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Quaternionic quantum Hamiltonians describing nonrelativistic spin particles require the ambient

physical space to have five dimensions. The quantum dynamics of a spin- 12 particle system characterized

by a generic Hamiltonian is worked out in detail. It is shown that there exists, within the structure of

quaternionic quantum mechanics, a canonical reduction to three spatial dimensions upon which standard

quantum theory is retrieved. In this dimensional reduction, three of the five dynamical variables are shown

to oscillate around a cylinder, thus behaving in a quasi-one-dimensional manner at large distances. An

analogous mechanism is shown to exist in the case of octavic Hamiltonians, where the ambient physical

space has nine dimensions. Possible experimental tests in search for the signature of extra dimensions at

low energies are briefly discussed.
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In many models that attempt to reconcile quantum the-
ory with gravity, the notion of extra dimensions is intro-
duced. If we take seriously the hypothesis that these extra
dimensions may be relevant to physical reality, then we
should likewise take seriously the quantum theory under-
lying these models. Yet, surprisingly little attention has
been paid to foundational investigations into measurable
effects of higher-dimensional quantum mechanics. It is
well known that extra dimensions can change spectral
properties of particles, but the standard argument is that
if the sizes of extra dimensions are sufficiently small, then
low-energy spectra are typically unaltered, and indications
of the existence of extra dimensions may be revealed only
at inaccessibly large energies [1]. Quantized energy spectra
of particles, however, are not the only quantum effect
measured in laboratories. It appears that other quantum
effects arising, e.g., from geometric phase, interference, or
entanglement, that may be used to probe extra dimensions
at low energies, have not been fully explored. Furthermore,
the following issue concerning higher-dimensional quan-
tum theory is often overlooked: The spin-orbit interaction
in standard quantum mechanics naturally singles out four-
dimensional space-time. There seems to be no structure,
within the complex framework, that allows for higher-
dimensional extensions.

Here we take the first step towards addressing these
fundamental issues and exploring the possibility of detect-
ing higher-dimensional quantum effects at low energies by
investigating certain quaternionic extensions of quantum
mechanics that naturally lead to six-dimensional space-
time structures. Specifically, we analyze the dynamical
aspects of a two-level system in quaternionic quantum
mechanics. Two-level systems are of great importance in
many physical applications, both as approximations in
cases where only two states are of relevance to the dynam-
ics, and in the description of the internal degrees of free-
dom for spin- 1

2 particles. We show that there is an intrinsic

mechanism for dimensional reduction such that observed
phenomena in three spatial dimensions can be restored.
Similarly, octavic quantum mechanics is shown to lead
to nine spatial dimensions—a dimensionality often consid-
ered in string theory models—within which three-
dimensional space is naturally embedded. By determining
dynamical aspects of quaternionic and octavic quantum
states of a spin particle, we point the way towards the
possible detection of extra dimensions at low energies.
We begin by remarking that there are two fundamental

ways in which the use of quaternions in physics is related
to the notion of six-dimensional space-time. The first is
the representation of space-time points in terms of quater-
nionic spinors: The points of four-dimensional Minkowski
space correspond to two-by-two Hermitian matrices

fxAA0 gA;A0¼1;2. Lorentz transformations are given by conju-

gating xAA
0
by elements of SLð2;CÞ, and the Minkowski

metric for the interval between two points is given by the
determinant of their difference [2,3]. In a standard basis
this correspondence reads

xAA
0 ¼ 1ffiffiffi

2
p tþ z x� iy

xþ iy t� z

� �
$ ðt; x; y; zÞ; (1)

and we have the relation 2 detðxAA0 Þ ¼ t2 � x2 � y2 � z2.
Similarly, points of six-dimensional Minkowski space cor-
respond to two-by-two quaternionic Hermitian matrices of
the form (1) with i replaced by i ¼ ðiy1 þ jy2 þ ky3Þ=y,
where y2 ¼ y21 þ y22 þ y23. Here, i, j, and k denote three

imaginary units of a quaternion, satisfying i2 ¼ j2 ¼ k2 ¼
ijk ¼ �1 and the cyclic relations ij ¼ �ji ¼ k, jk ¼
�kj ¼ i, ki ¼ �ik ¼ j. In this case we have the relation

2 detðxAA0 Þ ¼ t2 � x2 � y21 � y22 � y23 � z2. These two cor-
respondences are related to the facts that the universal
covering group of SO(3,1) is isomorphic to SLð2;CÞ, and
that of SO(5,1) is isomorphic to SLð2;HÞ, whereH denotes
the field of quaternions [4].
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Perhaps what is less appreciated is the second connec-
tion between quaternions and six dimensions arising in the
context of quantum mechanics. Complex Hermitian matri-
ces represent physical observables in conventional quan-
tum mechanics. A trace-free two-by-two complex
Hermitian matrix, for instance, represents the energy of a
spin- 12 particle. The spin-orbit interaction of elementary

quantum mechanics then requires that the (Euclidean)
space-time dimension is four. Mathematically, this can be
seen from the fact that the state space CP1 ’ S2 of a spin- 12
particle system, obtained by the identification j�i � �j�i,
� 2 C� f0g, admits a natural embedding in R3, and this
allows us to make the so-called Pauli correspondence
whereby we can speak of ‘‘spin in such and such direc-
tion.’’ The group isomorphism that underlies this identifi-
cation is that between the universal covering group Spin(3)
of SO(3) and the two-by-two complex unitary matrices
SUð2Þ ’ Spð1Þ.

Similarly, we can regard a trace-free two-by-two quater-
nionic Hermitian matrix representing the energy of a spin- 12
particle in quaternionic quantum mechanics. Then the spin-
orbit interaction demands that the (Euclidean) space-time
dimension is six [5] (see also [6]). Here the Pauli correspon-
dence is characterized by the fact that the state spaceHP1 ’
S4 of a spin- 12 particle system, obtained by the identification

j�i � j�i�, � 2 H� f0g, admits a natural embedding in
R5. Alternatively stated, there is an isomorphism between
the universal covering group Spin(5) of SO(5) and the group
of two-by-two quaternionic unitary matrices Sp(2). (A third
connection between quaternions and six-dimensional cos-
mology has been noted by Dirac [7].) We thus see that, be it
Euclidean or Lorenzian, complex Hermitian form naturally
leads to the notion of four-dimensional space-time, and
quaternionic Hermitian form naturally leads to the notion
of six-dimensional space-time. Evidently, octavicHermitian
forms lead to dimensionality 10.

The quaternionic Schrödinger equation

j _�i ¼ �iĤj�i; (2)

with Ĥ Hermitian and i skew-Hermitian unitary, generates

a unitary time evolution if both Ĥ and i commute with

Ût ¼ expð�iĤtÞ. One standard approach is to regard iĤ as
a generic skew-Hermitian operator [8]. Another approach,
which we shall follow here, is to impose a superselection

rule that fixes i and restrict Ĥ to the ones that commute

with i [9]. The condition ½i; Ĥ� ¼ 0 thus implies that the
specification of the Hamiltonian a fortiori determines the
superselection rule dynamically.

For a two-level system, a generic quaternionic
Hermitian Hamiltonian can be expressed in the form

Ĥ ¼ u01þX5
l¼1

ul�̂l; (3)

where fulgl¼0...5 2 R, and

�̂1¼
0 1

1 0

 !
; �̂2¼

0 �i

i 0

 !
; �̂3¼

1 0

0 �1

 !
;

�̂4¼
0 �j

j 0

 !
; �̂5¼

0 �k

k 0

 !
(4)

are the quaternionic Pauli matrices. This follows from the
fact that elements of a quaternionic Hermitian matrix

satisfy Hmn ¼ �Hnm. Then the right eigenvalues E� of Ĥ in

(3), determined by Ĥj��i ¼ j��iE�, are real. Having
specified the Hamiltonian (3) we must select a unit imagi-

nary quaternion such that the evolution operator Ût ¼
expð�iĤtÞ is unitary. This is given by

i ¼ ðiu2 þ ju4 þ ku5Þ=�; (5)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22 þ u24 þ u25

q
. Then the Schrödinger Eq. (2)

can be expressed more explicitly in terms of the compo-
nents ðc 1; c 2Þ of the state vector j�i as follows:

_c 1

_c 2

 !
¼ �ðu0 þ u3Þic 1 � u1ic 2 � �c 2

�ðu0 � u3Þic 2 � u1ic 1 þ �c 1

 !
: (6)

We can think of the Hamiltonian (3) as representing the

interaction of a ‘‘spin vector’’ ~� with an external field ~B ¼
ðu1; u2; u3; u4; u5Þ in five dimensions. The quaternionic
Pauli matrices are related to the 10 generators of the
rotation group SO(5), in a way similar to the relation
between the three Pauli matrices and the group SO(3).

The 10 skew-Hermitian generators �̂mn ¼ 1
2 ½�̂m; �̂n� of

the dynamics, each inducing a rotation that mixes �̂m

and �̂n, fulfil the algebraic relation ½�̂mn; �̂m0n0 � ¼
�mm0�̂nn0 þ �nn0�̂mm0 � �mn0�̂nm0 � �nm0�̂mn0 . The spin
vector can be seen to fulfil formally the ‘‘superspin’’

algebra of Zhang [10]: ½�̂lm; �̂n� ¼ �mn�̂l � �ln�̂m. The
generator of the evolution operator is then expressed as

iĤ ¼ ��̂31 þ u0ðu2�̂54 þ u4�̂25 þ u5�̂42Þ=�
þ u1ðu2�̂23 þ u4�̂43 þ u5�̂53Þ=�
þ u3ðu2�̂12 þ u4�̂14 þ u5�̂15Þ=�: (7)

We see that while each of the 10 generators of pairwise-
mixing rotations appear once, there are only 6 degrees of
freedom. This follows from the Hermiticity condition im-

posed on Ĥ. The time evolution thus gives rise to certain
rotations in five-dimensional space.
To determine the dynamics we introduce a quaternionic

Bloch vector ~�, whose components are given by

�l ¼ h�j�̂lj�i=h�j�i; l ¼ 1; . . . ; 5: (8)

Then for each component we work out the dynamics by
making use of the Schrödinger Eq. (6). After rearrange-
ments we deduce that
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1

2
_�1 ¼ ��3 � u3ðu2�2 þ u4�4 þ u5�5Þ=�

1

2
_�2 ¼ ðu2u3�1 � u1u2�3 þ u0u5�4 � u0u4�5Þ=�

1

2
_�3 ¼ ���1 þ u1ðu2�2 þ u4�4 þ u5�5Þ=�

1

2
_�4 ¼ ðu3u4�1 � u0u5�2 � u1u4�3 þ u0u2�5Þ=�

1

2
_�5 ¼ ðu3u5�1 þ u0u4�2 � u1u5�3 � u0u2�4Þ=�:

(9)

These equations constitute the general quaternionic Bloch
equations. The special case of (9) for which u1 ¼ � � � ¼
u5 ¼ 0, i.e., when Ĥ ¼ u01, has previously been obtained
by Wolff [11]. These evolution equations preserve the
normalization condition:

�2
1 þ �2

2 þ �2
3 þ �2

4 þ �2
5 ¼ 1; (10)

which can be interpreted as the defining equation for the
state space S4.

As in any physical theory modeled on a higher-
dimensional space-time, it is important to identify a di-
mensional reduction leading to a theory consistent with
observed phenomena perceived in three spatial dimen-
sions. In the present context, this amounts to finding a
reduction of the dynamics on S4 to the conventional
Bloch sphere S2. For this purpose, let us define the three
spin variables according to

�x¼�1; �y¼ðu2�2þu4�4þu5�5Þ=�; �z¼�3:

(11)

Then it follows from (9) that

1

2
_�x ¼ ��z � u3�y

1

2
_�y ¼ u3�x � u1�z

1

2
_�z ¼ u1�y � ��x:

(12)

These equations are, indeed, the standard Bloch equations
for a spin- 12 particle immersed in a magnetic field with

strength ~B ¼ ðu1; �; u3Þ. The reduced spin dynamics is thus
confined to the state space

�2
x þ �2

y þ �2
z ¼ r2; (13)

where r � 1 is time independent. The dynamical Eqs. (12)
thus generate Rabi oscillations on the reduced state space
S2 about the axis ðu1; �; u3Þ, with angular frequency !,
where !2 ¼ 4ðu21 þ u22 þ u23 þ u24 þ u25Þ.

To identify the structure characterizing the evolution of
the ‘‘internal’’ dynamical variables of �y: �2, �4, and �5,

let us subtract (13) from (10) to eliminate �1 and �3. Then
we deduce that the motion lies on a cylinder in R3:

ðu2�4�u4�2Þ2þðu4�5�u5�4Þ2þðu5�2�u2�5Þ2¼�2c2;

(14)

that is, jðu2; u4; u5Þ � ð�2; �4; �5Þj ¼ �c, where c2 ¼ 1�
r2 is the squared radius of the cylinder, whose axis points in
the y direction. In Fig. 1 we plot typical motions of the
variables �2, �4, �5 on the cylinder.
The time evolution of these dynamical variables can

also be represented in the form of Bloch equations if we
transform to the auxiliary variables �y1 ¼ u4�5 � u5�4,

�y2¼u5�2�u2�5, and �y3¼u2�4�u4�2. Then we have

_�y1¼2u0ðu5�y2�u4�y3Þ=�, _�y2¼2u0ðu2�y3�u5�y1Þ=�,
and _�y3 ¼ 2u0ðu4�y1 � u2�y2Þ=�. These variables are

useful in understanding the dynamics in five dimensions:
We let �̂x;y;z be the operators for �x;y;z, and �̂y1;y2;y3 be the

operators for �y1;y2;y3 . Additionally, define a new set of

rotation generators by �̂x ¼ 1
2 ½�̂y; �̂z�, �̂y ¼ 1

2 ½�̂z; �̂x�,
�̂z ¼ 1

2 ½�̂x; �̂y�, �̂y1 ¼ �̂54, �̂y2 ¼ �̂25, and �̂y3 ¼ �̂42.

These operators fulfil a pair of closed algebraic relations
1
2 ½�̂a; �̂b� ¼ ��abc�̂c for a, b, c ranging over x, y, z; and
1
2 ½�̂yl ; �̂ym� ¼ �lmn�̂yn for l,m, n ranging over 1, 2, 3. Then

(7) can be expressed in the concise form

i Ĥ ¼ u1�̂x þ ��̂y þ u3�̂z þ u0�̂?; (15)

where �̂?¼ðu2�̂y1þu4�̂y2þu5�̂y3Þ=� is the generator of

the planar rotation about the three-space spanned by x, y, z.
In this manner we see how the subgroup SOð3Þ � Uð1Þ of
SO(5) emerges naturally, on account of the fact that

½�̂x;y;z; �̂?� ¼ 0. In particular, if tr iĤ ¼ 0, i.e., if u0 ¼
0, then it is not possible to detect extra dimensions
dynamically.
This result shows that the superselection rule for i

emerges from symmetry breaking. In complex quantum
mechanics, given a state one can always unitarily trans-
form it to another arbitrary state by a suitable choice of
Hamiltonian. In quaternionic quantum mechanics with the
superselection rule (5), the ratio u2:u4:u5 is fixed so that the
only parametric degrees of freedom in the Hamiltonian are

FIG. 1 (color online). Examples of dynamical trajectories
traced by the variables ð�2ðtÞ; �4ðtÞ; �5ðtÞÞ for two different
initial conditions. For each choice of c the orbits form cylindrical
Rabi oscillations. The axis of the cylinder is determined by the
vector ðu2; u4; u5Þ.
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those appearing in (15). It follows that a state with a given
value of r in (13) cannot unitarily evolve into another state
with a different value of r.

The superselection rule resulting from the symmetry
breaking circumvents a difficulty associated with com-
bined systems in quaternionic quantum mechanics
(cf. [8,12,13]). If all systems share the same i, then one
is working with a commuting subalgebra of quaternions,
thus circumventing the issues associated with the construc-
tion of tensor products for combined systems. While the
standard choice of complex quantum mechanics i ¼ i can
be regarded as a special case of this formalism, the embed-
ding into the quaternionic space nevertheless accommo-
dates extra dimensions. These extra dimensions are not
introduced ‘‘by hand’’; rather, they emerge from the re-
quirement of unitary time evolution generated by a
Hermitian quaternionic Hamiltonian of a two-level system.
Furthermore, the resulting dynamics naturally factorizes
into a motion in a three-space and a motion for the remain-
ing ‘‘hidden coordinates.’’

It is worth remarking that the structure revealed in the
foregoing analysis carries through to an octavic represen-
tation of a spin- 12 system. In this case, the spin vector ~� lies

on an eight sphere S8 � R9. If we define �y in a manner

analogous to (11) involving the seven spin components
�2; �4; . . . ; �9, then a calculation shows that the dynamical
equations satisfied by the reduced spin variables are given
by (12), with �2 ¼ u22 þ u24 þ � � � þ u29. To characterize

the surface upon which the remaining degrees of freedom
are confined, let us write ½l; m; n� ¼ jðul; um; unÞ �
ð�l; �m;�nÞj2. Hence the left side of (14), for instance,
becomes ½2; 4; 5�. Then in the octavic case these dynamical
variables are confined to a real six-dimensional manifold
determined by the relation

½2; 4; 5� þ ½2; 6; 7� þ ½2; 8; 9� þ ½4; 6; 8� þ ½4; 7; 9�
þ ½5; 6; 9� þ ½5; 7; 8� ¼ �2c2: (16)

This manifold, which is the octavic generalization of (14),
has the structure of a cylinder S5 � R1 in the direction of
the vector ðu2; u4; u5; u6; u7; u8; u9Þ, with radius c.

It is important to note that here we consider dynamics in
the angular momentum space, and that the ‘‘thickness’’ c of
the y-axis is not related to the size of extra dimensions
in coordinate space. The higher-dimensional angular

momentum discussed here can be related to a higher-
dimensional coordinate space in the usual manner: Lmn ¼
xmpn � pnxm, with pn ¼ i@n. The size of the xn does not
affect the size of c.
We conclude by discussing the possibility of detecting

extra dimensions in a laboratory. An experimental test for
quaternionic quantum mechanics has previously been pro-
posed by Peres [14], which has subsequently been shown to
yield null outcome by Adler [15]. Given the analysis
presented here of a quaternionic spin system, another
obvious proposal arises from relation (13), since the left
side involves quantities that can be estimated directly from
experimental data, whereas the value of the right side,
according to complex quantum mechanics, is unity.
However, in the quaternionic case there are states for which
c > 0, and we have r2 ¼ 1� c2 < 1. To perform an ex-
periment, one prepares a large number of spin- 12 particles

in a pure state and measures the spin in three orthogonal
directions to estimate �2

x þ �2
y þ �2

z . If the result is less

than one, then this gives a strong indication that there can
be extra dimensions.
Although such a basic experiment is easily performed, it

need not constitute a useful test for the following two
reasons: (i) the prepared states must be pure; and (ii) the
measurements have to be performed along three strictly
orthogonal directions. Any impurity or deviation from
orthogonality will lead to a number less than one even
in three dimensions. Hence it may be difficult to extract
useful insights from this simple experiment. Nevertheless,
this example illustrates the important point that in principle
it is possible to probe extra dimensions at low energies.
Viable experiments may be constructed by making use of
interference effects arising from, for instance, geometric
phases (cf. [16–18]). Alternatively, the existence of an SO
(5) symmetry between antiferromagnetic and supercon-
ducting phases that can be described by a five-dimensional
superspin [10] might provide a clue along this line of
investigation; and, conversely, an extension of Zhang’s
SO(5) representation to SO(9) might lead to new predic-
tions in superconductor physics. The identifications made
here of the structures of ‘‘commutative’’ quaternionic and
octavic state spaces will undoubtedly help in making
progress towards these directions.
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