta of the
electron-positron pair, ~p ¼ ðp?; p3Þ, are good quantum
numbers and can be used to characterize the final states.
Furthermore, in a strong field the pair production is pre-
dominantly along the direction of the electric field, so we
can neglect p? and concentrate on the dependence of the
number of produced pairs on the longitudinal momentum
p3. Studies of temporally structured electric field pulses
have revealed an intricate dependence on p3, due to quan-
tum interference effects [27,28]. In this Section we show
that the analysis of this momentum dependence using
worldline instantons requires complex worldline instanton
trajectories, not simply Euclidean classical trajectories.

To address the momentum dependence we convert the
worldline path integral expressions (6) and (8) for the QED
effective action into phase space path integral expressions.
Since the only difference between spinor and scalar QED
in the semiclassical approximation is the spin factor deter-
minant in (19), we first concentrate on the scalar QED case
in order to find the instanton trajectories.

�scalar
eff ½A� ¼ �i

Z 1

0

dT

T
e�iðm2c2=2ÞT Z d4x

Z
xð0Þ¼xðTÞ

�Dx
Z

Dpe�i
R

T

0
ðp�ðdx�=duÞ�Hðx;pÞÞ (20)

where the classical Hamiltonian density is

Hðx; pÞ ¼ p�

dx�

du
� Lðx; _xÞ ¼ 1

2

�
p� þ e

c
A�ðxÞ

�
2
: (21)

Since the external field A� is independent of the spatial

coordinates ~x, the spatial path integral can be done, pro-

ducing delta functions in d ~p
du , thus imposing the conserva-

tion of spatial momentum. This means that the functional
integrals for the spatial momentum reduce to ordinary
integrals:

R
D3p ! R

d3p. Then we can convert the re-
maining phase space path integral over x0 and p0 back to a
coordinate space path integral, leading to a worldline path
integral expression in terms of a single coordinate x0ðuÞ,
parametrized by the spatial momenta ~p:

�scalar
eff ½A� ¼ �i

�
V3

Z
d2p?

Z
dp3

�Z 1

0

dT

T
e�iðm2c2=2ÞT

�
Z

dx0
Z
x0ð0Þ¼x0ðTÞ

Dx0e�iS½x0� (22)

where the classical action is:

S½x0ðuÞ� ¼
Z T

0

�
1

2

�
dx0

du

�
2 þ 1

2

�
p3 þ e

c
A3ðx0Þ

�
2 þ p2

?
2

�
du:

(23)

Recalling the scaling (12) between u and proper-time �,
this effective action expression (22) and (23) has the form
of a quantum mechanical path integral in the single (time)
coordinate x0ð�Þ, parametrized by the proper-time �, with

a ‘‘potential’’, Vðx0Þ ¼ � 1
2 ðp3 þ e

c A3ðx0ÞÞ2 � p2
?
2 , that de-

pends parametrically on the spatial momenta p3 and p?.
This agrees completely with the WKB picture of pair
production for time-dependent electric fields as a quantum
mechanical Schrödinger over-the-barrier scattering prob-
lem in the time-domain [10,11,28]. The argument of the ~p
integral in (22) has a nonperturbative imaginary part that
gives the probability of producing pairs with spatial mo-
mentum ~p.
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B. Semiclassical approximation
for momentum spectrum

We now make a semiclassical approximation to the
effective action in (22) and (23). First, we neglect the
transverse momenta, setting p? ¼ 0. This only affects
prefactor terms, and can easily be incorporated if desired,
and will not be important in what follows. Then the clas-
sical equation of motion is

d2x0

du2
¼ e

c

�
p3 þ e

c
A3ðx0Þ

�
@0A3ðx0Þ: (24)

This Eq. (24) is of course just the remaining nontrivial
classical equation of motion from (9) after integrating the

x3 equation to give dx3
du ¼ p3 þ e

c A3ðx0Þ, with p3 arising as

an integration constant. In [22], in computing the total pair
production rate rather than the momentum dependence,
this integration constant was taken to vanish, with a
Gaussian momentum integration producing certain prefac-
tor terms that were explicitly computed and shown to agree
with the WKB result [11]. Here we retain the p3 depen-
dence in the equation of motion (24) in order to find the
longitudinal momentum spectrum of the produced parti-
cles. Thus, the solution x0ðuÞ will depend parametrically
on p3, as will the classical action when evaluated on that
classical solution:

S½x0ðuÞ;T� ¼
Z T

0

��
dx0

du

�
2 � 1

2
m2c2

�
du: (25)

Here we have set p? ¼ 0 and used the proper-time relation

c2ð _x0Þ2 ¼ c2 þ 1

m2

�
p3 þ e

c
A3ðx0Þ

�
2
; (26)

which also expresses the existence of a first integral for the
equation of motion (24). The term � 1

2m
2c2T in (25)

cancels against a similar term in the T integral in (22),
and so the resulting exponent is the Hamilton characteristic
function, the action for a closed trajectory of fixed energy
1
2m

2c2:

W

�
x0ðuÞ; 1

2
m2c2

�
¼

Z T

0

�
dx0

du

�
2
du: (27)

Then, the imaginary part of the QED effective action, in
scalar and spinor QED, respectively, is given by:

Im �scalar
eff �

Z
dp3

X
j

P ðjÞe�iWðjÞ
instanton

ðp3Þ (28)

Im �
spinor
eff � �

Z
dp3

X
j

P ðjÞdet1=2
�
���

d

du

� i
e

mc
F��ðxðjÞcl ðu;p3ÞÞ

�
e�iWðjÞ

instanton
ðp3Þ (29)

where the sum is over all relevant semiclassical trajectories
(to be specified explicitly in the next subsection).

C. Boundary conditions for
the worldline instanton trajectories

We now specify the appropriate boundary conditions for
finding solutions to the classical equations of motion (24).
To find instanton solutions we expect to take u (and hence
T) to be imaginary. This corresponds to a deformation of
the contour of integration of the T integral [24]. This then
leads to (some) closed path trajectories. However, for
background gauge fields with nontrivial temporal struc-
ture, there can be more than one different instanton solu-
tion, and we need to be able to find all relevant instanton
trajectories and tie them together. Thus, we consider a
contour for u that can have ‘‘vertical’’ segments along
which the real part is constant, which we refer to as
instanton segments, and in addition we consider ‘‘horizon-
tal’’ segments along which the imaginary part of u is
constant, which we refer to as ‘‘interference’’ segments.
This situation is illustrated in Fig. 2. This leads to a
difference of sign in the equation of motion (24) for the
two types of solution.
Next, we specify the initial conditions. As mentioned at

the end of Sec. III A, the momentum spectrum problem is
equivalent to the WKB scattering problem treated in [28].
Motivated by this WKB analysis, we propose the boundary
condition that the classical worldline trajectories should
begin and end at WKB turning points, which are defined as
points where

m2c2 þ
�
p3 þ e

c
A3ðx0Þ

�
2 ¼ 0: (30)

These points lie in the complex x0 plane, and they occur in
complex conjugate pairs in the physically relevant case
where A3 is a real function of its argument. The turning
points move around in the complex plane as p3 varies, but
always remain in complex conjugate pairs. Given this
initial condition for x0, then because of (26), the corre-

sponding initial condition is that dx
0

du must vanish. Thus we

(1)

(3)

(2)

Re[u]

Im[u]

FIG. 2 (color online). Sketch of the complex contour in the
complex u plane, showing two distinct ‘‘instanton segments’’,
labeled (1) and (2), having constant real part of u, and an
‘‘interference segment’’, labeled (3), having constant imaginary
part of u, and connecting the two distinct instanton segments.
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are led to the initial condition for our semiclassical trajec-

tories: that the initial ‘‘velocity’’ vanishes, dx
0

du ¼ 0, and the

initial (and final) point is a turning point. We therefore seek
solutions as follows:

(i) Instanton segments: For an instanton segment, we
take a complex proper-time evolution parameter u
with constant real part, ReðuÞ ¼ constant, corre-
sponding to one of the vertical segments in the con-
tour depicted in Fig. 2. Therefore, we have the
following equations of motion to solve:

d2x0

du2
¼ � e

c

�
p3 þ e

c
A3ðx0Þ

�
@0A3ðx0Þ (31)

x0ðuinitialÞ ¼ x0ðjÞ; a turning point solution ofð30Þ
(32)

dx0

du

��������u¼uinitial

¼ 0 (33)

(ii) Interference segments: For an interference segment,
we take a complex proper-time parameter u with
constant imaginary part, ImðuÞ ¼ constant, corre-
sponding to one of the horizontal segments in the
contour depicted in Fig. 2. Therefore, we have the
following equations of motion to solve:

d2x0

du2
¼ þ e

c

�
p3 þ e

c
A3ðx0Þ

�
@0A3ðx0Þ (34)

x0ðuinitialÞ¼x0ðjÞ; a turning point solution ofð30Þ
(35)

dx0

du

��������u¼uinitial

¼ 0: (36)

Notice the different sign in the equations of motion for
the two types of segment.

The important observation is that these trajectories go
from one turning point to another. For an instanton segment
the trajectory goes from one turning point to its complex
conjugate, while for an interference segment the trajectory
goes from one turning point to another distinct turning
point with different real part [if the field A3ðx0Þ is such
that there is another such distinct turning point]. This is
illustrated in Fig. 3. In Fig. 3(a) we see two different
types of instanton segments for the case A3ðx0Þ ¼
E=! tanhð!x0Þ. When p3 ¼ 0, the turning points lie on
the imaginary x0 axis, and the instanton trajectory goes
along the imaginary axis, connecting the turning point to
its complex conjugate. This explains why theWick rotation
to imaginary time, x4 ¼ ix0, is sufficient for this case [22].
However, when p3 � 0, two things change: first, the

turning points move off the imaginary axis into the com-
plex plane, and second, the trajectory is no longer linear.
Thus, in this case with p3 � 0 we must consider truly
complex instanton trajectories for x0ðsÞ, even though for
this vector potential there are no interference trajectories
(reflecting the simple single-bump structure of the corre-
sponding electric field).
The second example, in Fig. 3(b), is a case in which

interference effects do arise, taking the example A3ðx0Þ ¼
E=!=ð1þ ð!x0Þ2Þ, that was studied in [28] using WKB
methods. Here, there are four turning points, in two com-
plex conjugate pairs, and they never all lie on the imagi-
nary x0 axis. Thus, the naive Wick rotation to imaginary
time is not sufficient for this problem. Nevertheless, using
the prescription described above we find both instanton and
interference trajectories, as illustrated in Fig. 3(b). There
are instanton segments connecting complex conjugate
turning points, and interference trajectories connecting
the two distinct turning points having different real parts.
As p3 changes, all four turning points move, and the shape
of the trajectories change, but the pattern remains the same.
The total contribution to the imaginary part of the

effective action is a sum of various types of closed trajec-
tories, composed of both instanton and interference seg-
ments. It is best illustrated by the example in Fig. 4, again
for the field A3ðx0Þ ¼ E=!=ð1þ ð!x0Þ2Þ, which has
two pairs of complex conjugate turning points. We
can form closed instanton trajectories by going from one

Im(x^0)

Re(x^0)
Re (x^0)

Im(x^0)

FIG. 3 (color online). Sketch of basic shapes of worldline
instanton trajectory segments. The blue segments are instanton
segments and the red ones are interference segments. In the first
plot, we show the turning point pair for two different values of
p3. When p3 ¼ 0 the pair lie on the imaginary x0 axis, and the
instanton trajectory lies entirely on the imaginary x0 axis. This is
the usual Wick rotation to imaginary time. The other curve
shows the situation for p3 � 0, in which case the turning points
lie off the imaginary axis [note they still form a complex
conjugate pair], and the instanton trajectory connecting them
is curved. So this solution is not captured by a Wick rotation. In
the second plot, we show the situation for a field with four
turning points, in two complex conjugate pairs. Here, even for
p3 ¼ 0, the turning points lie off the imaginary axis, and there
are two types of trajectories. The blue instanton trajectory
connects a complex conjugate pair of turning points, while the
red interference trajectory connects two different turning points,
not a complex conjugate pair.
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turning point to its complex conjugate and then back again.
This is the usual textbook [45] instanton contribution

e�jWclj to Im�, corresponding to the first two plots in
Fig. 4. There are two such contributions because there
are two such instantons, one for each complex conjugate
pair. [It is an (intentional) accident of this example that the
two instantons give exactly the same contribution—for
other fields with two separate instantons, one may have a

dominant e�jWðjÞ
cl
j factor]. But there are other closed trajec-

tories composed of both instanton and interference terms,
forming a closed loop through all four turning points, as
shown in the last two plots in Fig. 4. The sum over closed
trajectories in (28) and (29) corresponds in this case to the
sum over the four distinct closed trajectories shown in
Fig. 4. The generalization to fields with more pairs of
turning points is clear, and follows the same pattern as
the WKB approach in [28]. Note that closed trajectories
consisting of an interference trajectory and its reverse do
not contribute to the imaginary part of the effective action.

For spinor QED, the only change is that we must include
the determinant factors appearing in (29). For this class of
fields, these determinant factors reduce to factors of �1.
This is because we can write the spin factor as [22]

tr ½ei
R
ð1=2Þ���F

��� ¼ 4 cos

�
i

2

Z Tc

0
@0A3ðx0Þdu

�
: (37)

The integral around the closed loop can be separated into
instanton and interference segments, and one finds that

i

2

Z
segment

@0A3ðx0Þdu ¼ �

2
: (38)

For an instanton segment, this follows from a substitution
y ¼ iðp3 þ e

c A3ðx0ÞÞ, while for an interference segment,

we substitute y ¼ ðp3 þ e
c A3ðx0ÞÞ. This gives a net result of

cosðm�=2Þ for a closed trajectory with m segments. Thus,
for example, in the first two trajectories of Fig. 4 there are
two segments, so there is a spin factor minus sign, which
combines with an overall factor of ð�1Þ to give a positive
imaginary part of the spinor effective action. On the other
hand, for the latter two trajectories shown in Fig. 4 there

are four segments, so there is a positive spin factor, and so
these trajectories contribute with the opposite sign. For
closed trajectories containing 2m segments we get a net
spin factor of cosðm�Þ. This, along with the global sign
difference between scalar and spinor QED is a reflection of
the role of quantum statistics in determining the sign of
quantum interference terms, and the pattern of signs agrees
with the pattern found in the WKB treatment of quantum
interference in vacuum pair production [28].

IV. QUANTITATIVE RESULTS

A. One dominant pair of turning points

In this section, we compute the momentum spectrum of
pairs created by a potential with just one dominant pair of
turning points. We choose the common example of an
exactly soluble gauge field:

AðtÞ ¼ �E0

!
tanhð!tÞ; EðtÞ ¼ E0sech

2ð!tÞ: (39)

While this gauge field yields an infinite number of turning
points in the complex plane, the semiclassical amplitude is
dominated by one single pair of turning points lying closest
to the real x0 axis [28]. There is therefore no quantum
interference, and neglecting prefactors, the expectation
value of the number of pairs produced with longitudinal
momentum p3 follows from (28) and (29) as

N scalarðp3Þ � N spinorðp3Þ � e�iWinstantonðp3Þ (40)

where Winstanton is evaluated using (27), and iWinstantonðp3Þ
is real and positive. When p3 ¼ 0 there are simple explicit
formulae for the closed trajectories [22], but when p3 � 0
the complex classical closed trajectories are given in terms
of inverse elliptic functions, which are cumbersome.
Instead, we use a direct numerical integration, for each
p3, of the classical equations of motion (31)–(33). A
typical trajectory is shown in Fig. 5. We then compute
the classical action Winstanton in (27), evaluated on this
classical solution. The resulting approximate expression
(40) for the particle number is plotted in Fig. 6 as a function

FIG. 4 (color online). Sketch of the four different complex instantons for the field in (41), which has four complex turning points in
the complex x0 plane, shown as solid circles. In the first two figures, the instanton goes from a turning point to its complex conjugate
and back again, while in the last two figures the closed trajectory is composed of both instanton and interference trajectories. The
difference between the last two is the sense of propagation around the loop.
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of the longitudinal momentum p3, showing excellent
agreement with other methods (as discussed in [28]).

B. Two pairs of turning points

A more interesting example is provided by a field that
induces quantum interference amongst the produced parti-
cles. As in [28], we consider the field

AðtÞ ¼ E0

!

1

1þ!2t2
; EðtÞ ¼ 2E0!t

ð1þ!2t2Þ2 ; (41)

which has precisely two pairs of (complex conjugate) turn-
ing points in the complex x0 plane. For each value of
longitudinal momentum p3, we integrate the classical
equations of motion with their initial conditions, as given
in both (31)–(33) in (34)–(36). This procedure produces
four different types of closed trajectories, of the form
sketched in Fig. 4. A numerical example of an interference
trajectory is shown in Fig. 7. For each such trajectory, we
then compute the classical action Winstanton in (27), eval-
uated on this classical solution. As p3 varies, the turning
points move, so each trajectory also changes, as does the
classical action. For the instanton-type trajectories,
iWinstanton is real and positive, while for the interference
trajectories iWinstanton has both real and imaginary parts,
coming from the instanton and interference segments,
respectively. From (28) and (29) we obtain the the semi-
classical approximations:

N scalarðp3Þ � e�iWð1Þ
instanton

ðp3Þ þ e�iWð2Þ
instanton

ðp3Þ

þ e�iWð3Þ
instanton

ðp3Þ þ e�iWð4Þ
instanton

ðp3Þ (42)

N spinorðp3Þ � e�iWð1Þ
instanton

ðp3Þ þ e�iWð2Þ
instanton

ðp3Þ

� e�iWð3Þ
instanton

ðp3Þ � e�iWð4Þ
instanton

ðp3Þ (43)

where the superscripts label the trajectory type as shown in
Fig. 4. Note that for the spinor case the determinant factors
in (29) are þ1 for the purely instanton closed trajectories,
but are equal to �1 for the interference trajectories, as
explained in the previous section and also confirmed nu-
merically. This encodes the difference between spinor and

−5 −4 −3 −2 −1 0

−10

−5

0

5

10

Re(x0)

Im
(x

0)

−2.0−1.5−1.0

Re(x0)

−5

0

5

Im(x0)

−5
0 5

Im(x3)

FIG. 5 (color online). The first plot shows the complex instanton trajectory in the complex x0 plane for the single-pulse electric field
in (39). The trajectory goes from one turning point to its complex conjugate and then back again. The second plot shows a 3D
representation of the same trajectory. The field parameters are: E0 ¼ 0:1, ! ¼ 0:1, and p3 ¼ 0:5, all in units set by the electron mass
scale m.

−1.0 −0.5 0.5 1.0
p3

1. × 10−12

2. × 10−12

3. × 10−12

4. × 10−12

5. × 10−12

FIG. 6 (color online). The expected particle number, as a
function of longitudinal momentum p3, for both scalar and
spinor QED. The dashed (red) line shows result (40) evaluated
on the complex worldline instanton trajectory, while and thick
(blue) line shows the WKB result from [28]. The field parame-
ters are: E0 ¼ 0:1, and ! ¼ 0:1, in units set by the electron mass
scale m.
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scalar QED in the semiclassical worldline instanton
approximation.

In fact, for this particular example, the different instan-

ton segments are symmetrical, so that iWð1Þ ¼ iWð2Þ ¼
ReðiWð3ÞÞ ¼ ReðiWð4ÞÞ, and ImðiWð3ÞÞ ¼ �ImðiWð4ÞÞ.
Therefore, in this case we can write

N scalarðp3Þ � 4e�iWð1Þ
instanton

ðp3Þcos2
�
Im

�
i

2
Wð3Þ

instantonðp3Þ
��

(44)

N spinorðp3Þ � 4e�iWð1Þ
instanton

ðp3Þsin2
�
Im

�
i

2
Wð3Þ

instantonðp3Þ
��
:

(45)

These expressions are plotted in Fig. 8, as functions of the
longitudinal momentum p3, showing excellent agreement
with the exact numerical result and with the WKB results
from [28].
In the course of this analysis we found an interesting

numerical instability that arises for certain values of p3,
when the classical trajectories approach poles in the com-
plex plane [which typically arise for localized fields]. In
the Appendix we present a simple modification to the
numerical procedure that avoids this instability, taking
advantage of the einbein formulation of the worldline
effective action, due to reparameterization invariance of
the associated path integral.

−3 −2 −1 0 1 2 3
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Im
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−2
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2Im(x3)

FIG. 7 (color online). The first plot shows a closed trajectory, in the complex x0 plane, with both instanton and interference
segments. The second plot shows a 3D representation of the same trajectory. The field parameters are: E0 ¼ 0:1, ! ¼ 0:1, and p3 ¼
1:85, all in units set by the electron mass scale m.

0.8 1.0 1.2 1.4 1.6
p3
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3. × 10−12

4. × 10−12
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2.5 10 12

3. 10 12

spinor

FIG. 8 (color online). The expected particle number, as a function of longitudinal momentum p3, for both scalar and spinor QED.
The dot-dashed (black) line shows the result of an exact numerical computation. The solid (red) line shows the result (40) evaluated on
the complex worldline instanton trajectory, while and dashed (blue) line shows the WKB result from [28]. The field parameters are:
E0 ¼ 0:1, and ! ¼ 0:1, in units set by the electron mass scale m. The first plot is for spinor QED, and the second for scalar QED.
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V. CONCLUSIONS

To conclude, we have shown that it is necessary to
consider complex classical trajectories in the semiclassical
approximation of the worldline path integral expression for
the QED effective action, in order to obtain the pair pro-
duction probability and the associated momentum spec-
trum of the produced pairs. This is somewhat surprising,
because the original path integral is of course a sum over
real closed trajectories in Minkowski space-time. To ex-
tract the momentum dependence and to incorporate the
effects of quantum interference it is not sufficient to con-
sider classical solutions in Euclidean space-time (where
time is pure imaginary); one must consider genuinely
complex classical solutions. The semiclassically relevant
closed classical trajectories, the ‘‘worldline instantons’’,
are composed of segments that we have called ‘‘instanton
segments’’, for which the proper-time parameter has con-
stant real part, and ‘‘interference segments’’, for which the
proper-time parameter has constant imaginary part.
Generically, all these closed trajectories are complex, and
so do not arise as solutions to the Euclidean classical
equations of motion. With just a single instanton segment
this is precisely the instanton prescription of Rubakov et al.
[24]. If there is more than one instanton solution, then in
addition we need to include the interference segments that
tie the instanton segments together. These interference
trajectories, as shown in the last two plots in Fig. 4, pro-
duce classical actions iW that have both real and imaginary
parts, with the imaginary parts characterizing the quantum
interference effects. For spinor QED there are additional
determinant factors that give additional minus signs for
interference terms. This is how the effect of quantum
statistics enters the semiclassical worldline instanton ap-
proximation. The agreement with the WKB analysis of
[28], which in turn agrees very well with exact results, is
extremely good.

We end with some brief comments about lessons from
this work for the more general case, when the gauge field
background represents a more complicated laser configu-
ration, for example, colliding short-pulse beams with spa-
tial focussing. In this case, the old-style WKB approaches
are not directly useful, but a possible semiclassical ap-
proach is provided by the worldline formalism. As empha-
sized already by Fock, Nambu, Feynman and Schwinger
[3,38,43,44], the problem reduces to a problem of tunnel-
ing in four-dimensional Minkowski space-time. As this
work has shown, we need to consider complex classical
paths, and furthermore the trajectories contain both instan-
ton segments and interference segments. It would be inter-
esting to investigate the applicability of various numerical
and analytical methods that have been developed for
multidimensional tunneling, in the context of non-
relativistic two- and three-dimensional problems in chemi-
cal and molecular physics [31,32,46]. These methods
also typically involve complex trajectories, in the spatial

coordinates, and analytic continuation of the time coordi-
nate to imaginary values. Such an extension would have to
take into account the derivative coupling inherent to a
gauge theory, whereas most previous results are for

Hamiltonians of the form H ¼ ~p2

2m þ Vð ~xÞ. (In the nonrela-

tivistic quantum mechanical context the analogue would
correspond to tunneling in the presence of a magnetic field,
as has been studied by Dykman [26].) The QED extension
would also have to take into account the relativistic cau-
sality features of Minkowski space, which result in the very
different physical role played by electric and magnetic
components of the background field. An interesting class
of fields to investigate would be finite-plane-wave fields
[18], which involve both space and time, and which exhibit
analogous quantum interference effects.
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APPENDIX: AN IMPORTANT
NUMERICAL TECHNICALITY

For fields with localized structures, there arises an in-
teresting numerical technicality due to the fact that in
addition to turning points in the complex x0 plane, there
can also be poles of the function A3ðx0Þ in the complex x0

plane. For example, for the field A3ðx0Þ ¼ E=! tanhð!x0Þ
these poles lie along the imaginary axis, at x0 ¼
ðnþ 1=2Þ�i=!, while for the field A3ðx0Þ ¼ E=!=ð1þ
ð!x0Þ2Þ there are precisely two poles, at x0 ¼ �i=!. The
locations of these poles do not depend on p3. However, as
p3 is varied, we have observed that beyond certain values
of p3 the turning points can move into positions where the
classical trajectories, obtained by the numerical method
outlined in Sec. III C, come close to the poles. In these
cases, when the trajectory passes very close to the pole, the
numerical integration of the equation of motion can lead to
the trajectory ‘‘jumping’’ to another branch, so that it does
not in fact continue to the expected final turning point. This
applies to both the instanton and interference trajectories,
depending on the location of the turning points relative to
the poles.
Similar numerical instabilities [although for slightly

different reasons] have been observed in semiclassical
studies of multidimensional quantum mechanical prob-
lems, where complex instantons are also required [34].
One possible solution is the prescription of Rubakov and
collaborators: in fact, one only needs to minimize the
imaginary part of the action in the path integral, which
in turn means that the appropriate initial condition for
instanton segments is to take just the imaginary part of
the initial velocity to vanish. This amounts to a stationary
phase approximation. Then the real part of the initial
velocity is a free parameter, and one should vary with
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respect to this parameter in order to find those trajectories
that give a minimum imaginary part of the classical action.
Implementing this prescription in our gauge theory case we
find that in the situation where the classical trajectories do
not approach the poles, our prescription produces com-
pletely equivalent results for the classical action on the
trajectory segments. When the longitudinal momentum
reaches a threshold value beyond which the trajectories
‘‘jump’’ to another branch, we can cure the situation by
only fixing the imaginary part of the initial velocity to
vanish. By adjusting the real part of the initial velocity,
we can force the trajectory to go to the expected final
turning point, and the correct minimum imaginary action
is obtained by tuning the real part of the initial velocity to
the threshold value where the jumping is first avoided.
While this procedure can indeed be implemented, in these
QED problems we found it also to be extremely delicate
numerically. This is because one needs to compute the
proper-time interval T of the trajectory segment very pre-
cisely in order to evaluate the classical action accurately. A
small error in the period T can produce a significant
error in the classical action, iWcl, because the classical
Lagrangian changes sign rapidly in the neighborhood
of T.

We have found another, more numerically stable, way to
overcome the problem of classical trajectories approaching
poles. The key observation is that we can relax the proper-
time normalization condition (11), by taking advantage of
the well-known reparametrization invariance of the path
integral [40,41]. Thus, for scalar QED, instead of (6), we
have the more general expression:

�scalar
eff ½A� ¼ �i

Z
Dn�ðnÞ

Z 1

0

dT

T
e�iðm2c2=2Þ

R
T

0
nðuÞdu

�
Z
xð0Þ¼xðTÞ

d4x
Z

D4xe�iS (A1)

where n represents the auxiliary einbein field, which is to
be fixed with the aid of the�ðnÞ ‘‘gauge-fixing’’ functional
[40,41]. The action including the einbein field is:

S½x�ð�Þ� ¼
Z T

0

�
1

2n

dx�
du

dx�
du

� e

c
_x�A

�ðxÞ
�
du: (A2)

Previously, we chose the ‘‘gauge-fixing’’ condition n ¼ 1,
but we are free to rescale proper-time by any factor.
In particular, note that our choice of imaginary u for
the instanton segments can be thought of as taking
n ¼ i.

Including this einbein factor, the classical equations of
motion, together with the constant of integration, read:

d2x�

du2
¼n

e

c
F��ðxÞdx�

du
;

dx�

du

dx�

du
¼n2m2c2: (A3)

Therefore, instead of numerically integrating the equations
of motion (31)–(36), we can integrate the following
coupled equations, with associated initial conditions:

d2x0

du2
¼ �n

e

c

dx3
du

@0A3ðx0Þ
d2x3
du2

¼ �n
e

c

dx0

du
@0A3ðx0Þ

x0ðuinitialÞ ¼ x0ðjÞ; a turning point solution ofð30Þ

x3ðuinitialÞ ¼ 0;
dx0

du

��������u¼uinitial

¼ 0

dx3
du

��������u¼uinitial

¼ �inmc: (A4)

The choice n ¼ 1 gives the interference segments from
before, while the choice n ¼ i gives the instanton segments
as before. Now, to find the instanton segments we choose
n ¼ ið1þ ibÞ, and for the interference segments we
choose n ¼ ð1þ ibÞ, for some real b. We can tune b so
that the trajectories avoid the poles. Finally, given such a
trajectory, we compute the associated classical action as

W

�
x0ðuÞ; 1

2
m2c2

�
¼

Z T

0

1

n

�
dx0

du

�
2
du (A5)

As an illustration of this procedure, consider the field (41)
with two sets of complex conjugate turning points. In the
first plot in Fig. 9, we see that for p3 ¼ 3 the interference
trajectories do not connect the different pairs of turning
points, as expected, but go off to infinity. This is with the
choice n ¼ 1. We can cure this by tuning n to take the
value n ¼ 1� 0:74i, with the resulting trajectories shown
in the second plot of Fig. 9. This choice of n is chosen so

−4 −2 2 4
Re(x0)

−10

−5

5

10

Im(x0)

−4 −2 2 4
Re(x0)

−10

−5

5

10

Im(x0)

FIG. 9 (color online). Producing closed trajectories by tuning
the einbein n, as explained in the text. These plots are for the
two-turning-point-pair gauge field in (41). The first plot shows
the situation for E0 ¼ 0:1, ! ¼ 0:1, and p3 ¼ 1. The interfer-
ence trajectories do not connect the different turning point pairs,
due to the appearance of poles at x0 ¼ �i=! ¼ �10i. The
second plot shows the result of choosing n ¼ 1� 0:74i and
integrating the modified Eqs. (A4). Now the poles are avoided
and a closed classical trajectory results. The action (A5) eval-
uated on this trajectory gives the correct semiclassical approxi-
mation to the particle spectrum, as plotted in Fig. 8.
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that the classical trajectories pass safely by the poles that
occur at x0 ¼ �i=! [in the plot, 1=! ¼ 10]. They are
patched together smoothly on the imaginary x0 axis. Now
we have the desired instanton segments, and after evaluat-
ing the classical action (A5), we obtain the correct semi-
classical contribution to the particle number momentum

spectrum, as shown in Fig. 8. Note that for this p3 ¼ 3, and
n ¼ i, the instanton segments do indeed connect the
complex conjugate turning points. We have found that by
suitable tuning of the einbein factor nwe are always able to
avoid the poles and produce closed classical trajectories
that avoid the poles.
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