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We study a seesaw-type extension of the standard model in which the symmetry group is enlarged by a

global Uð1Þ. We introduce adequate scalar and fermion representations which naturally explain the

smallness of neutrino masses. With the addition of a viable scalar dark matter candidate, an original

scenario of leptogenesis emerges. We solve the relevant set of Boltzmann equations and show how

leptogenesis can be successfully implemented at the TeV scale. The constraints on the scalar mass

spectrum are derived and the dark matter phenomenology is discussed.
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I. INTRODUCTION

Now that we entered in the LHC era, the standard model
(SM) of elementary particles can be definitively tested.
Until now, the SM has been extremely successful, as no
strong signals of new physics have been observed so far at
particle accelerators. However other experiments have
longtime evidence for the need of extensions of the SM
particle content. Neutrino oscillations are the prime among
them on the particle side, but the compelling gravitational
evidences for the existence of dark matter (DM), as well as
the observation of a matter-antimatter asymmetry in the
Universe, all call for new physics.

From neutrino oscillation experiments we know that
at least two neutrinos should be massive with an overall
mass scale m� constrained by different observations:
m� & 1 eV. More precisely, experiments with solar, at-
mospheric, reactor and accelerator neutrinos [1–10] set
two mass scales in the theory, �m2� and �m2

A, which drive
the solar and atmospheric neutrino oscillations, respec-
tively [11]:

�m2� ¼ ð7:59þ0:20�0:21Þ � 10�5 eV2;

�m2
A ¼ ð2:43� 0:13Þ � 10�3 eV2:

(1.1)

Moreover, these experiments show that flavor neutrino
mixing, described in terms of the PMNS [12–14] matrix,
is characterized by two large mixing angles, �12 and �23,
and a small one, �13 [15].

On the cosmological side, the matter content of the
Universe has been measured with precision by WMAP
[16]. The resulting dark matter and baryon number den-
sities, �DM and �B, are

�DM¼0:229�0:015; �B¼0:0458�0:0016: (1.2)

Several gravitational observations confirm the existence
of nonbaryonic matter [17], which is not accounted for in
the SM. New physics extensions are then necessary and
various viable DM candidates exist [17]. However, the real
nature of DM is still elusive, as no direct proof has been
observed—or firmly confirmed—so far [18–21]. The mea-
surement by WMAP of the baryonic matter content of the
Universe is in agreement with the value predicted by big
bang nucleosynthesis from the observations of the primor-
dial abundances [22]. However, an excess of baryons over
antibaryons is observed, and the standard cosmological
scenario fails to explain this baryon asymmetry of the
Universe (BAU). Particle physics extensions of the SM
are advocated to justify this: in relation with neutrino
masses, the leptogenesis scenario [23,24] constitutes one
of the most elegant solutions.
In this paper we study a minimal extension of the SM in

which it is possible to address, in a consistent way, the
three puzzles listed above. The model is based on a global
Uð1ÞB� ~L symmetry, which is spontaneously broken below
the electroweak symmetry breaking (EWSB) scale. The ~L
charge is a generalization of the usual lepton number L,
as ~L ¼ L for the SM particles. The light neutrino masses
are explained within a seesaw framework [25], through
the introduction of a SM singlet Dirac fermion ND, to-
gether with three Brout-Englert-Higgs scalar particles:
two SUð2ÞW doublets H1;2 and a SM singlet H3, which

drive the EWSB by acquiring nonzero vacuum expectation
values (vevs). All these extra degrees of freedom are
charged under the global Uð1ÞB� ~L symmetry. In e.g. [26],
neutrino masses were generated in models with similar
scalar spectrum and/or based on a (spontaneously broken)
global symmetry, although in different physical frame-
works. In our scenario, when the seesaw scale is set in
the TeV-range, such a particle content provides a UV-
completion of the inverse-seesaw mechanism of neutrino
mass generation [27].
Nevertheless, with just this particle content, neither the

observed amount of baryon asymmetry nor the dark matter
abundance, Eq. (1.2), can be accounted for.
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In order to solve also these two important issues, we
complete the model by introducing a Majorana neutrino
N3 and a complex scalar S. Both particles are SM singlets,
although S is charged under the global Uð1ÞB� ~L.
The particle content of the model is summarized in
Table I, together with the Uð1ÞB� ~L quantum numbers of
the fields. The new scalar S provides, after the breaking of
Uð1ÞB� ~L, a natural dark matter candidate, whose stability is
guaranteed by a remnant Z2 symmetry.

It is remarkable that the introduction of S allows a TeV
scale scenario of leptogenesis. Indeed, as the Majorana field
N3 couples toND andS, the out-of-equilibriumCP-violating
decays of N3 can generate a number density asymmetry in
ND and S, resembling the standard thermal leptogenesis
mechanism in the type I seesaw extension of the SM.
However, in the present case leptogenesis is implemented
in two steps: first an asymmetry inND and S is generated by
the decays of N3; in a second phase, the Dirac neutrino
asymmetry is transferred to SM leptons by sufficiently fast
neutrino Yukawa interactions. The latter set a link between
successful leptogenesis and viable neutrino mass generation
via the seesaw mechanism. Finally, as in standard lepto-
genesis, nonperturbative sphaleron effects partly convert
this lepton asymmetry into a net baryon number [28].

In Sec. II we discuss neutrino mass generation through
the (inverse) seesaw mechanism. In Sec. III we tackle the
problem of the BAU and study the constraints on the
parameter-space of the model imposed by successful lepto-
genesis. The computation of the CP asymmetry and the set
of coupled Boltzmann equations governing the number
density evolutions are reported in the final appendices. In
Sec. IV we discuss the scalar sector of the theory, deriving
the mass spectrum and corresponding constraints. In
Sec. V we study the possibility of having a viable dark
matter in the model and comment on the possible obser-
vation of DM in direct detection experiments. Finally, in
the last section we summarize the main results of the paper.

II. NEUTRINO MASSES WITH A GLOBAL Uð1ÞB� ~L

An effective Majorana neutrino mass term is generated
below the EWSB scale from the following part of the
interaction Lagrangian:

�Lint � M �NDND þ
�
yi1

�ND
~Hy1‘i þ yj2

�Nc
D
~Hy2‘j

þ �ffiffiffi
2
p H3

�NDN
c
D þ H:c:

�
; (2.1)

where ‘i ¼ ð�iL; eiLÞT (i ¼ e, �, �), Nc
D � C �NT

D and
~Hk � �i�2H

�
k (k ¼ 1, 2).1 The coupling constant � and

the neutrino Yukawa couplings yi1;2 are complex parame-

ters. As we will see in the following, the phase of � plays a
crucial role in the generation of the CP asymmetry neces-
sary for the production of the observed amount of BAU.
The terms reported in the Lagrangian (2.1) provide a

dynamical realization of the inverse seesaw mechanism
[27] for the generation of neutrino masses in the case the
mass of the Dirac field ND is taken in the TeV-range. More
specifically, in our scenario the standard lepton charge L is
explicitly violated by the interactions involving the cou-
plings yi2 and �. Consequently, we expect that the active
neutrino masses, generated through the (inverse) seesaw
mechanism, do directly depend on these parameters. The
model, in this minimal form, predicts two massive and one
massless active neutrinos.
The seesaw mass scale M is a free parameter of the

theory and can assume arbitrarily large values above the
EWSB scale. However, in the following we will be mostly
interested in the case where M is taken at the TeV scale.
At energies much smaller thanM, ND is integrated out and
we get at second order in 1=M the ðB� ~LÞ-conserving
effective Lagrangian2:

�Leff � � yi1y
j
2 þ yj1y

i
2

2M
ð �‘cj ~H�2Þð ~Hy1‘iÞ þ

yi1y
j
1�
�ffiffiffi

2
p

M2
ð �‘cj ~H�1Þ

� ð ~Hy1‘iÞH�3 þ
yi2y

j
2�ffiffiffi

2
p

M2
ð �‘cj ~H�2Þð ~Hy2‘iÞH3 þ H:c:;

(2.2)

where the sum over the flavor indices i and j is understood.
When the neutral components of the scalar fields Hk

(k ¼ 1, 2, 3) take a nonzero vev, the operators in (2.2)
generate a Majorana mass term for the flavor neutrino

fields �iL. Indeed, taking hHii ¼ ð0; vi=
ffiffiffi
2
p ÞT (i ¼ 1, 2)

and hH3i ¼ v3=
ffiffiffi
2
p

in (2.2), we obtain the neutrino mass
Lagrangian

L m�
¼ � 1

2
��c
Rm��L þ H:c:; (2.3)

where �L � ð�eL; ��L; ��LÞ, �c
R � C ��L

T and

ðm�Þij¼�
�
yi1y

j
2þyi2y

j
1�yi1y

j
1�
�v1v3

v2M
�yi2y

j
2�

v2v3

v1M

�

�v1v2

2M
: (2.4)

The masses of the two active neutrinos are given by

TABLE I. Charge assignment of the fields.

Field ‘� eR� ND N3 H1 H2 H3 S

B� ~L �1 �1 �1 0 0 2 �2 �1

1C is the usual charge conjugation matrix of Dirac spinors.
2We do not include flavor kinetic mixing terms in the

Lagrangian (2.2), which arise by dimension-6 effective fermion
operators.
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m� ’ 1

4

��������v3

v2
2

M2
y22�þ v3

v2
1

M2
y21�

� � 2v1

v2

M
y12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
v3

v2
2

M2
y22�þ v3

v2
1

M2
y21�

� � 2v1

v2

M
y12

�
2 þ 4v2

1

v2
2

M2
�2
12

s ��������; (2.5)

where we define y12 ¼ ye1y
e
2 þ y�1 y

�
2 þ y�1y

�
2, yk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyekÞ2 þ ðy�k Þ2 þ ðy�kÞ2
q

(k ¼ 1, 2) and �12 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðye1y�2 � ye2y

�
1 Þ2 þ ðye1y�2 � ye2y

�
1Þ2 þ ðy�1 y�2 � y

�
2 y

�
1Þ2

q
. As

usual in two-Higgs doublet models, the vevs of the two
scalar doublets, v1 and v2, are related to the EWSB scale:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q
� v ’ 246 GeV. As explained in Sec. IV, the

hierarchy among the Higgs vevs is tightly constrained in
our model, in particular, from the presence of a massless
Goldstone boson associated with the spontaneous breaking
of the global Uð1ÞB� ~L: phenomenological constraints en-
force v2 � v1;3, and by convention we impose v3 	 v.
As we will see in Sec. IV, this hierarchical pattern is
easily realized in the model. Typically, for j�j 
 0:01
and M 
 1 TeV and a scalar spectrum with v2 

10 MeV, v3 
 100 GeV, the neutrino Yukawa couplings

are jy1;2j 
 10�4.
The Yukawa interaction �H3

�NDN
c
D generates after

EWSB a small Majorana mass term for the two chiral
components of the Dirac field ND, which is then split
into two quasi degenerate Majorana fermions: they behave
as a pseudo-Dirac pair [29–31], with a mass difference of
the order 2v3j�j. Such scenarios have been studied in
detail in [32], where it was shown that a high-level of
degeneracy prevents the Majorana nature of these states
to be observed at colliders, LHC included. Indirect signals
of TeV scale pseudo-Dirac neutrinos coupled to charged
leptons can in principle be observed both in lepton-flavor
violating processes, e.g. charged lepton radiative decays
‘i ! ‘j� and �� e conversion in nuclei, and in experi-

ments searching for lepton number violation, such as
neutrinoless double beta decay processes. For these pro-
cesses, the contribution of the heavy neutrinos to the
decay rate may be relevant/dominant in the case of M 

ð100–1000Þ GeV, j�jv3=M 
 10�3 � 10�2 and for siz-
able neutrino Yukawa couplings, jy1;2j 
 10�2 [33].

Finally, we remark that the coupling � is not strictly
required in order to obtain two massive neutrinos, whereas
the introduction of y2 is mandatory. Actually, one can show
that y1 and y2 are also sufficient to fully reconstruct the
low-energy neutrino data, up to a normalization factor [34].
From Eq. (2.5) we get the following relation:

j�12jv1v2

1

M
¼ 2ð�m2��m2

AÞ1=4: (2.6)

This equation clearly shows that for y2 ¼ 0 or for
ðye2;y�2 ;y�2Þ aligned with ðye1; y�1 ; y�1Þ, j�12j¼0 and only

one neutrino is massive, in contradiction with neutrino os-
cillation data. Barring accidental cancellations, Eq. (2.6)
implies

jy1jjy2j � 2� 10�8
�

M

1 TeV

��
10 MeV

v2

�
: (2.7)

III. TWO-STEP LEPTOGENESIS

Before discussing how the baryon asymmetry is gener-
ated in our scenario, let us briefly recall the standard
picture of leptogenesis, based on the type I seesaw exten-
sion of the standard model. For a detailed discussion, see
[35] and references therein. In the standard scenario, at
least two massive right-handed (RH) neutrinos, which are
SUð2ÞW �Uð1ÞY singlets, are introduced and couple to
lepton doublets through Yukawa interactions. These sin-
glets are Majorana fermions whose mass MR is not related
to the electroweak scale and can assume arbitrarily large
values. The RH neutrinos evolve together with the SM
particles in a hot but expanding Universe; when the tem-
perature drops down below MR, they start to decouple and
decay out-of-equilibrium in both leptons and antileptons.
If CP is violated in these processes, a nonzero asymmetry
is produced, which is subsequently converted into a net
baryon number by fast sphaleron interactions. The latter
are nonperturbative effects, in thermal equilibrium above
the EWSB scale up to temperatures T&1012–1013 GeV
[36]. Several interactions should be considered for an
accurate determination of the efficiency of leptogenesis
in producing a baryon asymmetry. Spectator processes
play an important role in modifying the production/deple-
tion mechanisms, most notably by spreading the lepton
asymmetry into different species.
In the present case, given the particle content and

the charge assignment listed in Table I, the interaction
Lagrangian receives, besides the operators of the seesaw
sector in Eq. (2.1), contributions from the extra Majorana
field N3 and the scalar S:

�Lint � �2
SS
�Sþ 1

2
M3

�N3N
c
3

þ
�
gS �NDN3 ��00ffiffiffi

2
p S2H�3 þ H:c:

�
; (3.1)

whereM3, �
00 and g can be set real by a redefinition of the

phases of N3, S and H3. We impose N3 to be heavier than
ND and S.
In this model, the generation of a baryon asymmetry

proceeds in two different phases. In a first phase, which is
similar to the standard leptogenesis scenario, an asymme-
try in Dirac neutrinos ND and in S is generated by the out-
of-equilibrium decays of the Majorana field N3. As we
describe below, the CP asymmetry in N3 decays is only
possible after the introduction of S, carrying the same
B� ~L quantum number as ND.
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Besides decays and inverse decays, several scatterings
affect ND and S asymmetries. All these interactions con-
serve the total B� ~L charge. In a second phase, owing to
the neutrino Yukawa couplings, the produced ND and S
asymmetries are transferred and reprocessed into a lepton
asymmetry. In this second phase, the sphaleron processes
partly convert the so produced lepton asymmetry into a
final baryon number, as in the standard picture.

This model can thus be viewed as the SM augmented
with a second Higgs doublet, combined with a hidden
sector composed of the fields N3, S and H3. The two
sectors share a conserved B� ~L charge through the
Dirac neutrino ND. In that extent, the role of the neutrino
Yukawa couplings is central both in the generation of light
neutrino masses and in the production of a BAU, in agree-
ment with observations.

A. The CP asymmetry �CP

In the standard leptogenesis scenario a CP asymmetry is
generated by the interference between the tree-level and
the one-loop corrections to the decay amplitude of the
heavy Majorana neutrinos [24,37], owing to the presence
of at least two heavy states. In our case, with only one
heavy neutrino ND, no CP violation is produced in ND

decays. On the other hand, a nonzero CP asymmetry can
be generated by the addition of N3 and S, from the inter-
ference between the tree-level and one-loop correction to
N3 decay amplitude, whose Feynman diagrams are de-
picted in Fig. 1.

The detailed computation of the CP asymmetry in N3

decays is provided in Appendix B. We report below the
resulting expression in the limit M3 � M, �S:

	CP ’ � Imð�Þ
16


�00

M3

: (3.2)

Despite of the fact that N3 decays depend on the coupling
constant g, the latter being a real parameter does not enter
in the expression of 	CP, cf. Eq. (B13). The only source of
CP violation relevant for leptogenesis is the phase of the
complex parameter � in the Lagrangian (3.1). It is remark-
able that, in contrast to the standard leptogenesis scenario,
there is no direct dependence of 	CP on the neutrino
Yukawa couplings y1;2. Still, a connection between the

leptogenesis CP-violating phase and the light neutrino
masses exists and is actually provided by the imaginary
part of �. We remark that the parameter �00 in (3.2) enters
in the mass splitting between the real and imaginary parts
of S (cf. Eq. (5.1)) and therefore determines which is the
DM candidate of the model, as shown in Sec. V. Provided
�00 is not too much suppressed compared to M3 and the
phase of � is different from zero, 	CP takes sizable values.
We typically have:

	CP ’ �2� 10�6
�

�00

1 GeV

��
10 TeV

M3

�
Imð�Þ: (3.3)

B. Asymmetry productions

We discuss now the salient aspects of leptogenesis in our
scenario. We eventually distinguish between two stages of
production, but we shall emphasize that these stages are
not necessarily consecutive and may occur in the same
temperature range.

1. First stage: Processes at Oð�2Þ, Oðg2Þ,
Oðg2�2Þ and Oðg4Þ

We list below the processes relevant in the first step,
where the asymmetries in S and ND are created.3 Further
details are given in Appendix C:
(i) Decays and inverse decays of N3: N3 ! ND

�S, �NDS
(see Fig. 1).

(ii) �ND ¼ �S ¼ 2 scatterings: ND
�S$ �NDS and

NDND $ SS (see Fig. 2).
(iii) �ND ¼ �S ¼ 1 scatterings: NDN3 $ H3

�S,
ND

�H3 $ N3
�S and NDS$ N3H3 (see Fig. 3).

(iv) S self-annihilation: SS$ H1
�H2 (see Fig. 4).

Notice that the last process depends on interaction
terms reported in the scalar potential of the model
(see Eq. (4.3)). However, it turns out to be numerically
irrelevant, so we disregard the effect of this term in the
following.
We display in Fig. 5 the interaction rates �eq of some

of the up-listed processes as function of the parameter
z � M3=T, where T is the temperature of the plasma.

FIG. 1. Diagrams contributing to the CP asymmetry in the
decays of N3.

FIG. 2. Feynman diagrams of the �ND ¼ �S ¼ 2 scatterings.

3We denote by �X the absolute variation of the X particle
number density.
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These rates are normalized by HðzÞneqN3
ðzÞ, except for the

�ND ¼ 2 rates which are normalized by HðzÞneqND
ðzÞ, as

they only act as damping terms.4 For illustration we fix
M3 ¼ 50 TeV,M ¼ 10 TeV and we choose representative
values of g and j�j for the different panels.5

We represent in each plot by straight (dashed) lines
the computed rates assuming �00 ¼ 1ð100Þ GeV. For
�00 ¼ 1 GeV, the cross sections of the �ND ¼ 2 scatter-
ings (a) are dominated by their s-and u-channels and scale
as Oðg4Þ. The �ND ¼ 2 scatterings (b) on the other hand
are governed by their s-channel and are proportional to
j�j2�002. The �ND ¼ 1 processes (a), (b) and (c) of Fig. 3
are dominated by their respective t-, s-and u-channels and
therefore scale as Oðg2j�j2Þ. For larger values of �00,
e.g. �00 ¼ 100 GeV, the �ND ¼ 1 processes (b) and (c)
get sizable contributions from their t-channels (/ g2�002)
which dominate over the other channels for small values of
�, as can be seen in the right panel of Fig. 5. The different
interaction rates where evaluated using the packages
FeynArts [38] and FormCalc [39]. To this end, we imple-
mented our model, Lint Eq. (A1), via FeynRules [40].

The various interactions considered above control the
amount of ND and S asymmetries produced during the
first stage of leptogenesis. As the lepton asymmetry—and
finally the baryon asymmetry—mostly depends on the
amount of ND asymmetry produced in the first step, it is
useful to introduce an efficiency factor �1 defined through:

Y�ND
ðztrÞ ¼ 	CP�1Y

eq
N3
ðT � M3Þ: (3.4)

In this parametrization, YX indicates the comoving number
density of X, while ztr �M3=M approximately marks the
transition between the first and second stage: for z * ztr,
i.e. T & M, ND decouples from the plasma and decays into
leptons and antileptons.
Given the numerous interactions considered above,

the derivation of an analytic expression for the efficiency
factor �1 is quite challenging. Nevertheless, we perform
a numerical evaluation of �1 by solving the set of
Boltzmann equations reported in Appendix C. The result-
ing efficiency is shown in Fig. 6, where isocontours of �1

in the g� j�j plane are displayed, for M3 ¼ 50 TeV,
M ¼ 10 TeV and �00 ¼ 1 GeV (100 GeV) in the left
(right) panel.
We first consider the case of small �00, left panel of

Fig. 6. In this case, the �ND ¼ 2 scatterings are typically
smaller than the decays and inverse decays, as shown in
Fig. 5. Depending on the value of �, the �ND ¼ 1 scatter-
ing rates �k

N3
ðk ¼ a; b; cÞ, may be in equilibrium when the

ND asymmetry is produced. This occurs if

�k
N3

neqND
HðM3Þ

* 1) j�j �
�

g

10�6

�
* 1: (3.5)

As can be seen in the left panel of Fig. 6, the efficiency �1

strongly depends on whether the �ND scatterings are in-
equilibrium at T �M3 or not. In the case their rates are
not fast enough, i.e. if the condition (3.5) is not satisfied,
the production of ND and S asymmetries is mostly driven
by decays and inverse decays of N3. This situation is
very similar to the standard leptogenesis scenario, when
�L ¼ 1 scatterings are neglected. Therefore, we expect
that larger values of the coupling g increase the washout
effects. The strength of N3 decays and inverse decays can
be expressed in terms of the washout parameter KD

KD �
�N3

HðM3Þ ’ 2

�
g

10�6

�
2
�
50 TeV

M3

�
: (3.6)

For g * 10�6 and M3 �Oð10Þ TeV, decays and inverse
decays act in a strong washout regime, where the efficiency
is approximately given by [41]:

FIG. 4. Feynman diagram of the S self-annihilation.

FIG. 3. Feynman diagrams of the �ND ¼ �S ¼ 1 scatterings.

4In Fig. 5 only the off-shell part of the �ND ¼ 2 diagrams a) is
shown, as its on-shell part equals �D=4, �D being the total decay
rate of N3.

5For definiteness, in the following numerical evaluations we
set the phase of � to its maximum value � ¼ �ij�j.
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�1 � 0:4

KD logðKDÞ : (3.7)

For smaller values of g, decays and inverse decays act in a
weak washout regime, and the efficiency scales asK2

D [41],
in the case where the abundance of N3 is vanishing at high
temperatures.

In the opposite regime, when the �ND ¼ 1 scatterings
are fast enough and the condition Eq. (3.5) is satisfied, an
initial (anti-)asymmetry is produced at earlier times,
due to the CP violation in scatterings, which is discussed
in Appendix C. From Fig. 6, we can distinguish two
relevant cases, according to the values of � and g. For
j�j 
 10�6=g, the �ND ¼ 1 scatterings essentially act as

source terms, producing ND and S asymmetries, thereby
increasing the efficiency �1. This effect is manifest in the
diagonal of the left plot of Fig. 6. Conversely, for larger
values of �, the�ND ¼ 1 scatterings act as damping terms
and increase the washout of the asymmetries. The resulting
efficiency is therefore highly reduced.
The case of a larger �00 is depicted in the right panel

of Fig. 6, where we fix �00 ¼ 100 GeV, while M3 and M
assume the same values as before. As already stated, in this
case the �ND ¼ 1 scatterings (b) and (c) pick up sizable
contributions from their corresponding t-channels, and are
enhanced for relatively small values of �, compared to the
�00 ¼ 1 GeV case, as can be seen in the right panel of
Fig. 5. For j�j & 0:1, the efficiency depends essentially on

FIG. 5 (color online). Processes relevant in the first stage of leptogenesis: thermal density rates as function of z � M3=T, for M3 ¼
50 TeV,M ¼ 10 TeV and �00 ¼ 1ð100Þ GeV, plain (dashed) curves. In black is reported the total decay rate of N3. The purple curves
stand for the sum of the (nonresonant part of the) diagram (a) and diagram (b) in Fig. 2. The blue, orange and red curves correspond,
respectively, to the processes (a), (b) and (c) shown in Fig. 3.

FIG. 6 (color online). Efficiency �1 of production of ND asymmetry in the first stage of leptogenesis, cf. Equation (3.4), as a function
of g and j�j for M3 ¼ 50 TeV, M ¼ 10 TeV and �00 ¼ 1ð100Þ GeV in the left (right) panel.
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g, since the scatterings are negligible with respect to the
decays and inverse decays, and then �1 behaves as in
Eq. (3.7). However, for small values of g, g & few10�5,
�ND ¼ 1 scatterings become competitive with decays
and inverse decays, both in the generation and in the
washout of ND and S asymmetries. For values of � of
order one and small g, the scatterings mainly act as source
terms in analogy with the �00 ¼ 1 GeV regime, thus in-
creasing �1.

We see that in this first stage, the efficiency of ND and
S asymmetry production can be close to its maximum
possible value in a large region of the parameter-space.
However, this does not guarantee a successful leptogenesis,
as this asymmetry should be transferred efficiently to
leptons.

2. Second stage: Processes at Oðy21;2Þ, Oðg2y21;2Þ
We now concentrate on the second step of leptogenesis:

the transfer of ND asymmetry to the lepton doublets. Once
a lepton asymmetry is generated, the sphaleron processes
which are active at the leptogenesis epoch convert part of it
into a nonzero baryon number density. The second stage
ends at the freeze-out of the sphalerons, that may occur
before or right after EWSB [42].

We report below the main �‘ ¼ 1 processes which
participate in the lepton charge transfer mechanism:

(i) Decays of ND, which are either L-conserving,

ND ! ‘H1, or L-violating, ND ! �‘ �H2.

(ii) Scatterings on top quarks: the s-channel ND
�‘$ �tq3

and the t-channels NDq3ð�tÞ $ ‘tð �q3Þ. These pro-
cesses are mediated by the exchange of the Higgs
doublet H1 and correspond to the �L ¼ 1 scatter-
ings in standard leptogenesis. Notice, however, that
in our case lepton number is conserved.

(iii) Scatterings on N3: N3S$ ‘H1 and N3S$ �‘ �H2

which are mediated by ND. A CP asymmetry
emerges from these processes, as shown in
Appendix C.

We do not include the scatterings involving gauge bosons
in our evaluation of the baryon asymmetry. However, we
do not expect these processes to have a quantitative impact.
Indeed, they cannot act as a source term for the lepton
asymmetry since no CP violation is possible in this case,
in contrast to the standard leptogenesis scenario [43]. In
addition, they tend to equilibrate the lepton andND number
densities, like the scatterings on top quarks considered
above. Actually, it is shown in Refs. [44,45] that these
processes have comparable rates.

The lepton doublet can also participate in �L ¼ 2
ND-mediated scatterings, similarly to the standard lepto-

genesis case: ‘H1 $ �‘ �H2 and ‘‘$ �H1
�H2. In this case the

scattering rate is proportional to both the neutrino Yukawa
couplings, y1 and y2. In a democratic scenario, that is for
jy1j 
 jy2j, provided the constraints from active neutrino

masses, Eqs. (2.5) and (2.6) are satisfied, such �L ¼ 2
scatterings are usually in equilibrium at the leptogenesis
time. They are however greatly suppressed compared to the
�‘ ¼ 1 scatterings and turn out to be numerically irrele-
vant, as illustrated below.
In this second stage, all interactions depend on the

neutrino Yukawa couplings y1 and y2. In the limit where
these couplings are zero, no lepton (doublet) asymmetry
can be generated as basically bothND and S decouple from
the SM sector. This clearly implies a lower bound on the
values of y1 and y2.
Let us discuss this bound, independently of the con-

straints from low-energy neutrino masses, as it sheds light
on how this second stage works. To this end, we represent
in Fig. 7 the processes relevant in the second step for
the same set of parameters used in Fig. 5: M3 ¼ 50 TeV,
M ¼ 10 TeV and g ¼ 10�3, and for jy1j ¼ jy2j ¼ 10�4.
We represent in Fig. 7 by plain (dashed) curves the rates
normalized by n

eq
X HðMÞ, where X ¼ NDð‘Þ, acting as

source (damping) terms. The blue curves correspond to
ND decays, both L-conserving and violating as jy1j ¼ jy2j.
The orange (purple) curves are related to scatterings on top
(N3), while the green line stands for the�L ¼ 2 processes.
Scatterings on N3 and �L ¼ 2 interactions are clearly
subdominant and can be neglected.
A lower bound on y1 can be derived by demanding that

the scattering rates on top quarks, denoted by �t
ND
, are in

equilibrium at T �M, when acting as a source term for the
lepton asymmetry:

�t
ND

Neq
ND
HðMÞ * 1) jy1j * 10�5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

10 TeV

s
: (3.8)

FIG. 7 (color online). Processes relevant in the second stage of
leptogenesis: thermal density rates �eq as function of z � M3=T,
for M3 ¼ 50 TeV, M ¼ 10 TeV. The blue curves stand for
decays of ND. The orange curves stand for the (sum of s-and
t-channel) �‘ ¼ 1 scatterings on top quarks, while the purple
ones represent �‘ ¼ 1 scatterings on N3. The green line corre-
sponds to the total �L ¼ 2 scattering rate.
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Therefore, provided y1 is large enough, the L-conserving
scatterings are in equilibrium and can transfer the ND

asymmetry to the lepton doublets. A similar lower bound
arises for y2 from the corresponding �L ¼ 1 scatterings
with gauge bosons.

The main source of lepton asymmetry production may
originate just from the decays of ND. Let us suppose,
indeed, that the lower bound on y1, Eq. (3.8), is not
satisfied. Still, as we see from Fig. 7, decays dominate
over the scatterings at T �M. For these decays to be
effective in redistributing the ND asymmetry to leptons,
the Dirac neutrino should be heavy enough, say M *
10� Tsph, and the following condition should be satisfied:

�ND
* HðMÞ ) jy1;2j * 6� 10�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

10 TeV

s
: (3.9)

In summary, for neutrino Yukawa couplings smaller
than the bound above, the lepton number asymmetry pro-
duction is not efficient. If only condition (3.9) is satisfied,
almost all ND decays to leptons, and we expect that at the
end of the second stage, the lepton asymmetry equals the
amount of ND asymmetry produced in the first stage. For
larger Yukawa couplings satisfying Eq. (3.8), Y�‘ðztrÞ 

Y�ND

ðztrÞ at the end of the first stage, so at the end of the

second stage, Y�‘ðzsphÞ 
 2Y�ND
ðztrÞ.

The case of a light Dirac neutrino.—

An interesting case is realized when the Dirac neutrinos
are so light that they do not have enough time to decay
before the freeze-out of the sphalerons. Demanding that
the scatterings with quarks are in-equilibrium, at least
slightly before the sphalerons decouple, the condition
(3.8) is changed to jy1j * 10�6. Therefore y1 should
be at least larger than the electron Yukawa coupling.
We illustrate this remarkable case in Fig. 8, where we fix

M ¼ 200 GeV and we consider two sets of values for jy1j
and jy2j: (i) jy1j ¼ jy2j ¼ 5� 10�4 (red curves) and
(ii) jy1j ¼ jy2j ¼ 5� 10�7 (black curves). Notice that
the latter case may hardly be compatible with constraints
from neutrino masses, Eqs. (2.5), (2.6), and (2.7). The
dashed and plain curves correspond to the lepton doublet
and ND asymmetries, respectively, and all the asymmetries
have been normalized to YND

ðztrÞ, where ztr �M3=M is

indicated by a blue band. We impose a sphaleron freeze-
out at around Tsph � 130 GeV, which is represented by the

gray band. We see from Fig. 8 that while ND asymmetry is
almost unaffected by the Yukawa hierarchy, in case (ii)
leptons do not equilibrate withND as scatterings are out-of-
equilibrium, while in case (i) Y�‘ 
 Y�ND

at temperatures

well above M.
Provided that the neutrino Yukawa couplings are suffi-

ciently large, an asymmetry in ND will be always trans-
mitted to the lepton sector, regardless of the Dirac neutrino
mass: we can therefore asset that no lower bound can be
derived on M from leptogenesis.
In conclusion, once light neutrino mass constraints

are applied, a lepton asymmetry is efficiently produced.
A successful leptogenesis then only relies upon the amount
of ND asymmetry produced in the first stage.

C. Successful leptogenesis

In the former subsections, we analyzed the conditions
under which a ND asymmetry is efficiently produced dur-
ing the first step of leptogenesis, and subsequently trans-
mitted to the lepton doublets. Through the sphaleron
processes, this lepton asymmetry is partly converted into
a baryon number density. The sphalerons violate both
lepton and baryon numbers, but conserve B� L: it is
therefore more convenient to evaluate the B� L asymme-
try. Given the different processes in thermal equilibrium
during leptogenesis era, the final baryon asymmetry reads:

Y�B ¼ 2

7
Y�ðB�LÞðzsphÞ: (3.10)

The derivation of Eq. (3.10) is given in Appendix D. We
illustrate in Fig. 9 the evolution of ND, S and baryon
asymmetries against z for typical values of the parameters:
M3 ¼ 50 TeV,M ¼ 10 TeV,�S ¼ 100 GeV and�00 ¼ 1
or 100 GeV, left or right panel, respectively, for fixed
values j�j ¼ 0:1 and g ¼ 10�5. For such values of j�j
and g, we see from Fig. 6 that the efficiencies �1 are quite
similar, that is �1 � 0:1. However, for �00 ¼ 100 GeV the
CP asymmetry is 	CP ’ 4� 10�6, 2 orders of magnitude
larger than for �00 ¼ 1 GeV, cf. Equation (3.2), and so the
baryon asymmetry in the former case will be bigger.
Indeed, for �00 ¼ 1 GeV, Y�B 
 1:6� 10�11 while for
�00 ¼ 100 GeV, Y�B 
 10�9. These values should be
compared with the measurement of WMAP [16]:

FIG. 8 (color online). Influence of scatterings on the transfer of
ND asymmetry to a lepton doublet asymmetry. See the text for
details.

JOSSE-MICHAUX AND MOLINARO PHYSICAL REVIEW D 84, 125021 (2011)

125021-8



Yobs
�B ¼ ð8:77� 0:21Þ � 10�11: (3.11)

In Fig. 10, we made a scan over the two parameters � and
g: the black points represent values of Y�B compatible with
observations.6 As we see, a successful leptogenesis is
easily realized in our scenario, provided theCP asymmetry
is big enough, that is 	CP * 3� 10�7, and the washout
processes do not suppress the ND asymmetry in the first
stage, i. e. �1 * few10�3.

IV. THE SCALAR SECTOR

Given the charge assignment of the scalar fields in
Table I, the most general scalar potential V SC invariant

under SUð2ÞW �Uð1ÞY � ½Uð1ÞB� ~L can be written in the
following form

V SC �V SB þV DM; (4.1)

where V SB and V DM denote the symmetry breaking and
dark matter scalar potentials, respectively:

V SB ¼ ��2
1H
y
1H1 þ �1ðHy1H1Þ2 ��2

2H
y
2H2

þ �2ðHy2H2Þ2 ��2
3H
�
3H3 þ �3ðH�3H3Þ2

þ �12H
y
1H1H

y
2H2 þ �012H

y
1H2H

y
2H1

þ �13H
y
1H1H

�
3H3 þ �23H

y
2H2H

�
3H3

� �0ffiffiffi
2
p ðHy1H2H3 þHy2H1H

�
3Þ; (4.2)

V DM ¼ �2
SS
�Sþ �SðS�SÞ2 þF 1H

y
1H1S

�S

þF 2H
y
2H2S

�SþF 3H
�
3H3S

�Sþ hS2Hy1H2

þ h�S�2Hy2H1 ��00ffiffiffi
2
p ðS2H�3 þ S�2H3Þ: (4.3)

Through rotations of the scalar fields, all parameters but h
can be made real, while the dimensional parameters are
assumed positive. The parameter h is in general complex,
but we will assume in the following that h is real.
The two scalar doublets H1;2 and the complex scalar

singlet H3 are responsible for the breaking of SUð2ÞW �
Uð1ÞY � ½Uð1ÞB� ~L down to Uð1Þem � ½Z2. Given the
charges of H2 and H3, the discrete Z2 emerges as a
remnant symmetry of the global Uð1ÞB� ~L after EWSB.
Among the ten real scalar degrees of freedom, three of
them are eaten through the Higgs mechanism, leaving a
spectrum of seven physical scalars: two charged particles,
H�, two CP odd neutral scalars, A0 and the massless
Majoron J [46], and three CP even neutral scalars, h0,
H0 and hA. We derive in the following subsections
some constraints on the scalar sector parameter-space.

FIG. 9 (color online). Evolution of number density asymmetries in function of z. M3 ¼ 50 TeV, M ¼ 10 TeV, j�j ¼ 0:1 and

g ¼ 10�5 are fixed. The black dashed (plain) curves represent 	CP � YðeqÞN3
. In dotted-blue, dot-dashed orange and plain red are shown

Y�ND
, Y�S and Y�B respectively.

FIG. 10 (color online). Successful leptogenesis. Region of the
parameter-space in the j�j � g plane providing a final baryon
asymmetry (not) compatible observations, (yellow) black
points. We fix M3 ¼ 50 TeV, M ¼ 10 TeV, �S ¼ 100 GeV
and �00 ¼ 100 GeV.

6Actually, for the sake of illustration, we enlarge the required
range, demanding 3� 10�11 & Y�B & 3� 10�10.
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An exhaustive phenomenological study, although of great
interest, is beyond the scope of this work.

The minimization of the scalar potential with respect
to H1, H2 and H3 vevs enforces three tree-level relations,
that we use to define the quadratic terms �i. Indeed, by
parametrizing the Brout-Englert-Higgs fields and S as

Hk ¼
�
Hþk ;

vk þ hk þ iakffiffiffi
2
p

�
T
; k ¼ 1; 2; (4.4)

H3 ¼ v3 þ h3 þ ia3ffiffiffi
2
p ; S ¼ S0 þ iS1ffiffiffi

2
p ; (4.5)

with

hHii ¼ viffiffiffi
2
p and hSi ¼ 0; (4.6)

we get the extremum conditions

@V SB

@vi

¼0$�2
i ¼

1

2
ðv2

j ~�ijþv2
k�ikÞþ2v2

i �i�
vjvk�

0

2vi

;

i;j;k¼1;2;3; (4.7)

where ~�12 ¼ �12 þ �012 and ~�ij ¼ �ij elsewhere. The ex-

tremum obtained in (4.7) is an absolute minimum provided
the Hessian ofV SB is positive definite. Boundedness from
below of the scalar potential requires the quartic couplings
�k to be positive, as well as a nontrivial relation among the
couplings. Notice that, since both H1 and H2 are charged
under SUð2ÞW �Uð1ÞY , they both contribute to the masses
of the SM gauge bosons.

Among the numerous parameters of V SC, it is worth
emphasizing the role of the trilinear coupling �0. In
[47,48], a two-Higgs doublet model was built invariant
under a Uð1Þ global symmetry, explicitly broken by a

term / �2y12. Such term, for �� v induces a type-II

seesaw among the scalar vevs of 1 and 2: hii � hji,
i � j. As noted in [48], such explicit breaking can be
circumvented by the introduction of an additional scalar,
say 3, whose vev generates the required term: �2 ¼
�0h3i. It is exactly along those lines that we build our
scalar potential. Indeed, provided that �0 in (4.2) is sup-
pressed, �0 � 1 GeV, the minimization of V SC admits
two possible hierarchical patterns for the vevs: v3 � v2;1

and v2 � v3;1. As we will show below, only the latter is

physically viable. One may wonder about the naturalness
of such a suppressed mass parameter �0. Let us stress that
very small values of �0 are actually technically natural.
Indeed, this term, as well as the couplings h and y2, are all
terms linear in H2. By setting them to zero, one actually
enlarges the symmetry group by an extra Uð1Þ factor.
Therefore, small values of these parameters are natural,
in the ’t Hooft sense [49].

A. CP odd neutral scalars: A0 and J

Three CP odd neutral scalar fields arise from the sponta-
neous breaking of the electroweak symmetry: one pseudo-
scalar ZL, the longitudinal polarization of the gauge
boson Z, one massive pseudoscalar A0 and the massless
Goldstone mode, associated with the spontaneous breaking
of the global symmetry Uð1ÞB� ~L, the Majoron J .7

The mass eigenstates are obtained by the basis trans-
formation

a1
a2
a3

0
@

1
A ¼ RPS

ZL

J
A0

0
@

1
A; (4.8)

where RPS is a 3� 3 orthogonal matrix

RPS ¼
cosð�Þ sin2ð�Þ� � sinð�Þ tanð�Þ�
sinð�Þ � sinð�Þ cosð�Þ� cosð�Þ tanð�Þ�

0 tanð�Þ� sinð�Þ�

0
BB@

1
CCA;

(4.9)

with � ¼ cosð�Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosð�Þ2 cosð�Þ2p

and the mixing
angles � and � are by definition

tanð�Þ ¼ v2

v1

; tanð�Þ ¼ v3

v1

: (4.10)

The angles � and � control the coupling of J to SM
fermions. Indeed, the interaction term relevant for the
Majoron phenomenology is

�L � igJ ff
�f�5fJ ; (4.11)

with

gJ ff �
mf

v
sinð�Þ tanð�Þ� (4.12)

and mf is the fermion mass. Strong constraints apply on

these couplings, stemming from star cooling processes
[52]. In particular, the experimental upper limit on the
cooling rate of white dwarfs implies jgJ eej & 10�12.
Then, from (4.10) and (4.12) we obtain in the limit �� 1

� & 7� 10�4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tanð�Þ

q
; (4.13)

implying v2 & 0:2 GeV
ffiffiffiffiffiffiffiffiffiffiffi
v3=v

p
. As already stated at the

beginning of this section, a hierarchical pattern of the type
v2 � v3 < v1 can be easily fulfilled, as the scale of v2 is
directly related to the dimensional parameter �0:

v2 
 v1v3�
0

v2
1 ~�12 þ v2

3�23 � 2�2
2

; (4.14)

7The Majoron J is exactly massless in our setup. Notice that
J , being the Goldstone boson of a spontaneously broken global
symmetry, may acquire a mass through gravitational effects, as
shown in [50,51]. However, we will not consider this possibility
in the following.
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which is suppressed compared to v1;3 as �0 can be natu-

rally set to a scale much smaller than the EWSB scale.
The second physical pseudoscalar, A0, has mass

M2
A0 ¼ �0

v2
2ðv2

1 þ v2
3Þ þ v2

1v
2
3

2v1v2v3

��0
v1v3

2v2

¼ �0v cosð�Þ tanð�Þ
2 tanð�Þ : (4.15)

The actual value ofMA0 depends on the ratio �0=v2. Since
the couplings of A0 to the SM fermions are sinð�Þ sup-
pressed, MA0 and thus �0=v2 are unconstrained.

B. Charged scalars: H�

As in any two-Higgs doublet model, the charged scalar
spectrum is composed of one physical fieldH� and the eaten
longitudinal degree of freedom W�L . They are related to the
interactionfieldsH1;2 through the orthogonal transformation:

Hþ1
Hþ2

 !
¼ cosð�Þ � sinð�Þ

sinð�Þ cosð�Þ

 !
WþL
Hþ

 !
: (4.16)

The charged scalar mass is given by

M2
H� ¼

v2

2

�
tanð�Þ
sinð�Þ

�0

v
��012

�
’ M2

A0

cosð�Þ2�
v2

2
�012; (4.17)

where in the last expression we used the approxi-
mation given in (4.15). Since M2

H� > 0, one requires

�012 & 2M2
A0=v

2. An experimental lower bound on MH� is

obtained from H� pair production at LEP [53] and
the subsequent decays H� ! ���� and H� ! cs. For
mH� 	 mW , H

� decays only to SM fermions, so the bound
MH� * 78:6 GeV applies.

C. CP even neutral scalars: h0, H0 and hA

We introduce the CP even mass eigenstates h0, H0 and
hA, which are related to the interaction fields h1;2;3 through
the basis rotation:

h1

h2

h3

0
BB@

1
CCA ¼ RNS

H0

hA

h0

0
BB@

1
CCA: (4.18)

In the limit �0, v2 � v3 < v1, the CP even scalar mass
matrix can be further simplified and RNS just consists in a
rotation of angle � between the eigenstates h0 and H0.
Moreover, at leading order in �, hA and the pseudoscalar
A0 are degenerate in mass and both decouple from the other

particles, so no constraints apply on MhA . Within this

approximation and introducing as a shorthand

m1 ¼ v1

ffiffiffiffiffiffiffiffi
2�1

p
; m3 ¼ v3

ffiffiffiffiffiffiffiffi
2�3

p
and m13 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1v3�13

p
;

the masses of the neutral Higgs H0 and h0 and the mixing
angle � are given by the relations

M2
H=h¼

1

2
ðm2

1þm2
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1�m2
3Þ2þ4m4

13

q
Þ;

�¼Arctan

�m2
3�m2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

3�m2
1Þ2þ4m4

13

q
2m2

13

�
; (4.19)

and MH0 � Mh0 . The mixing angle j�j takes values from
zero to 
=2. The couplings of H0 (h0) to SM particles
are given by the SM Higgs ones times cosð�Þ ( sinð�Þ).
For maximal �� 
=2, h0 couplings are unsuppressed
compared to the SM case, so LEP-II bounds apply and
MH0 � Mh0 * 114:4 GeV [54]. In the opposite case, with
suppressed mixing angle j�j � 1, only H0 get sizable
couplings to the SM, and the former bound on MH0 still
applies. Conversely, for j�j � 1, LEP-II bounds are rather
weak in constraining the mass of the lightest Higgs. Notice
that h0 contributes to the invisible Z decay; however, the
Z� h0 � J coupling is �4 suppressed: this contribution is
negligible and no relevant constraints apply on Mh0 from
this decay. Nevertheless, for sin2ð�Þ * 0:1, LEP-II bounds
imply Mh0 * 80 GeV. In the following, we assume the
conservative limitMh0 * 114:4 GeV, which is valid for all
values of �.

An almost invisible Higgs boson

As occurs in models with multiple scalars, the Higgs
bosons may decay invisibly. In our scenario, both H0 and
h0 can decay into two Majorons, thus precluding their
detection at present particle colliders, LHC included.
The total decay widths of H0 and h0 are given by

�ðH=hÞ ’ 1

8


X
ij

�ðMH=h;Mi;MjÞ
2M3

H=h

jMijj2

��ðM2
H=h � ðMi þMjÞ2Þ: (4.20)

In the equation given above the kinematical factor is

�ðx; y; zÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 � ðyþ zÞ2Þðx2 � ðy� zÞ2Þp
. We consider

below for simplicity only tree-level two-body decays into
identical final states. The decay probabilities of H0 and h0

to neutral scalars are proportional to the norms of the
trilinear couplings, which at zeroth order in � read:

jMH=h
J j2 ¼ v2j�H=h

JJ j2; �H=h
JJ ¼ cosð�Þ�13

�
cosð�Þ
sinð�Þ � 2 cosð�Þ tanð�Þ�3

�
sinð�Þ
� cosð�Þ ; (4.21)

jMH=h
H� j2 ¼ v2j�H=h

HþH�j2; �H=h
HþH� ¼ cosð�Þ�12

�
cosð�Þ
sinð�Þ � cosð�Þ tanð�Þ�23

�
sinð�Þ
� cosð�Þ ; (4.22)
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jMH=h
hA
j2 ¼ jMH=h

A j2 ¼ v2j�H=h
AA j2; �H=h

AA ¼ cosð�Þ~�12

�
cosð�Þ
sinð�Þ � cosð�Þ tanð�Þ�23

�
sinð�Þ
� cosð�Þ ; (4.23)

jMH=h
S j2 ¼ v2j�H=h

SS j2; �H=h
SS ¼ cosð�ÞF 1

�
cosð�Þ
sinð�Þ �

�
F 3 cosð�Þ tanð�Þ ��00

v

��
sinð�Þ
� cosð�Þ : (4.24)

The decay probabilities of H0 and h0 into SM particles are
similar to the SM ones, see e.g. [55], modulo a dependence
on the mixing angles � and �. At tree level, for the decay
probability into fermions, we have

jMH=h
f j2¼2Nc

�
mf

v

�
2
M2

H=h

�
1�4

m2
f

M2
H=h

��
cos2ð�Þ
sin2ð�Þ ; (4.25)

where Nc is the number of colors and mf is the fermion
mass. The tree-level H0=h0 ! WþW� decay probabilities
depend on

jMH=h
W� j2 ¼

g4W
16

v2j�H=h
W ðMH=hÞj2; (4.26)

�H=h
W ðmÞ¼cosð�Þ m

2

M2
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4

M2
W

m2
þ12

M4
W

m4

s �
cosð�Þ
sinð�Þ ; (4.27)

where MW is the W-boson mass and gW is the weak gauge
coupling constant. A similar expression holds for H0=h0

decays into pairs of Z bosons.
From the expressions above, we can estimate the invis-

ible branching ratio of the Higgs bosons. First of all,
obviously, the smaller the quartic portal couplings, the
smaller the invisible Higgs decay widths. Second, the
decays into hA or A0, even if equal at leading order in �,
do not have a similar impact on Higgs searches at colliders.
Indeed, the pseudoscalar A0 eventually decays almost ex-
clusively into SM fermions: H0=h0 ! A0A0 can thus be
considered as a visible channel. Conversely, hA essentially
decays into Majorons.
In the low mass region, MH=h & 2MW , neglecting the

masses of the decay products, the Higgs invisible to visible
decay width ratios are

�ðH=h! invÞ
�ðH=h! SMÞ ’

�ðH=h! JJ Þ þ �ðH=h! hAhAÞ þ �ðH=h! SSÞ
�ðH=h! b �bÞ þ �ðH=h! A0A0Þ ; (4.28)

provided MhA ’ MA0 & MH=h=2. The decay width to b-quarks is Yukawa suppressed, so the ratio above is simplified to

�ðH=h! invÞ
�ðH=h! SMÞ ’ 1þ �ðH=h! JJ Þ þ �ðH=h! SSÞ

�ðH=h! A0A0Þ : (4.29)

Consequently, for low masses, both H0 and h0 mostly
decay invisibly.

In the high mass regime, MH=h * 2MW , under the ap-

proximation that the Majoron channel constitutes the main
invisible decay and the visible channel is mostly due to
decays to gauge bosons, we have

�ðH=h! invÞ
�ðH=h!SMÞ ’

�ðH=h!JJ Þ
�ðH=h!WþW�Þþ�ðH=h!ZZÞ

/ 16

g4W

M4
W

M4
H=h

�
�13�2�3 tanð�Þ

�
tanð�Þ
1=tanð�Þ

�
2
:

(4.30)

From the previous estimate we infer that, for a maximal
�� 
=2, the heaviest Higgs boson,H0, decays prevalently
into two Majorons, thus forbidding its detection at current
collider searches. The opposite occurs for the lightest CP
even scalar h0. On the other hand, for higher values ofMH0

(Mh0) and a sufficiently small (large) mixing angle �, the
visible decay rate ofH0 (h0) becomes sizable. It dominates
for very heavy Higgs bosons.

In Fig. 11 we display the frequency at which the H0 and
h0 decays channels are the dominant ones, displayed in the
top and bottom panels, respectively. In order to produce this
plot, we use the Higgs decay branching fractions computed
by the program micrOMEGAs [56], that we also use to
study the dark matter sector, as discussed in Sec. V. As
expected, we see from Fig. 11 that above the W threshold,
the heavier the Higgs bosons the larger their visible decay
rates.8 Conversely, in the lowmass regime the Higgs bosons
are clearly unobservable as we explained above.

V. DARK MATTER

We discuss in this section the third building-block of our
model: the existence of a viable dark matter candidate.
Below the EWSB scale, the complex scalar S is split into

8Notice that we only consider the two-body decay widths
H0=h0 ! WþW�. However, in the SM the tree-body decays
through off-shell W actually dominate for MH=h * 135 GeV,
cf. [55], in which case the Higgs visible decay channels should
prevail here as well.
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two real components S0 and S1, the lightest one being the
DM. Real scalar singlets provide the simplest DM candi-
dates, for which a large literature exists [57]. In our model,
we shall stress two important aspects: first, the stability of
DM is not an ad hoc prescription, but results from the
remnant Z2, S0 or S1 being the lightest particle odd under
this discrete symmetry; second, we emphasize again that
introducing the scalar S not only provides a DM candidate,
but is also necessary in our leptogenesis scenario.

The masses of the two real components of S are

m2
S0ð1Þ ¼�2

Sþ
1

2
ðF 1v

2
1þF 2v

2
2þF 3v

2
3Þ

�ðhv1v2��00v3Þ: (5.1)

The mass splitting in this case is controlled by the parame-
ters h and �00. However, since v2 � v3, the latter term
dominates and mS0 	 mS1 for positive �

00.9

As seen from V DM, Eq. (4.3), S has several portal
couplings to the Higgs fields, implying many annihilation
channels [58]. Like in most of the singlet scalar DM
scenarios, S easily gets a thermal relic abundance in agree-
ment with cosmological requirements.

A. Relic density

The DM annihilation cross-section can generically be
written as

�v� �2
eff

mS2
; (5.2)

where the effective coupling �eff indicates that each anni-
hilation channel receives in general several contributions.
When S annihilates into scalars, the cross section is the
(coherent) sum of the contact term interaction, for which
�eff / F i, cf. Eq. (4.3), and of scalar-mediated interac-
tions, where �eff depends on the different trilinear scalar

couplings, such as �H=h
SS introduced in the previous section.

For light DM, that is mS & MW , S mostly annihilates to
Majorons, as well as to pairs of hA or A0, granted the latter
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FIG. 11 (color online). Dominant H0 (top) and h0 (bottom) Higgs decay channels in function of their masses.

9In the following we will however denote by S the DM
candidate. The heavier state will decay to DM plus Majoron.
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are light enough. Notice that the annihilation cross-sections
into pairs of hA and A0 coincide at zeroth order in �. For
heavier DM, new annihilation channels are open. In the case
mS >MW , S can annihilate into pairs ofW

� through h0 and
H0 s-channel (the hA mediation is �2 suppressed)10:

�v¼ g4W
16
m2

S

�
v2�H

SS�
H
Wð2mSÞ

M2
H0�4m2

S

þv2�h
SS�

h
Wð2mSÞ

M2
h0
�4m2

S

�
2
; (5.3)

where �H=h
W ðmÞ were introduced in Eq. (4.27). A similar

expression holds for the annihilation into pairs of Z bosons.
In the high mass range, S may also annihilate into pairs of
charged H�, or to pairs of CP even scalars h0 and H0.

Increasing the DMmass, the quartic couplingsF i which
control the DMmass, Eq. (5.1), and the effective couplings

�H=h
SS , Eq. (4.24), should increase as well, so that the

annihilation cross section remains large enough, in order
to obtain the observed DM relic abundance.

Numerical evaluation

In order to accurately determine the relic abundance of
S, we implemented our model in micrOMEGAs [56],
through the program FeynRules [40]. We then performed
a scan over the full scalar parameter-space, by assigning
random values to the different couplings. All � and �
quartic couplings were varied from 10�4 up to the pertur-
bative bound 4
. The trilinear coupling h was chosen
between 10�6 and 10�2. The scalar masses were randomly
varied from their experimental lower bounds, discussed in
the previous section, up to 500 GeV. In particular, as
regards the CP even scalar masses, recall that we impose
the conservative bound MH0=h0 * 115 GeV. We vary

the mixing angle � in the range: 0 	 j�j 	 
=2. For the

unconstrained scalars hA and A0, their (almost degenerate)
mass was varied between 1 GeV and 100 GeV.
The trilinear mass term �00 was scanned over in the

range ð1–102Þ GeV, while �0 typically took values be-
tween 10 eV and 10 MeV. Finally, �S was varied from
1 GeV to 500 GeV.
We demand the relic density of S to account for all theDM

abundance and to lie within the 3� range of WMAP [16]:

�DM ¼ 0:229� 0:045:

We illustrate the relative contributions of the different anni-
hilation channels in Fig. 12. Binning the DMmass range into
intervals of interest, we present the frequency at which a
given channel is the dominant one. For example, before the
W channel is kinematically open, i.e. for mS 	 MW , we see
from Fig. 12 that S annihilates only into pairs of J , A0 and
hA. For heavier DM mass, new annihilation processes are
possible. In particular, annihilation into gauge bosons,
charged scalars or CP even scalars tend to be the dominant
processes. Notice that Fig. 12 only displays the frequency a
given annihilation channel dominates in a givenmass interval
and not the relative contributions of the different channels.

B. Direct detection constraints

The dark matter can scatter on nucleons through scalar-
mediated t-channels: the spin-independent (SI) elastic
cross section receives contributions from both h0 and H0

exchange, according to:

�SI
n ¼ 1

4


�2
S;n

m2
S0

m2
nf

2
n

�
�H0

M2
H0

þ �h0

M2
h0

�
2
: (5.4)

In this expression, �S;n is the S-nucleon reduced-mass and

mn the nucleon mass. The factor fn is the effective Higgs-
nucleon interaction and varies from 0.14 to 0.66 [59]. The
couplings �H0 and �h0 are given by
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FIG. 12 (color online). Main dark matter annihilation channels for different dark matter mass ranges.

10For simplicity, the widths of the Higgs fields have been
neglected in Eq. (5.3), although they are taken into account in
the numerical evaluation.
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�H=h ¼ 1

cosð�Þ�
H=h
SS

�
cosð�Þ
sinð�Þ : (5.5)

Assuming the conservative bound MH0=h0 * 115 GeV, we

see from the previous expression that for � 
 0ð
=2Þ the
main contribution comes fromH0 (h0) exchange and �SI

n is
then mostly affected by F 1. Notice that, contrary to [60],
where the mixing suppression �� 1 was balanced by a
very light scalar h0 (Mh0 & 1 GeV), in the present sce-
nario, taking Mh0 above the LEP-II bound drastically for-
bids such an enhancement. In the limit of small mixing
angle �, assuming fn � 1=3, the SI elastic cross section
can be roughly expressed as

�SI
n ’ 1




m4
n

m2
S

f2n

�
F 1

M2
H0

�
2 � 6� 10�44 cm2

�
mS

100 GeV

��2

�
�

MH0

120 GeV

��4�F 1

0:1

�
2
; (5.6)

which shows that S can easily saturate current direct-
detection bound for electroweak scale DM [18–21].
As we saw in the previous subsection, since the annihila-
tion cross section scales as ðF k=mSÞ2, the couplings F k

should be sizable for large DM masses, otherwise S relic
density would overclose the Universe. This, in turn, im-
plies that for heavy DM the scattering cross section on
nucleons is almost independent of the DM mass,
cf. Equation (5.5).

The dependence of �SI
n on mS in the low and high DM

mass regimes is manifest in Fig. 13. In this plot we com-
pare the model predictions (blue dots) for �SI

n with
XENON100 results [21] (red curve). We can see that while
only a small region of the parameter-space is already
excluded by current data, the next generation of direct-
detection experiments would probe a large part of it [61].

Notice, in particular, that in the low mass regime high cross
sections can be reached, due to nonsuppressed F 1;3 cou-

plings. A light DM with large F 1;3 couplings is possible

through a partial cancellation in Eq. (5.1), which depends
on the value of the parameter �00.

VI. CONCLUSIONS

In this paper we study a seesaw extension of the standard
model based on a global Uð1ÞB� ~L symmetry group, where
~L can be thought as a generalized lepton charge. This
global symmetry is spontaneously broken at the electro-
weak scale. Suitable scalar and fermion representations are
added to the SM particle content so that a tiny Majorana
mass for active neutrinos is naturally generated, in agree-
ment with neutrino oscillation experiments. More specifi-
cally, an extra Higgs doubletH2 and a Higgs singletH3 are
added to the SM, together with a heavy Dirac fermion ND.
The lepton doublets and ND interact through neutrino
Yukawa couplings which can violate the lepton number.
When ND mass is set at the TeV scale, the model realizes a
UV-completion of the inverse-seesaw mechanism.
We show that, with the addition of two extra SM-singlets

in themodel, aMajorana fermionN3 and a complex scalarS,
it is possible to explain quantitatively both the observed
baryon asymmetry of theUniverse through an original lepto-
genesis mechanism and the dark matter relic abundance.
Leptogenesis in this model is implemented in two steps:

first an asymmetry in ND and S is generated by the out-of-
equilibrium decays of N3. In a second step this asymmetry
is converted in a nonzero lepton charge due to fast neutrino
Yukawa interactions. The latter constitute a link between
leptogenesis and neutrino mass generation. We solve nu-
merically the Boltzmann equations relevant for this two-
step leptogenesis scenario and show that the observed
amount of baryon asymmetry is easily achieved. We con-
centrate the discussion on a TeV scale scenario, and show
that, provided neutrino mass constraints are fulfilled, no
lower-bound on the mass of ND is imposed by the require-
ment of a successful leptogenesis. However, this scenario
of leptogenesis is also viable at much larger scales. An
important feature of this mechanism is that the source and
damping terms do not depend on the same couplings,
therefore large CP asymmetries can be obtained even in
the regime of weak washouts.
In the second part of the paper, we analyze in detail the

mass spectrum of the model and provide constraints on the
parameter-space arising from low-energy physics. In par-
ticular, we show that the presence of a massless Majoron,
which corresponds to the Goldstone boson associated with
the spontaneous breaking of the globalUð1ÞB� ~L symmetry,
has an important impact on Higgs boson searches. Indeed,
light Higgs scalars H0 and h0, MH0=h0 & 140 GeV, would

mainly decay into pairs of Majorons, thus making difficult
their observation at colliders, LHC included.

FIG. 13 (color online). Spin-independent cross-section against
mS: the blue points are the model predictions which provide the
required relic density. The red line represents XENON100
results, extracted from [21].
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Concerning the scalar field S, after the breaking of the
electroweak symmetry, the lightest component of S re-
mains stable, due to the presence of a remnant Z2 symme-
try, and provides a viable candidate for dark matter. Its
mass is unconstrained and can take values as light as few
GeV up to few TeV. Numerous annihilation channels are
present, allowing the relic DM density to be consistent with
cosmological observations. We study the possible signa-
tures of DM in direct detection experiments, and show that
while the current constraints exclude already a part of the
parameter-space, a large region may be probed by the next
generation of detectors.

This model explains in a common framework three main
experimental issues: neutrino mass generation, the baryon
asymmetry of the Universe and the dark matter relic den-
sity. Many observables are predicted, but their measure-
ments probe uncorrelated sectors, making this minimal
extension difficult to falsify.
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APPENDIX A: INTERACTION LAGRANGIAN
OF THE MODEL

The full interaction Lagrangian of the model is

Lint ¼ LSM
int �V SB �V DM �M �NDND � 1

2
M3

�N3N
c
3

�
�
yi1

�ND
~Hy1‘i þ yj2

�Nc
D
~Hy2‘j þ

�ffiffiffi
2
p H3

�NDN
c
D

þ gS �NDN3 þ H:c:

�
; (A1)

where LSM
int is the Yukawa interaction Lagrangian of the

standard model and

V SB ¼ ��2
1H
y
1H1 þ �1ðHy1H1Þ2 ��2

2H
y
2H2

þ �2ðHy2H2Þ2 ��2
3H
�
3H3 þ �3ðH�3H3Þ2

þ �12H
y
1H1H

y
2H2 þ �012H

y
1H2H

y
2H1

þ �13H
y
1H1H

�
3H3 þ �23H

y
2H2H

�
3H3

� �0ffiffiffi
2
p ðHy1H2H3 þHy2H1H

�
3Þ; (A2)

V DM ¼ �2
SS
�Sþ �SðS�SÞ2 þF 1H

y
1H1S

�S

þF 2H
y
2H2S

�SþF 3H
�
3H3S

�Sþ hS2Hy1H2

þ h�S�2Hy2H1 ��00ffiffiffi
2
p ðS2H�3 þ S�2H3Þ: (A3)

APPENDIX B: COMPUTATION
OF THE CP ASYMMETRY

The relevant interaction Lagrangian which is involved in
the generation of the CP asymmetry in the out-of-
equilibrium decays of the Majorana neutrino N3 is the
following:

�Lint � �ffiffiffi
2
p H3

�NDN
c
D þ gS �NDN3 ��00ffiffiffi

2
p S2H�3 þ H:c:;

where Nc
D � C �NT

D, N3 � Nc
3 � C �NT

3 . The CP asymmetry

in the decays of N3 is defined as

	CP � ��ðN3 ! �ND þ SÞ � �ðN3 ! ND þ �SÞ
�ðN3 ! �ND þ SÞ þ �ðN3 ! ND þ �SÞ

¼ � ImfR d ~�N;SMð0ÞðN3 ! �NDSÞ�
P
fng
R
d ~�fngMð0ÞðN3 ! fngÞMð0Þðfng ! �NDSÞgR

d ~�N;SjMð0ÞðN3 ! �NDSÞj2
; (B1)

where
P
fng indicates the sum over all possible on-shell states in the loop of Fig. 1, while the phase-space factor in the

integral is, in general

d ~�n1;...;nk �
d3pn1

ð2
Þ32En1

� . . . � d3pnk

ð2
Þ32Enk

ð2
Þ4�ð4Þ
�
pN3
�Xk

j¼1
pnj

�
; k � 2; (B2)
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pN3
and pnj (j ¼ 1; . . . ; k) being the 4-momenta of the decaying Majorana neutrino N3 and the final state nj, respectively.

We consider the physical intermediate processes11: N3 ! ND þ �S and ND þ �S! �ND þ S. The corresponding tree-level
amplitudes read12:

iMð0ÞðN3 ! �ND þ SÞ ¼ igvT
NðpNÞC�1uN3

ðpN3
Þ;

iMð0ÞðN3 ! ND þ �SÞ ¼ �ig �uNðp0NÞuN3
ðpN3
Þ;

iMð0ÞðND þ �S! �ND þ SÞ ¼ � i

p2
H3
�m2

3

�00

2
ð��vT

NðpNÞC�1uNðp0NÞÞ: (B3)

We perform the product of the three amplitudes in (B3) according to Eq. (B1) and sum over the polarizations of the
outgoing fermions. After some algebra, we get

M ð0ÞðN3 ! �ND þ SÞ�Mð0ÞðN3 ! ND þ �SÞMð0ÞðND þ �S! �ND þ SÞ

¼ 2g2��
�00M2M3

p2
H3
�m2

3

�
1þ ðpN � p0NÞ

M2
þ ððpN þ p0NÞ � pN3

Þ
MM3

	
:

1. Integration over the phase space

The relevant integrals in the numerator of (B1) are

In ¼
Z d3p0N
ð2
Þ32E0N

d3p0S
ð2
Þ32E0S

Sn
p2
H3
�m2

3

� ð2
Þ4�ð4ÞðpN3
� p0N � E0SÞ; (B4)

where Sn 2 fðpN � p0NÞ; ðp0N � pN3
Þ; ðpN � pN3

Þ;M2g.
It is convenient to express In in terms of adimensional

quantities, mainly: a � EN=M3, b � jpNj=M3, x �
M=M3, xS � mS=M3 and x3 � m3=M3:

I1 ¼ 1

32


�
�2�ð1; x; xSÞ þ 2x2 � x23

b
Cðx; xS; x3; a; bÞ

	
;

(B5)

I2;3;4 ¼ 1

32


1

b
fBðx; xSÞ; 2a; 2x2gCðx; xS; x3; a; bÞ; (B6)

where � is a kinematic factor introduced below Eq. (4.20),

Bðs; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1; s; tÞ2 þ 4s2

p
and

Cðs; t; u; a; bÞ ¼ log

�
2s2 � u2 � aBðs; tÞ þ b�ð1; t; sÞ
2s2 � u2 � aBðs; tÞ � b�ð1; t; sÞ

�
:

(B7)

Now we complete the integration over the phase space in
the numerator of Eq. (B1). The relevant integrals can be
arranged in the form:

Jn ¼ 1

4


Z 1
0

da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

1� a
In�ð1� a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2 þ x2S

q
Þ:

(B8)

The full computation results in

J1 ¼ 1

128
2

�
��ð1; x; xSÞ2 þ ð2x2 � x23Þ

� log

�
x23

x23 þ �ð1; x; xSÞ2
�	

; (B9)

J2 ¼ J3 ¼ 1

128
2
Bðx; xSÞ log

�
x23

x23 þ �ð1; x; xSÞ2
�
; (B10)

J4 ¼ 1

64
2
x2 log

�
x23

x23 þ �ð1; x; xSÞ2
�
: (B11)

A similar computation applies for the denominator of
Eq. (B1). We have in this case:

Z
d ~�N;SjMð0ÞðN3 ! �NSÞj2

¼ g2
M2

3

4

�ð1; x; xSÞ½2xþ Bðx; xSÞ: (B12)

2. The CP asymmetry in the decays

Taking into account the results obtained in Eqs. (B9)–
(B12) and the general expression (B1), we get the final
expression of the CP asymmetry:

11Notice that the other possible cuts in Fig. 1 do not contribute
to the CP asymmetry as they do not correspond to physical
processes.
12In the following we indicate with m3 the thermal mass of the
scalar singlet H3, which provides an infrared regulator of the N3
decay one-loop diagram.
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	CP ¼� 1

16


�00

M3

� Imð�ÞF2ðx;xS; x3Þþ 2x½xþBðx;xSÞF1ðx;xS; x3Þ
2xþBðx;xSÞ ;

(B13)

where

F1ðx; xS; x3Þ ¼ 1

�ð1; x; xSÞ log
�

x23
x23 þ �ð1; x; xSÞ2

�
; (B14)

F2ðx; xS; x3Þ ¼ ��ð1; x; xSÞ þ ð2x2 � x23ÞF1ðx; xS; x3Þ:
(B15)

Therefore in the limit mS, M� M3, which we are inter-
ested in, we get the approximation reported in Eq. (3.2):

	CP ’ � 1

16


�00

M3

Imð�Þ:

APPENDIX C: BOLTZMANN EQUATIONS

In this appendix, we introduce the set of Boltzmann
equations (BE) that are used for the numerical evaluation
of the baryon asymmetry. More details on the network of
BE can be found in the appendices of [35,44]. For a given
particle (asymmetry) X, we denote as usual by YX its
comoving number density, i.e. the number density normal-
ized to the entropy density. We assume Maxwell-
Boltzmann statistics for both fermions and scalars. In an
expanding Universe, the evolution of YX is governed by the
Boltzmann equation:

sHðzÞdYX

dz
¼ � X

a;i;j;...

½Xa! ij;

where

½Xa! ij � YX

Yeq
X

Ya

Yeq
a
�eqðXa! ijÞ � Yi

Yeq
i

Yj

Yeq
j

�eqðij! XaÞ;

and z ¼ M3=T is the evolution parameter, while �eq are
the equilibrium reaction densities of the different pro-
cesses. We will limit our analysis to 1$ 2 and 2$ 2 pro-
cesses, but will include the on-shell part of some 2$ 3
scatterings for consistency. If these processes conserve CP,
then we use the notation ½Xa$ ij, as �eqðXa! ijÞ ¼
�eqðij! XaÞ.

In a radiation dominated Universe, the Hubble constant
HðTÞ and the entropy density s are given by

HðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3g�
45

s
T2

Mpl

; s ¼ g�
2
2

45
T3:

In these equations, g� is the number of relativistic degrees
of freedom present in the thermal bath at the leptogenesis
time scale. In the case of the SM, at temperatures above

the EWSB, one has gSM� ¼ 106:75. Assuming that the
non-SM scalars S, H2 and H3 and the Dirac fermion
ND are relativistic particles at T 
 M3, we obtain: g� ¼
gSM� þ 46=4 ¼ 118:25.
As already explained in Sec. III, the main source of ND

and S asymmetry production during the first stage of lepto-
genesis are the CP violating decays and inverse decays
of N3,

�eqðN3
! ND

�SÞ � �D

�
1� 	CP

2

�
¼ �eqðN3⇆ �NDSÞ;

where 	CP is the CP asymmetry in the decays, defined in
Eq. (B1), and �D is the CP conserving total decay width of
N3. The last equality results from CPT invariance. We
further include in the BE �ND ¼ �S ¼ 2 scatterings
shown in Fig. 2, whose corresponding collision rates are
denoted as:

�eqðND
�S! �NDSÞ � �a

�2 and �eqðNDND $ SSÞ � �b
�2:

Note that, as in standard leptogenesis, ND
�S! �NDS pro-

cesses mediated by N3 in a s-channel develop an on-shell
part, which is CP-violating. To avoid double-counting of
this resonant part, already accounted for by the inverse
decays, the on-shell contribution should be subtracted from
the full ND

�S$ �NDS scattering rate.
In addition to the standard source term given by the

decays of N3, we include the CP violation arising from
the 2$ 2 scatterings involving an external N3, which
also depends on the CP violating phase � entering in
	CP, Eq. (3.2). The CP asymmetry for each diagram is
computed as in the standard leptogenesis scenario, e.g.
[62,63]. However, in our model a contribution to CP
asymmetry in the N3-scatterings arises from both s-,
t-and u-channels, as depicted in Fig. 3. The corresponding
thermal rates, in this case, are

a Þ �eqðNDN3
! H3

�SÞ � �a
N3
ð1� 	aCPÞ

¼ �eqð �NDN3⇆ �H3SÞ:
bÞ �eqðN3S! �NDH3Þ � �b

N3
ð1� 	bCPÞ

¼ �eqðN3
�S⇆ND

�H3Þ:
cÞ �eqðNDS! N3H3Þ � �c

N3
ð1� 	cCPÞ

¼ �eqð �ND
�S⇆N3

�H3Þ:
dÞ �ðN3S! H1‘Þ � �d

N3
ð1� 	CPÞ ¼ �ðN3

�S⇆ �H1
�‘Þ:

eÞ �ðN3S! �H2
�‘Þ � �e

N3
ð1� 	CPÞ ¼ �ðN3S⇆H2‘Þ:

The CP asymmetries in the scattering, 	kCP (k ¼ a; . . . ; e),
are defined by 	kCP � 	CP�K

k, with
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�Ka;b � ð�
a;b
N3
Þt � ð�a;b

N3
Þs

�a;b
N3

;

�Kc � ð�
c
N3
Þt � ð�c

N3
Þu

�c
N3

;

�Kd ¼ �Ke ¼ 1:

Here ð�k
N3
Þc, c ¼ ðs; t; uÞ, corresponds to the s-, t-and

u-channels of the different processes shown in Fig. 3.
Notice that, similarly to the �ND ¼ �S ¼ 2 scatterings
considered before, as explained in [63], we have to subtract
the resonant CP-violating contribution of the 2$ 3 pro-
cesses in which N3 is exchanged in the s-channel. The
nonresonant parts of such processes are not taken into
account in our computation, since they are at higher order
in the couplings.

As regards N3 three-body decays, which are at the same
order in the couplings as 2$ 2 scatterings on N3, they are
phase-space suppressed and so give a subleading contribu-
tion with respect to the two-body decays [63], and we
consequently do not include them.

We further consider the effect of S self-annihilations
(see Fig. 4), which could wash out the asymmetry Y�S

for large values of the coupling h (see Eq. (4.3)). The
related interaction density rate is noted

�eqðSS$ H1
�H2Þ � �SS:

Several processes participate in the second phase of

leptogenesis. Besides the scatterings on N3, the �d;e
N3

dis-

cussed above, we include the following interactions, at the
lowest order in the neutrino Yukawa couplings:

(a) ND decays and inverse decays: �eqðND $ ‘�H1Þ �
�D‘ and �eqðND $ �‘� �H2Þ � �D �‘.

(b) �L ¼ 1, H1-mediated scatterings with top-quark:

�eqðND
�‘$ Q3 �tÞ � �s

ND
for the s-channel contribu-

tion and �eqðNDq3 $ ‘tÞ þ �eqðND �t$ ‘ �q3Þ ¼
2�t

ND
for the t-channel contributions.

As already stated in Sec. III, the leptons participate in ND

mediated�L ¼ 2 scatterings: �a
‘‘ � �eqð‘H1 $ �‘ �H2Þ and

�b
‘‘ � �eqð‘‘$ �H1

�H2Þ.
We are ready now to report the complete set of

Boltzmann equations relevant for the computation of
the baryon asymmetry of the Universe in the two-step
leptogenesis scenario described in the text. We include
all the interaction terms introduced above and we use the
simplified notation yN3

� YN3
=Y

eq
N3
, y�X � Y�X=Y

eq
X and

Y0X � ðsHðzÞÞdYX=dz. At first order in the asymmetry
(zeroth order for N3), the full system of Boltzmann equa-
tions is the following:

Y0N3
¼ �½N3

! ND
�S � ½N3

! �NDS � ½NDN3
! H3

�S
� ½ �NDN3

! �H3S � ½SN3
! �NDH3

� ½ �SN3
! ND

�H3 þ ½SND
! N3H3

þ ½ �S �ND
! N3

�H3 þ ½‘H1
! N3S þ ½ �‘ �H1

! N3
�S

þ ½H2‘! N3
�S þ ½ �H2

�‘! N3S;

Y0ND
¼ ½N3

! ND
�S � ½ND

�S! �NDS � ½NDND $ SS
� ½NDN3

! H3
�S � ½ND

�H3
! N3

�S � ½ND
�S! N3H3

� ½ND $ ‘H1 � ½ND $ �‘ �H2 � ½ND
�‘$ q3 �t

� ½NDq3 $ ‘t � ½ND �t$ ‘ �q3;

Y0S ¼ ½N3⇆S �ND � ½S �ND
! �SND � ½SS$ NDND

� ½S �H3
! N3ND � ½SN3

! �NDH3 � ½SND
! N3H3

� ½SN3
! ‘H1 � ½SN3

! �‘ �H2 � ½SS$ H1
�H2;

Y0‘ ¼ ½ND $ ‘H1 þ ½ �ND $ ‘H2 � ½‘ �ND $ �q3t
� ½‘t$ NDq3 � ½‘ �q3 $ ND �t � ½‘H1

! N3S
� ½‘H2

! N3
�S � ½‘H1 $ �‘ �H2 � ½‘‘$ �H1

�H2;

Y0H1
¼ ½ND $ H1‘ � ½H1‘! N3S � ½H1

�H2 $ SS
� ½‘H1 $ �‘ �H2 � ½H1H2 $ �‘ �‘;

Y0H2
¼ ½ND $ ‘H2 � ½H2‘! N3

�S � ½H2
�H1 $ �S �S

� ½‘H2 $ �‘ �H1 � ½H1H2 $ �‘ �‘;

Y0H3
¼ �½H3

�S! N3ND � ½H3
�ND
! N3S

� ½H3N3
! NDS:

The evolution equations of the antiparticles are obtained by
taking the CP conjugates of the different rates. The
Boltzmann equations of the number density (asymmetry)
finally read:

Y0N3
¼ ð1� yN3

Þ
�
�D þ 2

X
k¼a;...;e

�k
N3

�
; (C1)

Y0�ND
¼ ðyN3

�1Þð	CP�Dþ2	aCP�
a
N3
�2	bCP�

b
N3
�2	cCP�

c
N3
Þ�2ð�a

�2þ2�b
�2Þðy�ND

� y�SÞ��a
N3
ðyN3

y�ND
�y�H3

þy�SÞ
��b

N3
ðy�ND

�y�H3
þyN3

y�SÞ��c
N3
ðy�ND

�yN3
y�H3

þ y�SÞ��D‘ðy�ND
�y�‘� y�H1

Þ
��D �‘ðy�ND

þy�‘þy�H2
Þ� ð�s

ND
þ2�t

N3
Þðy�ND

� y�‘Þ; (C2)
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Y0�S ¼ �ðyN3
� 1Þð	CP�D þ 2	aCP�

a
N3
� 2	bCP�

b
N3
� 2	cCP�

c
N3
þ 2	CP�

d
N3
þ 2	CP�

e
N3
Þ � 2ð�a

�2 þ 2�b
�2Þðy�S � y�ND

Þ
� 2�SSð2y�S � y�H1

þ y�H2
Þ � �a

N3
ðy�S � y�H3

þ yN3
y�ND

Þ � �b
N3
ðyN3

y�S � y�H3
þ y�ND

Þ
� �c

N3
ðy�S � yN3

y�H3
þ y�ND

Þ � �d
N3
ðyN3

y�S � y�H1
� y�‘Þ � �e

N3
ðyN3

y�S þ y�H2
þ y�‘Þ; (C3)

Y0�‘ ¼ �ðyN3
� 1Þð2	CP�d

N3
� 2	CP�

e
N3
Þ � �D‘ðy�‘ þ y�H1

� y�ND
Þ � �D �‘ðy�‘ þ y�H2

þ y�ND
Þ

þ ð�s
ND
þ 2�t

N3
Þðy�ND

� y�‘Þ � ð�a
‘‘ þ 2�b

‘‘Þð2y�‘ þ y�H1
þ y�H2

Þ � �d
N3
ðy�H1

þ y�‘ � yN3
y�SÞ

� �e
N3
ðy�H2

þ y�‘ þ yN3
y�SÞ; (C4)

Y0�H1
¼ �2ðyN3

� 1Þ	CP�d
N3
� �D‘ðy�H1

þ y�‘ � y�ND
Þ � ð�a

‘‘ þ �b
‘‘Þð2y�‘ þ y�H1

þ y�H2
Þ

� �d
N3
ðy�H1

þ y�‘ � yN3
y�SÞ � �SSðy�H1

� y�H2
� 2y�SÞ; (C5)

Y0�H2
¼ 2ðyN3

� 1Þ	CP�e
N3
� �D �‘ðy�H2

þ y�‘ þ y�ND
Þ � ð�a

‘‘ þ �b
‘‘Þð2y�‘ þ y�H1

þ y�H2
Þ

� �e
N3
ðy�H2

þ y�‘ þ y�SyN3
Þ�SSðy�H2

� y�H1
þ 2y�SÞ; (C6)

Y0�H3
¼ ðyN3

� 1Þð2	aCP�a
N3
� 2	bCP�

b
N3
� 2	cCP�

c
N3
Þ � �a

N3
ðy�H3

� y�S � y�ND
yN3
Þ � �b

N3
ðy�H3

� y�ND
� y�SyN3

Þ
� �c

N3
ðy�H3

yN3
� y�ND

� y�SÞ: (C7)

APPENDIX D: CHEMICAL EQUILIBRIUM
CONDITIONS

We derive in this section the chemical equilibrium
conditions provided by all the interactions which are
in-equilibrium at the leptogenesis epoch, T �M3 &
105�6 GeV.

The chemical potentials of each generation of SUð2ÞW
quark doublets, Qi, and singlets, uRi and dRi, are denoted
by �Qi

� �Q, �uRi � �u and �dRi � �d, respectively.

Concerning the lepton fields, we define for each flavor
� the corresponding chemical potentials as �‘� � �‘,

�eR� � �e. We denote with �N the chemical potential of

ND. Analogously, for each scalar field in the model we
define, in a consistent notation: �H1;2;3

and �S. We remark

that the chemical potentials of the SM fermions are as-
sumed to be independent of the generation index, because
of the rapid flavor mixing interactions which occur at the
leptogenesis time [42].

The number density asymmetries are related to the
particle chemical potentials through the relations:

Y�X ’ gXT
3

3s
�X for bosons; (D1)

Y�X ’ gXT
3

6s
�X for fermions; (D2)

where gX is the number of internal degrees of freedom of
the particle X. The total baryon and lepton number asym-
metries can be expressed in terms of the fermion chemical
potentials:

Y�B ¼ T3

2s
ð2�Q þ�u þ�dÞ;

Y�L ¼ T3

2s

�
2�‘ þ�e þ 2

3
�ND

�
:

(D3)

Taking into account the definitions given above, we have
the following relations [42]:
(1) QCD and SUð2ÞW sphaleron interactions:

2�Q ��u ��d ¼ 0; (D4)

3�Q þ�‘ ¼ 0: (D5)

(2) Hypercharge neutrality:

3ð�Qþ 2�u��d��‘��eÞþ 2ð�H1
þ�H2

Þ ¼ 0:

(D6)

(3) Charged lepton Yukawa interactions:

�‘ ��H1
��e ¼ 0; (D7)

�Q þ�H1
��u ¼ 0; (D8)

�Q ��H1
��d ¼ 0: (D9)

(4) Lepton number conserving Dirac neutrino Yukawa
interactions:

�ND
��H1

��‘ ¼ 0: (D10)

(5) ðB� ~LÞ conservation:

3ð2�Q þ�u þ�dÞ � 3ð2�‘ þ�eÞ � 2�ND

� 2ð�S þ 2�H3
� 4�H2

Þ ¼ 0: (D11)
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We notice that the QCD sphaleron condition is redundant
in this case, as all quark Yukawa interactions are in
equilibrium.

The different chemical equilibrium conditions enforce
relations among the chemical potentials, which then can be
expressed in terms of a subset of them. We set

�X ¼ cB�L�B�L þ cND
�ND

þ cS�S; (D12)

where we define �B�L through the relation: Y�ðB�LÞ �
Y�B � Y�L � �B�LT3=ð2sÞ. We then distinguish three
possible scenarios:

(A) Lepton number violating neutrino Yukawa interac-
tions and S self-annihilation are decoupled, which
corresponds to the set of equilibrium conditions 1–5
listed above. The different chemical potentials can
be expressed in terms of the set ð�B�L;�ND

;�SÞ.
(B) S self-annihilations are always in equilibrium, but

lepton number violating Yukawa interactions are
still decoupled. An additional equilibrium condition
is enforced:

2�S ��H1
þ�H2

¼ 0: (D13)

Only two chemical potentials are independent, that
we choose to be ð�B�L;�ND

Þ.
(C) All interactions listed above, as well as lepton num-

ber violating Yukawa interactions, are in thermal
equilibrium during the leptogenesis era:

�ND
þ�H2

þ�‘ ¼ 0: (D14)

In this case, all chemical potentials are proportional
and can be expressed, for example, in terms of�B�L.

The coefficients cX in Eq. (D12), corresponding to the
three cases listed above are reported in Table II. In the first
two cases the final baryon asymmetry is given by

Y�B ¼ 1

4
Y�ðB�LÞ � 1

8
Y�ND

: (D15)

In the last scenario, which corresponds to the case dis-
cussed in Sec. III, where all the interactions listed above
are in thermal equilibrium during the generation of the
BAU, we have:

Y�B ¼ 2

7
Y�ðB�LÞ: (D16)

Notice that expressions (D15) and (D16) should be con-
sidered valid up to the decoupling ofND, i.e. for �ND

� H.
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