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We give an exact, analytic, and manifestly gauge invariant account of pair production in combined

longitudinal and transverse electromagnetic fields, both depending arbitrarily on lightfront time. The

instantaneous, nonperturbative probability of pair creation is given explicitly along with the spectra of the

final particle yield. Our results are relevant to high-intensity QED experiments now being planned for

future optical and x-ray free electron lasers.
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I. INTRODUCTION

The use of laser light sources in examining the high-
intensity regime of QED continues to draw attention,
prompted by the advent of a new generation of both
x-ray and optical laser facilities such as the European
XFEL and the Extreme Light Infrastructure project [1,2].
Dominating the theoretical activity in this area is the pur-
suit of (Schwinger) pair production in strong background
fields [3].

In this paper we apply the Dirac-Heisenberg-Wigner
(DHW) formalism [4–6] to the problem of pair production
in background fields. Within this approach, which was
developed in the early 1990’s [7,8] and has gained in-
creased attention in recent years [9–12], one studies phase
space distribution functions instead of the usual S-matrix
elements. Since the DHW formalism deals essentially with
quasiprobabilities, interpretation can be challenging.
Nevertheless, quite some progress can be made by consid-
ering simple, but nontrivial, cases.

An advantage of this approach is that the key object,
called the DHW function, which is essentially the field
density in an appropriate state, can in principle be ob-
tained by solving a single partial differential equation.
This is true at least when the gauge field is external:
going beyond this is notoriously hard within the DHW
approach [13], while perturbation theory is obviously
straightforward in field theory. In order to ensure that
the obtained solution is physical, one must use sensible
initial data which correspond to calculating the DHW
function in a physical state. Alternatively, one could try
to construct the DHW function directly. This is challeng-
ing since it requires finding the exact solutions of the
Dirac equation in the chosen background field and then
quantizing the theory.

In this paper we continue the investigation of the DHW
function started in [10] using lightfront methods (see

[14–16] for applications of related methods to QED in a
variety of strong external fields). Our previous results
focused on plane wave backgrounds, i.e., transverse, or-
thogonal electric, and magnetic fields of equal magnitude,
depending on lightfront time xþ. While we made progress
in understanding the effective mass of a particle in an
arbitrary pulse, we were of course unable to study pair
production since single plane waves cannot produce pairs.
In this paper we retain the plane wave fields but add a
longitudinal electric field. Both of our fields depend arbi-
trarily on lightfront time, allowing us to model modern
short-duration laser pulses [14,17–19].
To obtain the DHW function, we follow the second

approach described above: we therefore present new solu-
tions of the Dirac equation in a combination of longitudinal
and transverse fields, quantize the theory, and calculate the
lightfront DHW function directly. This function, as we
show, can be interpreted as a (quasi)probabilistic measure
of electron/positron occupation numbers. This gives us a
clear signal of pair creation as we are able to see, in a gauge
invariant manner, the filling of states as particles are pro-
duced. We also confirm the results given in [20–23],
namely, that from the infinitely boosted lightfront frame
one sees only the created positrons (modulo the choice of
field) since the electrons decouple from the theory after
creation.
We begin in Sec. II by reviewing the DHWapproach and

presenting some basic results. In Sec. III we give the
required solution of the Dirac equation in our chosen
background. The quantization of the theory and construc-
tion of the DHW function are not too hard but the expres-
sions involved can become quite lengthy, and are therefore
relegated to the appendixes. We give the exact DHW
function in Sec. IV and analyze pair creation on the light-
front, using explicit examples of both short and long
pulses. We also reconstruct the final particle spectrum in
the lab frame. Conclusions are given in Sec. V. Our light-
front conventions are quite standard but we encourage the
reader not familiar with lightfront methods to consult the
appendixes for details.
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II. THE LIGHTFRONT DHW FUNCTION

The DHW function is essentially given by the Fourier
transform of the fermion field density in a chosen state,
usually the vacuum. Our background fields will depend on

lightfront time xþ � ðx0 þ x3Þ= ffiffiffi
2

p
and so it is natural to

work in lightfront field theory. On the lightfront, the fer-
mion fields c split into dynamical fields cþ, and con-
strained fields c� (this is reviewed below, details are not
needed here). It is therefore convenient, and simpler, to
study the DHW function defined by the density of the
dynamical fields rather than the full Dirac spinor.

The equal lightfront time DHW function begins with the
dynamical fermion density U in, say, the vacuum j0i.
Noting that we use a sans-serif font to denote the spatial
lightfront variables and momenta, i.e., x � fx�; x?g and
p � fp�; p?g, this density is

U�� � h0j½cþ�ðxþ; x2Þ; c y
þ�ðxþ; x1Þ�j0i; (1)

where � and � are spin indices. Setting x2 � xþ y=2 and
x1 � x� y=2, the DHW function is defined by Fourier
transforming with respect to the relative coordinate y:

Wþ
��ðxþ; x; pÞ ¼

ffiffiffi
2

p Z
d3yeip�yþie

R
dz�AðzÞU��; (2)

where gauge invariance of Wþ is ensured by the Wilson
line in the exponent. The line integral is taken over the
straight path from x1 to x2which corresponds to minimally
coupling the free DHW function by replacing @ ! D [24].

The factor of
ffiffiffi
2

p
is a normalization. Note that, being gauge

invariant, the DHW function can be calculated in any
gauge. Some intuition for what the DHW function repre-
sents can be built up by calculating it in a variety of simple
states, to which we now turn.

A. Free theory

All our DHW functions will be proportional to the light-
front projector �þ � 1

2�
��þ, so we write

Wþ
�� � �þ

��W: (3)

The DHW function (2) for free fermions is easily found by
writing down the mode expansion, calculating the expec-
tation value, and performing the Wigner transformation
(without the Wilson line). One finds

Wðxþ; x; pÞ ¼ Signðp�Þ; (4)

which is spatially homogeneous and displays only a simple
dependence on the lightfront momentum p�. This behav-
ior is due to the existence of both positrons and electrons.
To see why, replace j0i in (1) with jfulli, in which every
positron and electron state is occupied. The DHW function
becomes

Wðxþ; x; pÞ ¼ Signð�p�Þ; filled vacuum: (5)

Similarly, filling all the electron or positron states, one
obtains instead

Wðxþ; x; pÞ ¼ �1; electrons filled

¼ þ1; positrons filled: (6)

These results are shown in Fig. 1. The region p� > 0 is
controlled by electrons and p� < 0 by positrons: this is a
matter of convention (it does not refer to negative energy)
which follows from the choice of exponent in the transform
(2), since the mode expansion for c looks like

c �
Z 1

0

dk�
k�

Z
d2k?ðe�ik�xuskb

s
k þ eik�xvs

kd
sy
k Þ: (7)

Following this, the DHW variable p may be associated
with the momentum of an electron, or minus the momen-
tum of a positron. Consider also a mixed state,

jmixedi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P

p j0i þ ffiffiffiffi
P

p jfulli; (8)

which has probability P of being full and 1� P of being
empty. The DHW function is easily found to be

W ¼ Signðp�Þ þ 2PSignð�p�Þ; (9)

so that, for example, the p� < 0 portion of the DHW
function is raised by a height 2P relative to that in the
vacuum (see Fig. 2). The DHW function therefore gives us
a (quasi)probabilistic measure of the occupation numbers
of electrons and positrons. The above points are worth

FIG. 1 (color online). The free W as a function of p�, calcu-
lated in the ordinary, empty vacuum (black line), the state filled
with positrons (red, dashed), the state filled with electrons (red,
dotted), and the completely filled state (blue). The region p� < 0
to the left of the plot is controlled by positrons; p� > 0 by
electrons.

FIG. 2 (color online). The DHW function in the mixed state
(9). The deviation from the vacuum DHW function is given by
twice the probability for being in the state jfulli.
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keeping in mind for later, as they will aid our interpretation
of the DHW function in the interacting theory.

B. Plane wave backgrounds

The DHW function for both scalars and spinors in an
arbitrary plane wave background was calculated in [10].
That paper also considered the covariant DHW function in
which the lightfront times are also separated; i.e., one

works with the density ½cþðx2Þ; c y
þðx1Þ�with x�1;2 ¼ x� �

y�=2. The DHW function is then defined by an integral
over d4y, and was found to be

Sign ðp�Þ
Z

dyþ exp

�
iyþ

�
pþ � p2

? þM2ðxþ; yþÞ
2p�

��
;

(10)

where M2 is clearly an effective mass (see [10,25] for
details) which extends the intensity-dependent mass shift
from purely periodic plane waves [26–28] to arbitrary
plane wave backgrounds. Integrating out pþ, one recovers,
by definition, ourW: this is precisely the same as in the free
theory (4). The natural interpretation of this result is the
well-known statement that plane waves do not create pairs.

In the following sections we will examine what happens
to the DHW function when a pair-creating longitudinal
electric field is added to the plane waves. We will continue
to focus on the simpler W rather than the covariant DHW
function as this is the more common approach in the
literature, and because, following the above, any deviation
in W from the free vacuum result (4) must be due (at least
in part) to the longitudinal field.

III. LONGITUDINAL AND TRANSVERSE FIELDS

We consider a laser pulse moving up the x3 axis. This
defines our ‘‘longitudinal’’ direction, while x1, x2 are the
transverse directions. Avariety of models for the laser field
can be found in the literature: the case of a constant,
longitudinal electric field is of course covered by
Schwinger’s classic result [29]. The models for which
most analytic progress can be made (in terms of calculating
scattering amplitudes) are plane waves depending on xþ
[26–28]. The combination of a constant longitudinal elec-
tric field and periodic plane waves was described in [28].
The case of a purely longitudinal electric field EðxþÞ
depending arbitrarily on xþ was covered by [20,21] (and
includes Schwinger’s result as a particular case). The light-
front methods used in those papers can be extended to
cover the case of longitudinal EðxþÞ with a parallel B field
also depending on xþ [30]. For fields depending on both xþ
and x�, see [31,32]. Purely longitudinal electric fields
Eðx0Þ depending arbitrarily on (instant) time x0 are widely
used in the literature. Such fields model the focus of
counter propagating laser pulses in which the magnetic
field components cancel. They have been used to inves-
tigate pair production for oscillating fields [33–35], pulsed

fields [36,37], and pulsed fields with subcycle structure
[38–40].
Here we further extend the above results, covering the

case of longitudinal electric and transverse electromag-
netic plane wave fields, both depending arbitrarily on xþ.
We work in the ‘‘anti–light cone’’ gauge A� � Aþ ¼ 0
(the usual light cone gauge is A� ¼ 0). The remaining
components of the potential are given by

A� ¼ �
Z xþ

0
dyEkðyÞ; A? ¼ ffiffiffi

2
p Z xþ

0
dyE?ðyÞ; (11)

where we assume for simplicity that the fields turn on at
xþ ¼ 0. This can, and will, be relaxed below.

Solutions of the Dirac equation

Defining the projectors �� � 1
2�

��� the fermion field

decomposes into c � cþ þ c� with c� � ��c . The
Dirac equation then separates into

i@þcþ ¼ 1
2ði�?D? þmÞ��c�; (12)

iD�c� ¼ 1
2ði�?D? þmÞ�þcþ: (13)

We immediately take the Fourier transform of the trans-
verse coordinates, i@? ! k?, which replaces

iD? ! k? � eA?ðxþÞ � �?ðxþÞ: (14)

One solves the Dirac equation by first observing that c� is
a constrained field, since it can be expressed in terms of
cþ using (12):

c� � �?�? þm

!2
i�þ@þcþ; (15)

where the mode frequency is defined by

!2ðx?Þ � �2
?ðxþÞ þm2

¼ k2? þm2 þ e2A2
?ðxþÞ � 2ek?A?ðxþÞ; (16)

in which we recognize the Volkov exponent [41].
Substituting (15) into (13), and noting that D� and @þ do
not commute, one obtains a simple equation for cþ:

D�@þcþ ¼ �!2

2
cþ: (17)

If we try to Fourier transform i@� ! k�, we see that
solving (17) requires inverting

k� � eA�ðxþÞ; (18)

which can clearly vanish, possibly multiple times, for a
given k�. This is the zero-mode problem of lightfront field
theory [42], but made time dependent by the external field.
The physics of the zero mode in the current context is as
follows. An electron with momentum k� at time xþ ¼ 0
acquires (as follows from solving the Lorentz equation) a
momentum k0� ¼ k� � eA�ðxþÞ at later times. We have
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e < 0, so if we imagine that Ek is positive, then k0� will
vanish at some later lightfront time, which means the
electron moves parallel to the x� axis (reaches the speed
of light) at this instant: it therefore vanishes from the theory
since it cannot be seen at any subsequent lightfront time
[22,23]. Note that a positron’s momentum, on the other
hand, only increases in the above circumstances. Hence the
positrons remain in the theory. This will be useful for later.

We are now ready to give the solution of the Dirac
equation. We follow the method of [20,21]. The idea is
to turn the fields on at xþ ¼ 0 (for convenience, this can be
relaxed—see below), and solve the Dirac equation in the
semi-infinite region xþ > 0, x� >�L for some positive L,
in terms of initial data. This gives, as we will see, a
prescription for handling the singularity at k� � eA� ¼
0. In the end the limit L ! 1 is taken. The domain of our
solution, together with an illustration of our fields and the
motion of particles within them, is shown in Fig. 3.

It may be checked directly that the solution to (12) and
(13) in xþ > 0, x� >�L is

cþðxþ;x�Þ¼
Z 1

�L
dy�cþð0;y�Þ �D�ðyÞGðxþ;0;x�;y�Þ

�
Z xþ

0
dyþ

@cþ
@yþ

ðyþ;�LÞGðxþ;yþ;x�;�LÞ;
(19)

with c� given by (15). We consider the various terms.
First, cþ’s dependence on the boundary data is explicit:
the solution depends on cþ on the characteristic xþ ¼ 0
and @þcþ � c� on the characteristic x� ¼ �L, since

i@þcþ ¼ 1
2ð�?�? þmÞ��c�; (20)

from (15).The function G is

Gðxþ; yþ; x�; y�Þ

¼ �i
Z dk�

2�

eiðy��x�Þðk�þi=LÞ

k� � eA�ðyþÞ þ i=L
Ek�ðyþ; xþÞ; (21)

and E is defined by

E k�ðxþ; yþÞ ¼ exp

�
� i

2

Z xþ

yþ

ds!2ðsÞ
k� � eA�ðsÞ þ i=L

�
:

(22)

It is worth considering this function in a little detail, as it
exhibits the essential difference between the transverse and
longitudinal fields. The transverse plane wave fields enter
just as in the Volkov solution, in the numerator of the
exponent [41]. These terms may therefore be recovered
by resumming all orders of perturbation theory in the plane
wave coupling eA?. The longitudinal field, on the other
hand, appears in the denominator and exhibits a singularity
on the real line, regulated by the factors of i=L: when
L ! 1 this leads to an essential singularity in the cou-
pling, as in Schwinger’s result.
An advantage of the approach we adopt is that the

differences between the types of field, and the important
structures, are laid bare. Nothing is hidden inside the
behavior of special functions, as is frequently the case in
the instant-form approach: the equal x0 (instant time)
DHW function is expressed in terms of parabolic cylinder
functions for Eðx0Þ ¼ E, constant, and in terms of
hypergeometric functions for Eðx0Þ ¼ Esech2ð!x0Þ [9].
However, a disadvantage of our approach is that expres-
sions quickly become lengthy. For this reason, the quanti-
zation of (19) and the calculation of the DHW function are
left to Appendix B. Related calculations are explicitly
performed in [21], which the reader may consult for further
examples. The final result for the DHW function in the
limit L ! 1 is, however, extremely compact, and we turn
to it now.

IV. PAIR PRODUCTION

If one considers only a longitudinal electric field de-
pending on xþ, one finds that not only the vacuum persis-
tence amplitude but also the pair production rate may be
calculated instantaneously as a function of xþ. The deri-
vation of this latter result requires a careful interpretation
of the Heisenberg operators in order to identify the pair
production probability [20,21]. We can provide a (positive)
check of that interpretation using the DHW function.
Moreover, our approach is manifestly gauge invariant.
It was found in [28] that the addition of a plane wave to a

constant electric field (Schwinger’s case) does not change
the vacuum persistence amplitude. We will see for our
fields that this remains true: the plane wave has no impact
on the creation of particles, or the properties they are
created with. Rather neatly, though, our results make clear
the postcreation effect of the plane waves on the particles.

FIG. 3 (color online). The domain of our solution (19), xþ > 0
and x� >�L. The finite-duration background fields depend on
xþ 2 0 . . . xþf , as is also illustrated, along with the behavior of

electrons and positrons created within the field.
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A. The DHW function

Our solution of the Dirac equation (and its quantization,
as described in Appendix B) is valid for arbitrarily longi-
tudinal and plane wave fields. We present here results for

the case in which Ek is assumed to be positive, so that eA�
is positive and increasing, as this is when the singularities
in (22) have the simplest structure in phase space. Our
longitudinal fields therefore model subcycle pulses, which
are of considerable current interest [43]. The plane wave
fields remain arbitrary.

We can now give the DHW functionW. At xþ ¼ 0,W is
that of the free theory [see (4)]. Once the longitudinal fields
turn off at xþ ¼ xþf , the theory becomes stable against pair

production and we find that the DHW function again
becomes constant in lightfront time, matching its final
value in the pulse. For the duration of the pulse, i.e., 0<

xþ < xþf , the DHW function is

Wðxþ; x;pÞ ¼ Signðp�Þ þ 2P�ð�p�Þ�ðeA�ðxþÞ þ p�Þ:
(23)

The first term is the DHW function of the empty vacuum.
The second term contains the effects of the background
fields, and has a form similar to that in (9), though it is
restricted to p� < 0. The description and investigation of
this term, in particular P, will occupy the remainder of the
paper.

It is important before embarking on this to give the
interpretation of the DHW variable p. In the free theory
(see Sec. II), p (� p) is the kinetic momentum of an
electron (positron). This also holds once the background
fields turn off and the theory again becomes free (the final
particle spectrum is of course what we would be interested
in experimentally). The DHW function smoothly connects
the initial and final distributions in a gauge invariant man-
ner. Furthermore, (2) shows that (canonical) momentum
dependence on, say, k in the density will be set equal to
pþ eA in the Wigner function, so that p is naturally
interpreted as a kinematic momentum. From here on we
therefore associate p� < 0 with a positron momentum
�� � �p� > 0, as in the free theory: from (23), this is
clearly the region of interest.

B. From dynamics to probabilities

In order to give the most compact and intuitive expres-
sion for P, it is useful to recall some results on the motion
of particles in our background fields. The Lorentz equation
for a positron with kinematic momentum �� and charge

�e > 0 is d�� ¼ �eF��dx
�. Suppose, then, that a posi-

tron is created with momentum �� ¼ 0 at some initial
time xþi . From the Lorentz equation, it will at a later time
xþ have momentum

�� ¼ eA�ðxþÞ � eA�ðxþi Þ; (24)

using (11). Since eA� is positive and increasing for the
duration of the pulse, it has a unique inverse Xp such that

eA�ðXpÞ ¼ p and XeA�ðxÞ ¼ x. It follows that, on observa-

tion of a positron with momentum �� at time xþ, the
‘‘initial time’’ could be reconstructed from (24):

eA�ðxþi Þ ¼ eA�ðxþÞ � �� ) xþi ð��Þ � XeA�ðxþÞ��� :

(25)

(We suppress the dependence of xþi on xþ for compact-
ness.) If the positron also has zero transverse momentum at
the initial time, its later transverse momentum is

�?ð��Þ � eA?ðxþÞ � eA?ðxþi ð��ÞÞ: (26)

(Again suppressing dependence of �? on xþ.) It is clear
from the integral expressions (11) that the results (24)–(26)
simply describe the energy transferred to the positron from
the background fields over the elapsed time. This is illus-
trated in Fig. 4.
With these definitions we can give a very simple ex-

pression for P:

P ¼ exp

�
��m2 þ �½p? þ �?ð�p�Þ�2

jejEkðxþi ð�p�ÞÞ
�
; (27)

where xþi and �? are defined in (25) and (26). We recog-
nize a similar structure as found in Schwinger’s results, but
for more general fields, and also depending instantaneously
on lightfront time. Comparing (23) and (9), P is naturally
interpreted as the probability that the positron states with
momentum �� ¼ �p� have been filled by time xþ, since
particles are being created by the background fields. Using
the dynamics discussed above, a more precise statement is
the following: P gives the probability of observing posi-
trons with momenta �� and �? at time xþ, such that these
positrons were created at xþi with �� ¼ 0 and the trans-
verse momentum normally distributed about�? ¼ 0. Note
that because the argument of the pair-creating field in P is
not xþ but xþi , the probability of observing a positron is
dependent on the electric field strength at the moment of

FIG. 4. A particle is created at time xþi , with probability
determined by the electric field strength at that time. The particle
has zero longitudinal momentum, and transverse momentum
normally distributed around zero. It is observed at a later time
xþ, after which it has acquired longitudinal and transverse
momenta �� and �?.

PAIR PRODUCTION: THE VIEW FROM THE LIGHTFRONT PHYSICAL REVIEW D 84, 125022 (2011)

125022-5



creation xþi , and not on the ‘‘observation’’ time xþ (see
also Fig. 4). This is a neat and physically sensible result.

We now explain this interpretation in more detail and
reinforce it with a series of examples. In order to keep the
presentation as clear as possible, we begin by dropping
down to 1þ 1 dimensions, turning off all transverse de-
pendence. This will be reinstated below. The first obvious
question, and obvious difference between (23) and (9), is
why dowe not see electron states being filled?Why is there
no change to the DHW function for p� > 0?

A related result was found and explained in [20,21],
which we now describe in our language. Our DHW func-
tion has the form of a disturbance propagating out from
p� ¼ 0 as time evolves. This is also where the singular-
ities in the Dirac equation live in the L ! 1 limit, and we
have already seen that P describes particles with zero
initial longitudinal momentum. Put together, this means
that pairs are created traveling at the speed of light. The
distinction is that the electrons, being accelerated down the
x3 axis by the positive field, travel parallel to the x�
direction and so, from the perspective of the infinitely
boosted lightfront frame, immediately vanish. The posi-
trons, on the other hand, are accelerated up the x3 axis and
therefore acquire positive �� [see also (24)], and remain
visible in the lightfront frame. We therefore confirm the
result of [20,21]: from the lightfront perspective, one only
sees the positrons.

The final piece of (23) to consider is the second step

function. This states simply that the argument of Ek, that is,
XeAðxþÞ��� , must be positive; in other words, sufficient

time must have elapsed for a particle with zero longitudinal
momentum to have acquired �� by time xþ. Together, the
two theta functions therefore imply, using (24)–(26), that

0< xþi < xþ; (28)

which is a simple statement of causality: observed pairs
must have been created at earlier times, but after the
longitudinal field turns on. We conclude that the DHW
function shows us pair production from the vacuum, in real
lightfront time, with P the probability of pair creation. The
positrons appearing at time xþ with a finite range of
momenta �� are subject to the (natural) constraint that
sufficient time must have elapsed for the positron to have
absorbed this momenta from the fields, starting from�� ¼
0. We now move on to explicit examples, staying in 1þ 1
dimensions for the moment.

C. Example: Finite pulse duration

We begin with the electric field

EkðxþÞ ¼ E0 sinð!xþÞ (29)

for 0 � !xþ � � and zero otherwise, modeling a half-
cycle of the laser. The DHW functionW is plotted in Fig. 5.
When plotting, we use rescaled variables

�0 � jejE0

m2
; x̂þ � !xþ; p̂� ¼ p�!

jejE0

; (30)

which measure the electric field strength in units of the
Schwinger field and p� in units of (as we are about to see)
half its maximum value. We have chosen �0 ¼ � for our
plot, which means our electric field strength is roughly 3
times higher than the Schwinger limit: this compensates
fully for the damping factor in the exponent of (27) and
allows us to clearly see the behavior of the DHW function.
We consider other field strengths below.
In Fig. 5, we see thatW matches the free theory result (4)

at xþ ¼ 0. As time evolves, W becomes both p� and xþ
dependent, with the deviation from vacuum spreading out
from p� ¼ 0 at xþ ¼ 0. At time xþ the function is ex-
plicitly limited in extent by the theta functions in (23),
which give

eA�ðxþÞ þ p� > 0 , xþ > X�p� : (31)

The DHW function eventually stabilizes as the field
switches off at xþ ¼ xþf , upon which it is straightforward

to extract properties of the final positron distribution. The
final range of possible positron momenta is dictated by,
following the above, �p� > 0 and �p� < eA�ðxþf Þ. In
our current example, !xþf � �, so the final range of

positron momenta is

0<�� < 2
jejE0

!
� 2ma0; (32)

where, in the final equality, we have introduced the peak
field intensity a0 [44],
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FIG. 5 (color online). The DHW function in the subcycle pulse
(29), plotted as a function of p�, for zero transverse momentum.
The maximum allowed momentum [see (31)] is also shown in
the ðp̂�; x̂þÞ plane.
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a0 ¼ jejEmax

!m
: (33)

The momentum distribution is peaked around that value of
�� such that the electric field is maximal at the instant of

creation. Let xþ0 be the time at which Ekðxþ0 Þ is maximal,

then the most probable kinetic momentum h��i is the
solution of the equation

xþ0 ¼ X�h��iþeA�ðxþf Þ: (34)

For our current example !xþ0 ¼ �=2 and we find

h��i ¼ jejE0

!
� ma0; (35)

which is also clearly seen from Fig. 5. Since the momenta
are on shell in the free theory, we have h�þi ¼ m2=2h��i
and so we can easily convert these expressions back to
Cartesian coordinates to find the likely energy and z com-
ponent of the momentum, which are

ffiffiffi
2

p h�0i ¼ m

2a0
þma0;

ffiffiffi
2

p h�3i ¼ m

2a0
�ma0: (36)

[Note that the probabilityP for producing very high energy
particles �� ’ 0 in the range (32) is almost zero.]

D. Example: Adiabatic switching

In the light of recent literature results, which we discuss
below, it is worthwhile pointing out that there is nothing to
stop us turning our fields on arbitrarily smoothly starting
from arbitrary initial times, without affecting the essential
properties of our solutions (19) or our DHW function (23):
our choice of switching the fields on at xþ ¼ 0 was for
convenience. We therefore consider a field which, while
qualitatively similar to our previous example, falls off
quickly but smoothly at �1, namely,

EkðxþÞ ¼ E0sech
2ð!xþÞ; (37)

where E0 gives the peak intensity and 1=! the effective
duration of the pulse. The corresponding gauge potential is
given by the integral from xþ ¼ �1 of this function, and
is therefore

eA�ðxþÞ ¼ jejE0

!
ð1þ tanhð!xþÞÞ; (38)

where the constant term follows from the definition (11),
with the initial time translated to xþ ¼ �1. The resulting
DHW function is plotted in Fig. 6 for a peak field strength
equal to the Schwinger field. The DHW function is shown
over the temporal range�1=2<!xþ < 2. Before this, the
deviation from vacuum is minimal and afterwards the
DHW function becomes effectively stable. The final range
of positron momenta which may be created by the field
remains finite and, with our choice of variables, is ex-
pressed just as before, 0<�� < 2ma0. The probability
P is peaked, in the limit xþ ! 1, around�� ¼ ma0. Note

that, even at the Schwinger limit, the probability of pair
production remains small.

E. Example: Ever-increasing field

We note that the factor of 2 in (23) can be understood
from a second perspective. Suppose we consider an electric
field which increases without bound, for example,

EkðxþÞ ¼ E0!xþ: (39)
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FIG. 6 (color online). The DHW function in the sech2 pulse
(37) with peak amplitude �0 ¼ 1 [see (30)] plotted as a function
of p�, zero transverse momentum. As before, the range of
allowed momentum [see (31)] is shown in the ðp̂�; x̂þÞ plane:
there is a smoother falloff than in the previous example.
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FIG. 7 (color online). DHW function in the field (39), with
�0 ¼ 0:5, which increases without bound. As time evolves, all
positron states are filled with unit probability.
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As time increases, the electric field becomes overcritical
and we expect the probability of creating particles with any
given momentum (in the allowed range, which also ex-
pands in time) to approach unity. This means that the state
should become filled with positrons, and we expect to
recover, from (6), W ¼ þ1 in the region p� < 0. This is
precisely what the factor of 2 ensures: if P ! 1, the DHW
function approaches W ¼ 1 for p� < 0. This is shown
explicitly in Fig. 7: the DHW function transfers from �1
to þ1 over the whole negative p� range as time evolves.

F. Comparison with the instant-form approach

Our results share some similarities with investigations of
particle creation in x0-dependent electric fields, within the
usual (instant-form) DHW formalism. In that approach, a
certain combination of instant-form DHW spinor compo-
nents can be interpreted as a particle number density [45],
and its behavior is as follows. As the electric field grows
with time x0, energy is transferred to the Dirac field such
that a peak around p3 ¼ 0 develops. At intermediate
(nonasymptotic) times this peak is interpreted as being
composed of virtual electron-positron pairs. As time
evolves, only some of these virtual particles become real
particles which are then accelerated by the electric field
and spread out from p3 ¼ 0. At asymptotic times x0 ! 1,
the particle number density of real particles stabilizes
whereas the virtual electron-positron peak around p3 ¼ 0
disappears again. An example is shown in Fig. 8 for the
asymptotically switched field Eðx0Þ ¼ E0sech

2ð!x0Þ. For
more details see [45].

One difference between these results and our own is that
the lightfront DHW function does not exhibit the inter-

mediate virtual particle peak or oscillatory structure seen in
the instant form. The reason for this seems to be that pair
production on the lightfront is an instantaneous event,
occurring at the instant when a given fermion mode can
produce a particle of zero longitudinal momentum [see
(18)]. This is confirmed by our expression for the pair
creation probability P: it is expressed entirely in terms of
classical particle trajectories.
This is quite intriguing, as it may be related to the

‘‘triviality’’ of the lightfront vacuum. The instant-form
vacuum is filled with virtual pairs which can be pulled
onto the mass shell by the external field. Recall that the
Schwinger field strength can be obtained by equating the
electron rest mass with the work done by the electric field
over the lifetime of a virtual pair: in this sense, there is a
time scale involved in Schwinger pair production. The
lightfront vacuum, on the other hand, is often referred to
as ‘‘trivial,’’ which is the statement that it is completely
empty of particles, both real and virtual [46]. Moreover, it
is stable. In this picture, then, pairs are created from the
energy pumped into the system, not from virtual particles
being pulled on shell, and the Schwinger ‘‘time scale’’ is
absent. This is an investigation for another time, though.
We now return to properties of the DHW function.

G. Nonperturbative dependence

Recent results on pair production in x0-dependent elec-
tric fields (in the usual instant time DHW formalism) find a
purely perturbative dependence on a particular electric
field which switches on adiabatically in the infinite past
[47]. Moreover, it is stated that the essential singularity of
Schwinger’s results must therefore be due to the unphysical
nature of a constant, ever-present electric field.
Let us reconsider our results in this light. We have seen

explicitly that for both sharply and smoothly switched fields
the pair production probability is basically described by a

factor expð�m�=jejEkÞ, which retains the essential singu-
larity in the coupling fromSchwinger’s result. It is therefore
clear that the nonperturbative nature of pair creation is not
due to some unphysical assumption about when, or how
smoothly, the fields turn on or off. The dependence of our
results on e is of course a little more complex than that,

since Ek is evaluated at xþi ð�p�Þ [see (27)].
It is useful to examine the form of the (final) probability

P when the fields turn off. We work with the physical
momentum �� here, and turn off the plane wave fields
for simplicity, setting also �? ¼ 0. We begin with the field
(29), for which the final probability is

� logPj!xþ¼� ¼ �m2=!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð2ma0 � ��Þ

p : (40)

Note that the denominator is positive because of the finite
allowed �� range. We can examine this probability for, for
example, small momenta (which correspond to extremely
energetic particles in the lab frame) by expanding in ��:
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FIG. 8 (color online). Particle number density N for the
x0-dependent sech2 pulse within the instant-form DHW formal-
ism, plotted as a function of p̂3 and zero transverse momentum.
Peak amplitude �0 ¼ 1.
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�m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jejE0!��

p
�
1þ !��

4jejE0

þ . . .

�
: (41)

We clearly see the 1=jejE0 dependence. What happens for
the adiabatically switched sech2 pulse? For this field, the
final probability is

lim
xþ!1

� logP ¼ �jejE0m
2

2jej!E0�� �!2�2�
: (42)

Again, the denominator is positive, and we can make the
same small �� expansion as above, finding

lim
xþ!1

� logP ’ �m2

2!��

�
1þ !��

2jejE0

þ . . .

�
: (43)

This displays a different dependence on the various pa-
rameters. In particular, the dominant term is independent of
the field strength E0. Does this correspond to a perturbative
dependence on the field strength? The answer is no: not
only does the second term in the expansion contain explic-
itly nonperturbative (Schwinger-like) terms, but the lead-
ing term of (43) actually contains a hidden nonperturbative
dependence. To see this, note that the leading term, despite
not being explicitly dependent on E0, does not survive the
limit E0 ! 0 (which would contradict the free theory).
This is because the range of �� is finite, being limited
by eA�, so that taking E0 ! 0 implies taking �� ! 0, and
this kills P as the fields turn off.

What this result really shows is only that, and as is not
surprising, the distribution of the produced particles de-
pends on the geometry of the field, for example, whether
the field turns off sharply or smoothly. We have not been
able to identify a regime where the results may be ex-
pressed as a perturbation in E0. We stress that this holds at
least on the lightfront, for fields depending on xþ: there are
differences between this and the instant-form approach
(see Sec. IV F, above).

It is, though, entirely possible for the effective action to
exhibit both perturbative and Schwinger-like nonperturba-
tive behavior when the electric field depends on x0 (and is
even adiabatically switched), depending on the relative
sizes of the parameters involved. This is shown in [48],
which discusses many deep connections between perturba-
tive and nonperturbative physics. One is led to conclude
that the perturbative dependence found in [47], while very
interesting, is not inconsistent with the existence of non-
perturbative behavior. Combining this with our own re-
sults, we do not believe that any doubt is cast on the
validity of Schwinger’s result.

H. Transverse dependence

Finally, it is time to return to 3þ 1 dimensions proper,
and allow for plane wave fields. Consider the full expres-
sion (27) for the probability. The plane wave contributions
do not appear in the step functions; thus they do not affect
the constraints dictating the momentum ranges. Nor do the

plane waves enter into the argument of the pair-creating

field Ek.
It is clear that without the plane waves, the probability

for production of pairs with nonzero transverse momenta is
normally distributed around �? ¼ 0. Turning on the plane
waves, it may seem strange at first glance that the peak of
this distribution is shifted to nonzero values: is the plane
wave affecting the probability of pair production? The
answer is no: recalling (24)–(26), the distribution in (27)
is obtained for positrons created with transverse mo-
mentum normally distributed around �? ¼ 0, and which
at the subsequent time xþ must have acquired transverse
momentum

Z xþ

xið��Þ
ds

ffiffiffi
2

p
eE?ðsÞ � �?ð��Þ; (44)

from the plane wave fields, using the Lorentz equation. The
DHW function therefore takes into account both what
happens at the instant of creation, but also what would
subsequently be observed.
To summarize, the plane waves do of course influence

the particles after they are created, and so it is no surprise
that they appear in the DHW function and the final particle
distribution. The plane waves do have no influence,
though, on whether particles are created or not. This is
reaffirmed by integrating over momenta to obtain, for
example, the total probability of pair production or the
vacuum persistence amplitude: one finds that all depen-
dence on the plane wave fields vanishes because�?ð�p�Þ
can be absorbed into p? by a change of variable. Thus the
plane wave fields, and, in particular, any effective mass
they may generate, do not influence the probability of
vacuum decay [20,21,28].

V. CONCLUSIONS

We have investigated the phenomenon of nonperturba-
tive pair creation in background electromagnetic fields,
within the lightfront DHW formalism. We calculated the
DHW function by solving the Dirac equation in a combi-
nation of longitudinal electric and transverse plane wave
fields which both depend arbitrarily on lightfront time.
This extends the work of [20,21,26] to an even wider class
of fields.
As shown in [10], the DHW functionW is not altered by

a single plane wave field, since a plane wave cannot
produce pairs. Switching on an additional pair-creating
electric field, however, one observes a deviation from the
vacuum result which signals pair creation. The pair crea-
tion probability itself is exponentially suppressed by a

factor expð�m�=jejEkÞ which retains the essential singu-
larity in the electromagnetic coupling e in Schwinger’s
result, but is valid for much more general fields, and, in
particular, is independent of how the electric field is
switched on and off. This may be contrasted with recent
results in the instant-form approach [47].
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Notably, we have seen that the value of the DHW
function W is altered only in its positron sector, whereas
the electron content remains unchanged. This confirms
previous results that, from the lightfront perspective, only
one of the particle species remains in the theory following
creation [20,21].

All in all, the DHW function can be a powerful tool in
analyzing quantum physics in background fields (particu-
larly pair production), and in a language which is essen-
tially classical. We have given an elegant and physical
interpretation in terms of the pair creation probability
and the subsequent dynamics of the particles. This makes
it clear that we observe real particle production in the
lightfront formalism.
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APPENDIX A: NOTATION

Our light cone directions are x� ¼ ðx0 þ x3Þ= ffiffiffi
2

p
. We

prefer momenta to carry covariant indices and so p� is a
spatial momentum conjugate to x�, while pþ is the light-
front energy, conjugate to lightfront time xþ. The metric
has determinant �1 as in Cartesian coordinates and
contra-/covariant indices are related by v� ¼ v� for arbi-
trary vectors v. We use a sans-serif font to denote the
‘‘spatial’’ variables and momenta, i.e., x � fx�; x?g and
p � fp�; p?g. Our Fourier conventions are

fðpÞ ¼
Z

dxeipxfðxÞ; fðxÞ ¼
Z dp

2�
e�ipxfðpÞ; (A1)

and we Fourier transform before taking conjugates so

fyðpÞ¼
Z
dxe�ipxfyðxÞ; fyðxÞ¼

Z dp

2�
eipxfyðpÞ: (A2)

APPENDIX B: THE QUANTUM THEORY

We now wish to quantize our solution (19). Quantization
is performed by imposing canonical commutation relations
on the initial data. As in [20,21] one finds that the quan-
tized spinor fields obey the desired commutation relations,
returning briefly to full coordinate space,

fcþðxÞ; c y
þðyÞgjxþ¼yþ ¼ 1ffiffiffi

2
p �þ	2ðx? � y?Þ	ðx� � y�Þ;

(B1)

provided that the initial data obey

fcþðxÞ;c y
þðyÞgjxþ¼yþ¼0¼ 1ffiffiffi

2
p �þ	2ðx?�y?Þ	ðx��y�Þ;

fc�ðxÞ;c y�ðyÞgjx�¼y�¼�L¼ 1ffiffiffi
2

p ��	2ðx?�y?Þ	ðxþ�yþÞ:

(B2)

What we are really doing here is solving a Cauchy problem
with initial data on two lightlike characteristics: this is not
quite what one usually does on the lightfront (where the
operators on the x� characteristic are not needed explic-
itly) but is necessitated by the time dependence introduced
into the zero-mode problem. Note that without the opera-
tors on x� ¼ �L one does not recover known results such
as Schwinger’s vacuum persistence amplitude in the
L ! 1 limit. Moreover, the approach used here has been
verified by alternative methods [49]. (The question of
whether there is a method to recover the results of this
approach in ordinary lightfront quantization without the
operators at x� ¼ �L has not, to our knowledge, been
addressed.)
From here one can construct the Hamiltonian and states

of the theory as normal. Computationally, it is useful to
work in what becomes Fourier space in the L ! 1 limit:
considering the k� integrations inside the functions G,

Eq. (21), we define the ‘‘almost’’ Fourier transform ~cþ by

cþðxþ; x�Þ �
Z dk�

2�
e�ix�ðk�þi=LÞ ~cþðxþ; k�Þ: (B3)

Dependence on k? will not be written unless it is needed.
Explicitly, our new field is

~cþðxþ; k�Þ ¼
Z 1

�L
dy�eiy�ðk�þi=LÞEk�ð0; xþÞcþð0; y�Þ

þ
Z xþ

0
dyþ

e�iLðk�þi=LÞ

k� � eA�ðyþÞ þ i=L

	 Ek�ðyþ; xþÞi@þcþðyþ;�LÞ: (B4)

[The operators ~cþ become canonically normalized crea-
tion (and annihilation) operators as L ! 1, in the inter-

pretation of [20,21], up to a factor of 21=4; hence, the factor

of
ffiffiffi
2

p
in our DHW function (2).] The state of interest for us

is the vacuum, or rather the free vacuum, since what we
wish to do is begin in this state at xþ ¼ 0, apply our
external fields, and see what happens as time evolves.
Since we are working in the Heisenberg picture, in which
the states are time independent, the state we need is pre-
cisely the free vacuum state. This means that the density
we need, Eq. (1), is calculated by first expressing cþ in
terms of the free initial data using (B4), and then evaluating
the density of these free fields in the free vacuum state.
This calculation is performed using the ordinary free-field
mode expansion. For example, a free-field calculation
easily gives us
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h0jcþðxÞc y
þðyÞj0ijxþ¼yþ¼0

¼ 1ffiffiffi
2

p �þ Z 1

0

dk�
2�

e�ik�ðx2�x1Þ�	2ðx? � y?Þ; (B5)

which we will use below.

APPENDIX C: CALCULATING THE DHW
FUNCTION

We now wish to calculate (1) and (2). To do so we make
an assumption on the longitudinal electric field, namely,
that it is positive, e.g., modeling a subcycle pulse. As a
result, eA� is a positive function increasing from 0 at xþ ¼
0. This approximation can be relaxed, but doing so means
that the analytic structure in the functions E becomes
significantly more complex, since the kinematic momen-
tum ��ðxþÞ ¼ k� � eA�ðxþÞ may have multiple zeros.
The ‘‘subcycle assumption’’ means that this function has at
most one zero for a given k�. With this assumption, we can
define the inverse function Xðk�Þ � Xk� by

k� � eA�ðXk�Þ � 0: (C1)

This function exists for the duration of the longitudinal

field Ek. What happens after the fields turn off is explained
below. To proceed, we express the densityU in terms of the

modes ~cþðxþ; k�Þ. The first term of the commutator is

h0jcþðxþ;x�2 Þc y
þðxþ;x�1 Þj0i

¼
Z dl�

2�
fðl�Þe�iðl�þi=LÞx�

2

	
Z dq�

2�
f
ðq�Þeiðq��i=LÞx�

1 h0j ~cþðxþ;l�Þ ~c y
þðxþ;q�Þj0i;

(C2)

where we have included test functions under the momen-
tum integrals in order to take the L ! 1 limit more
rigorously. Since cþ itself contains two terms, the overlap
in (C2) contains four. Only one of these, the product of the
first term in (B4) with its conjugate, ultimately contributes,
so we present only this calculation. Using (B4) to write
down this term, and the free-field expression (B5), one
finds that the overlap in (C2) is

1ffiffiffi
2

p �þ Z 1

0

dk�
2�

Z 1

�L
dveiðl�þi=LÞv

	
Z 1

�L
dze�iðq��i=LÞvEl�ð0; xþÞE


q�ð0; xþÞe�ik�ðv�zÞ

¼ 1ffiffiffi
2

p �þ Z 1

0

dk�
2�

e�iLðl�þi=LÞeiLðq��i=LÞ

	 El�ð0; xþÞ
l� � k� þ i=L

E

q�ð0; xþÞ

q� � k� � i=L
; (C3)

carrying out the v and z integrations to arrive at the
second line. We now bring in the momentum integrals

and change variables l� ! a ¼ Lðl� � k�Þ and q� !
b ¼ Lðq� � k�Þ:

ðC2Þ¼ 1ffiffiffi
2

p �þZ 1

0

dk�
2�

e�ipðx�2 �x�1 Þ
�Z da

2�
fða
L
þk�Þ

	Ea=Lþk�ð0;xþÞ
aþ i

e�iðaþiÞð1þx�2 =LÞ
�

	
�Z db

2�
f

�
b

L
þk�

�E

b=Lþk�

ð0;xþÞ
b� i

eiðb�iÞð1þx�
1
=LÞ

�
:

(C4)

Our task now is to take the L ! 1 limit. The behavior of
the E functions in this limit depends crucially on the
relative values of xþ and k�, as these determine whether
or not we hit the singularity. Explicitly, we have

Ea=Lþk�ð0;xþÞ¼exp

�
� i

2

Z xþ

0

ds!2ðsÞ
k��eA�ðxþÞþaþi

L

�
: (C5)

We have k� > 0. It is therefore clear that if k� �
eA�ðxþÞ> 0 there are no problems taking the L ! 1
limit. Although we cannot carry out the s integral exactly
we know that E becomes a phase, and this will cancel
between the two large bracketed terms in (C4). We can
therefore write part of the solution immediately:

h0jcþðxþ;x�2 Þc y
þðxþ;x�1 Þj0i

! 1ffiffiffi
2

p �þ
��

Z 1

eA�ðxþÞ
dk�
2�

jfðk�Þj2e�ik�ðx�2 �x�
1
Þ

	
Z da

2�

e�iðaþiÞ

aþ i

Z db

2�

eiðb�iÞ

b� i
þ . . .

¼ 1ffiffiffi
2

p �þ
��

Z 1

eA�ðxþÞ
dk�
2�

jfðk�Þj2e�ik�ðx�2 �x�
1
Þþ . . . : (C6)

The integral over the range k� 2 0 . . . eA�ðxþÞ requires
more care. In this case there is always a value of s such that
the integral in (C5) acquires an imaginary part which does
not drop out of (C4). To identify the imaginary part we
change variables eA�ðsÞ � t, i.e., s ¼ Xt, and then expand
the resulting t dependence in the numerator:

Ea=Lþk�ð0;xþÞ¼ exp

�
� i

2

Z eA�ðxþÞ

0

dt!2ðXtÞX0
t

k�� tþaþi
L

�

¼ exp

�
�i
ðk�Þ

Z eA�ðxþÞ

0

dt

k�� tþaþi
L

þ . . .

�
;

(C7)

where we have shown only the first term in the series and
defined the function
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ðpÞ ¼ !2ðXpÞ
2jejEkðXpÞ

: (C8)

Carrying out the integrals and then taking the limit L ! 1
one finds

Ea=Lþk�ð0; xþÞ ! exp½�i
ðk�Þð� log½j1� eA�ðxþÞ=k�j�
� i�þ realÞ�; (C9)

where the real logarithm and i� come from the first term of
the Taylor expansion, and all other terms give real,
a-independent contributions. (This behavior is different
from that in the second commutator term calculated in
[21], where the singularity always lies precisely at one of
the integral’s limits, rather than between them, and the a
and b integrals are more complex.) Thus, each E
function contributes the exponential of��
 and the rather
simple, final expression for the first term of the density
(C2) is

h0jcþðxþ; x�2 Þc y
þðxþ; x�1 Þj0i

¼ 1ffiffiffi
2

p �þ Z 1

eA�ðxþÞ
dk�
2�

jfðk�Þj2e�ik�ðx�2 �x�
1
Þ

þ
Z eA�ðxþÞ

0

dk�
2�

jfðk�Þj2e�ik�ðx�2 �x�
1
Þe�2�
ðk�Þ: (C10)

Before moving on to the DHW function itself, it is worth
checking this result. The second commutator term has been
calculated independently in [21] [see Eqs. (4.2) and (4.9)
therein]. That calculation is in two dimensions, so if we
turn off our transverse dependences completely, one finds,
adding one’s result to our own, Eq. (C10), then we cor-
rectly obtain the (1þ 1) field anticommutator (B1). Given
this positive result, we return to four dimensions, and
calculate the second term of the density U from (B1).

The final expression for the density is, removing the test
functions,

U ¼ e�ik?y?ffiffiffi
2

p �þ
�Z 1

�1
dk�
2�

Signðk� � eA�ðxþÞÞe�ik�y�

þ 2
Z eA�ðxþÞ

0

dk�
2�

e�ik�y�e�2�


�
; (C11)

where we have written x2 � xþ y=2, x2 � x� y=2 as in
Sec. II, and 
 in this expression is


 ¼ m2 þ ½k? � eA?ðXk�Þ�2
2jejEkðXk�Þ

: (C12)

We now perform the Fourier transform in (2). Including the
Wilson line, the transformation sets

p?þeA?ðxþÞ¼k?; and p�þeA�ðxþÞ¼k�: (C13)

The final expression for the DHW function is, over the
duration of the pulse,

Wðxþ; x; pÞ ¼ Signðp�Þ þ 2P�ð�p�Þ�ðeA�ðxþÞ þ p�Þ;
(C14)

where the full expression for P is

P¼ exp

�
��m2þ�½p?þeA?ðxþÞ�eA?ðXp�þeA�ðxþÞÞ�2

jejEkðXp�þeA�ðxþÞÞ
�
:

(C15)

This is the expression given in Eq. (27): the more
compact and intuitive notation used therein is explained
in the text. Note that P is gauge invariant by definition, and
hence A�, for example, is actually the lightfront integral of
the electric field, see (11).
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