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The low-energy physics of systems with spontaneous symmetry breaking is governed by the associated

Nambu-Goldstone (NG) bosons. While NG bosons in Lorentz-invariant systems are well understood, the

precise characterization of their number and dispersion relations in a general quantum many-body system

is still an open problem. An inequality relating the number of NG bosons and their dispersion relations to

the number of broken symmetry generators was found by Nielsen and Chadha. In this paper, we give a

presumably first example of a system in which the Nielsen-Chadha inequality is actually not saturated. We

suggest that the number of NG bosons is exactly equal to the number of broken generators minus the

number of pairs of broken generators whose commutator has a nonzero vacuum expectation value. This

naturally leads us to a proposal for a different classification of NG bosons.

DOI: 10.1103/PhysRevD.84.125013 PACS numbers: 11.30.Qc, 14.80.Va

I. INTRODUCTION AND SUMMARY

Spontaneous symmetry breaking (SSB) is a ubiquitous
phenomenon in nature. In quantum many-body theory, its
significance is further boosted by the fact that it provides us
with a rare example of a general exact result: the Goldstone
theorem [1,2]. The low-energy physics of systems exhib-
iting SSB is governed by the associated soft excitations, the
Nambu-Goldstone (NG) bosons (see Ref. [3] for a com-
prehensive early review). While NG bosons in Lorentz-
invariant systems are well understood, the precise charac-
terization of their number and dispersion relations in a
general quantum many-body system is still an open
problem.

The systematic study of NG bosons in Lorentz-
noninvariant systems was initiated by Nielsen and
Chadha in their seminal work [4]. They showed that under
certain technical assumptions, including rotational invari-
ance and the requirement of absence of long-range inter-
actions, the energy of the NG boson is proportional to an
integer power of momentum in the long-wavelength limit,
"ðkÞ / jkjn. The NG boson is then classified as type I if n is
odd, and as type II if n is even. Nielsen and Chadha proved
that the number of type I NG bosons plus twice the number
of type II NG bosons is greater than or equal to the number
of broken symmetry generators.

In Lorentz-invariant systems, the Nielsen-Chadha (NC)
inequality is trivial since it is well-known that the number
of NG bosons, all being naturally type I, equals the number
of broken generators. In Lorentz-noninvariant systems, the
NC inequality allows the number of NG bosons to be
smaller than the number of broken generators provided

some of them have nonlinear dispersion relation. A renown
example is the ferromagnet where two generators broken
by the spontaneous magnetization give rise to only one NG
boson—the magnon—having a quadratic dispersion rela-
tion at low momentum.
It is perhaps worth emphasizing that the NC counting

rule is formulated as an inequality and that it does not
constrain in any way the power of momentum appearing in
the dispersion relation. In fact, a quick sociological survey
reveals that this generality of the Nielsen-Chadha theorem
is not very well appreciated in publications citing the
original work [4]. The reason for this probably is that in
the concrete systems studied in literature, type I and type II
NG bosons always have linear and quadratic dispersion
relations, respectively, and the NC inequality is always
saturated. In Appendix A of this paper, we point out a
rather trivial class of theories where NG bosons with
energy proportional to an in principle arbitrarily high
power of momentum can appear, and the NC inequality
is not necessarily saturated [5]. This ultimately leads us to
the proposal for a different classification of NG bosons,
and the evidence that this provides an exact equality for
their count.
Our work is based on the dependence of the number of

NG bosons and their dispersion relations on expectation
values of conserved charges, which was first investigated at
the general level by Leutwyler [7] and Schäfer et al. [8]
(see also Ref. [9] for a recent review). Leutwyler [7] used
effective field theory to argue that, in the absence of
quantum anomalies, nonzero density of a non-Abelian
conserved charge leads to the appearance of NG bosons
with a quadratic dispersion relation. This connection was
further elaborated in Ref. [10] where en exact equality
(saturating the NC inequality) was established for the class
of linear sigma models with chemical potential at tree
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level. Every pair of broken generators whose commutator
has a nonzero expectation value was found to give rise to
one type II NG boson with a quadratic dispersion relation.
On the other hand, Schäfer et al. [8] related charge den-
sities to the number of NG bosons by showing that this
number equals the number of broken generators provided
the expectation values of commutators of all pairs of
broken generators vanish.

Our present proposal can in a sense be understood as a
synthesis of these previous works. We argue that given the
three characteristics of SSB, that is, the number of NG
bosons, their dispersion relations, and the expectation val-
ues of charge densities, an exact equality can be obtained
by focusing on the relation between the number of NG
bosons and the charge densities. Thus, our work general-
izes the theorem of Schäfer et al. [8]. This is in contrast to
Nielsen and Chadha [4] as well as Leutwyler [7] who
emphasized the role of the NG boson dispersion relations.

In order that the generality of our proposal is not ob-
scured by the technical details, we formulate it here. Let
Qa be the set of (spontaneously broken) conserved charges
of the theory. The number of NG bosons nNG is related to
the number of broken symmetry generators nBS by the
equality

nBS � nNG ¼ 1
2 rank�; (1)

where the matrix of commutators � is defined by i�ab �
lim�!1 1

� h0j½Qa;Qb�j0i and � is the space volume. Note

that rank � is always even since � is real and antisymmet-
ric. Unfortunately, we were not able to prove Eq. (1) in the
full generality so it remains a conjecture at the moment.
However, we can prove a one-sided inequality and provide
evidence that the opposite inequality holds as well. We
should also emphasize that our argument applies to con-
tinuum field theories as well as to models defined on a
(space) lattice.

The paper is organized as follows. In Sec. II we make
some general remarks on SSB, basically setting up the
stage for the discussion of our main result. We also in-
troduce a class of ‘‘uniform’’ symmetries to which the
standard derivation of the Goldstone theorem applies. In
Sec. III we give a partial proof of the conjecture (1) and
provide evidence for the missing part of the proof. Finally,
in Sec. IV we conclude and afford some speculations.
Some technical details as well as specific examples that
do not pertain to the general argument are relegated to the
appendixes.

II. GENERAL REMARKS ON SSB AND THE
GOLDSTONE THEOREM

In this section we will briefly review the notion of SSB
and the Goldstone theorem. Although we will not repeat in
detail its proof, we would like to make a number of com-
ments explaining under what conditions and technical
assumptions this proof applies. This may at times look

like purely academic pedantry, yet the example of a sharp
inequality in the NC counting rule presented in
Appendix A shows that one should be prepared for the
unexpected.
Let us first, following Nielsen and Chadha [4], define

what we mean by the number of broken generators nBS. We
demand that there is a set of conserved chargesQa and a set
of (quasi)local fields�aðxÞ, or, on a space lattice, operators
�aðt; xiÞ, where a ¼ 1; . . . ; nBS, such that the matrix

Mab � h0j½Qa;�bð0Þ�j0i (2)

is nonsingular (i.e., has a nonzero determinant). Moreover,
we assume that the conserved charges can be expressed as
a spatial integral or sum of local charge densities,

Qa ¼
Z

ddxj0aðt; xÞ; or Qa ¼ X
xi2lattice

�aðt; xiÞ: (3)

Strictly speaking, the broken charge operators are only
well defined in a finite volume. Nevertheless, in the formal
derivations they only appear in commutators which have a
well-defined infinite-volume limit [3].

A. Uniform symmetries

The proof of the Goldstone theorem essentially proceeds
by finding the spectral representation of the commutator
(2). This heavily relies on the integral representation (3)
and the following translational property of the charge
densities,

j0aðxÞ ¼ eiP�xj0að0Þe�iP�x; or

�aðt; xiÞ ¼ eiHtTy
xi�að0ÞTxi e

�iHt;
(4)

where P� is the four-momentum operator, H the
Hamiltonian, and Txi is the operator of a finite (lattice)

translation by xi. Even though this property is usually
taken for granted, it only holds provided that the charge
density operator, as constructed in terms of the local op-
erators of the theory, does not depend explicitly on the
coordinate. We will call symmetries whose charge den-
sities satisfy this condition uniform.
As an example, consider the simplest field theory exhib-

iting SSB and a NG boson: the free massless relativistic
scalar field theory, defined by the Lagrangian

L ¼ 1
2@

��@��: (5)

The action of this theory is invariant under the set of
global transformations �ðxÞ ! �ðxÞ þ �ðxÞ with �ðxÞ ¼
aþ b�x

�, where a, b� are the parameters of the trans-
formation. The corresponding five conserved Noether
currents are given by

j�ðxÞ ¼ @��ðxÞ;
j
�
� ðxÞ ¼ x�@

��ðxÞ � �
�
��ðxÞ:

(6)
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Thanks to the commutation relations with the field opera-
tor, ½iQ;�ðxÞ� ¼ 1 and ½iQ�;�ðxÞ� ¼ x�, all five integral
charges Q, Q� are spontaneously broken, while there is
obviously only one massless mode in the spectrum. The
resolution of this apparent paradox is that the charge
densities j0�ðxÞ do not satisfy Eq. (4). In fact, a short
explicit calculation gives j

�
� ðxÞ � eiP�xj�� ð0Þe�iP�x ¼

x�@
��ðxÞ. Thus the standard proof of the Goldstone theo-

rem does not apply to the charges Q�, and we should not
a priori expect additional NG bosons stemming from their
spontaneous breaking.

An intuitive understanding of why there is only one NG
boson instead of the naively expected five can be gained
using the argument of Low and Manohar [11]. Since the
NG boson can be generated by a local broken symmetry
transformation acting on the order parameter for SSB, two
spontaneously broken transformations will give rise to only
one NG boson if their local forms coincide. This is exactly
the case of the transformations generated by Q, Q� which
all have the same local form. A similar example is a
crystalline solid where both continuous translations and
rotations are spontaneously broken, yet only NG bosons
corresponding to the translations—the phonons—appear in
the spectrum.

Despite the above example of an internal nonuniform
symmetry, typical representatives of the class of nonuni-
form symmetries according to our definition are spacetime
symmetries such as rotational or conformal invariance. In
fact, the only example of a uniform spacetime symmetry is
obviously translational invariance. In the following, we
will assume that there is at least a discrete unbroken trans-
lational invariance, such as in crystalline solids. This is
necessary in order to have quasiparticles with well-defined
(real or crystal) momentum. With the above in mind, our
result will apply to all spontaneously broken global con-
tinuous uniform symmetries. Equation (4) then holds
whether continuous translational invariance is spontane-
ously broken or not.

One might think that the restriction to uniform symme-
tries could be avoided by resorting to the variant of the
proof of the Goldstone theorem using the quantum effec-
tive potential or action [2], which does not rely on the
operator identity (4). As it may be of general interest, we
provide in Appendix B a modification of this proof that
applies to nonuniform symmetries, leading essentially to
the same conclusion as the classical argument of Ref. [11].
However, this method of proof only gives the number of
flat directions of the effective potential (or equivalently the
number of zero modes of the inverse propagator of the
theory at zero momentum), which in Lorentz-noninvariant
theories is in general not equal to the number of NG
bosons. This means that while it can be used to make
statements within Lorentz-invariant theories, it can tell us
very little about the number of NG bosons in Lorentz-
noninvariant theories.

B. Conserved charges and their densities

Here we make a number of other short comments related
to the conserved charges required by the Goldstone theo-
rem. First, despite the fact that one (including ourselves)
usually speaks of ‘‘broken generators,’’ it should be noted
that the operators Qa in Eq. (2) need not be generators of
symmetry transformations in the Noether sense [12]. In
fact, the only two properties needed for the proof of the
Goldstone theorem are that Qa are integrals or sums of
charge densities as in Eq. (3) and that Qa are time-
independent. Of course, the most convenient way to ensure
that Qa is time-independent is starting from a four-current
j
�
a ðxÞ which satisfies the continuity equation, @�j

�
a ¼ 0.

Second, our conjecture (1) is formulated in terms of a
commutator of charges. Since generators of symmetry
transformations span a Lie algebra, this strongly suggests
that �ab is actually a linear combination of expectation
values of the charges themselves. However, this would
disregard the possibility that the representation of the Lie
algebra of conserved charges on the Hilbert space pos-
sesses a set of central charges. One can then expect a
generalized commutation relation of the type ½Qa;Qb� ¼
icab1þ ifabcQc. This phenomenon is certainly rather rare
since the central charges cab can be removed by a suitable
redefinition of the generators Qa for all semisimple Lie
algebras [13]. Yet, once central charges do appear, it can
even happen that �ab is nonzero although at the classical
level the Lie algebra of conserved charges is commutative.
The simplest example is perhaps the free nonrelativistic
particle which can be interpreted as a type II NG boson of
an extended ISO(2) symmetry [9].
Finally, it may be instructive to emphasize that any proof

of the Goldstone theorem or its generalizations, including
ours, can be applied not only to the set of all broken
generators of a given theory, but also to its subsets closed
under commutation. Any conclusion about the number of
NG bosons then refers to those NG bosons that couple to
the broken charges considered.

III. CHARGE COMMUTATOR AND
THE NUMBER OF NG BOSONS

The aim of this section is to provide evidence for our
conjecture (1). We will actually prove a one-sided inequal-
ity and give a physical argument why the opposite inequal-
ity also holds. We will essentially follow the strategy of
Nielsen and Chadha [4] and complement it with the rela-
tion to the charge commutator matrix �ab.
The NG mode with zero momentum corresponding to

the broken generator Qa will be represented as jai �
Qaj0i. This is a consistent definition of zero-momentum
NG states. On the one hand, all states jai are created by the
broken charges and have zero energy. On the other hand,
assume that there is another zero-energy state which is
orthogonal to all jai’s. By construction, it then has a zero
coupling to all broken charges, hence does not contribute to
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the commutator (2), and thus should not be counted among
the NG bosons. Consequently, the number of NG bosons is
equal to the number of linearly independent vectors jai.
Note that this argument uses the implicit assumption that
the NG states form a vector space, which is rigorously
justified at least at zero momentum.

A. Proof of nBS � nNG � ð1=2Þ rank�
Since out of the nBS vectors jai, there are only nNG

linearly independent ones, there must be a set of complex
coefficients Cpa, where p ¼ 1; . . . ;�n and �n � nBS �
nNG, such that Cpajai ¼ 0 with rank C ¼ �n (summations

over repeated indices are implied). As pointed out by
Nielsen and Chadha [4], the �n vectors C�

pajai are linearly
independent. Indeed, if this were not the case, there would
be a set of coefficients Dp such that DpC

�
pajai ¼ 0. Then,

ðDpC
�
paÞMab ¼ DpC

�
pah0j½Qa;�bð0Þ�j0i

¼ hajC�
paDp�bð0Þj0i � h0j�bð0ÞDpC

�
pajai

¼ 0; (7)

where the matrix M is defined in Eq. (2). Equation (7)
would imply that the matrix M has a zero eigenvalue,
which would contradict the assumption of SSB that M is
nonsingular.

We have observed that CpaQaj0i ¼ 0 for all p ¼
1; . . . ;�n, and that fC�

paQaj0ig�np¼1 are linearly indepen-

dent. This implies that Ap � CpaQa (A
y
p � C�

paQa) acts as

the annihilation (creation) operator of a NG boson labeled

by p. Since fAy
pj0ig�np¼1 are linearly independent, the

�n��n matrix G defined as

Gpq � h0jApA
y
q j0i ¼ h0j½Ap; A

y
q �j0i ¼ ðCgCyÞpq (8)

is Hermitian and positive definite; the Hermitian matrix g
here is defined as gab � hajbi. The matrix G can be
diagonalized by a unitary matrix U so that UGUy ¼
diagð�1; . . . ; ��nÞ. From Eq. (8) we can see that the diag-
onalization is achieved by the replacement C ! UC. Thus,
we can chooseC from the beginning in such a way thatG is
already diagonal. We then have

h0jj½Ap; A
y
q �j0i ¼ �pq�q ðno sum over qÞ: (9)

Note that this relation is reminiscent of a commutation
relation between the annihilation and creation operators,

½Ap; A
y
q � / �pq.

Now we are ready to show the desired inequality. Let us
define

Qþ
p ¼ 1

2
ðAp þ Ay

pÞ ¼ ReðCpaÞQa;

Q�
p ¼ 1

2i
ðAp � Ay

pÞ ¼ ImðCpaÞQa:

(10)

These make 2�n independent broken generators. In
order to obtain a basis of the space spanned by the
broken generators fQagnBSa¼1, we need to add nBS � 2�n
other broken generators, Q0

s ¼ BsaQa, with real Bsa.
Introducing finally the notation for the new basis

ð �Q1; �Q2; . . . ; �QnBSÞ
� ðQþ

1 ; Q
�
1 ; . . . ; Q

þ
�n; Q

�
�n; Q

0
1; . . . ; Q

0
nBS�2�nÞ; (11)

we infer that the antisymmetric matrix ��, defined by
i ��ab � lim�!1 1

� h0j½ �Qa; �Qb�j0i, equals

�� ¼ lim
�!1

1

2�

�

0 �1

��1 0 0

. .
. �

0 0 ��n

���n 0

� �

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (12)

where the asterisks indicate in turn 2�n� ðnBS � 2�nÞ,
ðnBS � 2�nÞ � 2�n, and ðnBS � 2�nÞ � ðnBS � 2�nÞ
blocks of unknown, possibly nonzero entries. Since the
transformation f �QagnBSa¼1 $ fQagnBSa¼1 is nothing but a change
of basis, �� must have the same rank as �; hence

rank � ¼ rank �� � 2�n; (13)

which was to be proven.

B. Explanation of nBS � nNG ¼ ð1=2Þ rank� and the
relation to the NC classification

In Ref. [14], Nambu pointed out that h0j½Qa;Qb�j0i � 0
implies that the corresponding zero modes behave like
canonical conjugates of each other; the same observation
was made in a special case in Ref. [8]. We have seen

this above; Qþ
p and Q�

p excite the same mode Ay
pj0i, and

they have the commutation relation h0j½Qþ
p ;Q

�
p �j0i ¼

ði=2Þh0j½Ap; A
y
p�j0i � 0 [see Eqs. (9) and (10)].

By construction, fQþ
p g�np¼1 [ fQ0

sgnBS�2�n
s¼1 (or equiva-

lently fQ�
p g�np¼1 [ fQ0

sgnBS�2�n
s¼1 ) excite linearly independent

modes. So, if we assume that Nambu’s argument is valid,
all of h0j½Qþ

p ; Q
0
s�j0i, h0j½Q�

p ; Q
0
s�j0i, and h0j½Q0

s; Q
0
s0 �j0i

should vanish, which means all the asterisks in Eq. (12)
should be replaced with zero block matrices. We then
arrive at the equality nBS � nNG ¼ ð1=2Þ rank�.
As for the dispersion relation "pðkÞ of the mode Ay

pj0i,
we can apply the same analyticity argument as Nielsen and
Chadha [4] and conclude that "pðkÞ is an analytic function

of k. In the special case of an unbroken rotational invari-
ance, we then have "pðkÞ / jkj2mp where mp is a positive

integer. Thus, all Ay
pj0i modes are type II NG bosons. How
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about the modes excited by fQ0
sgnBS�2�n
s¼1 ? Based on the

examples discussed in literature, we can say that they
usually have a linear dispersion relation, that is, are type
I. However, there is no general argument that would guar-
antee this. It is possible to modify the dispersion relation to
a quadratic one by fine-tuning the parameters of the theory.
Indeed, this is demonstrated by the example we propose in
Appendix A. All in all, the number of NG bosons with an
even power of momentum in the dispersion relation is at
least �n. This leads immediately to the NC inequality.

In practice, the classification of the various types of NG
bosons can be significantly simplified by choosing an
appropriate basis of the broken generators. To that end,
note that one can always choose the ground state in such a
way that only mutually commuting charges have nonzero
vacuum expectation value. In other words, only generators
from the Cartan subalgebra of the Lie algebra of the
symmetry group can have a nonzero vacuum expectation
value. A detailed proof of this statement is given in
Appendix C at the level of generality sufficient for all
practical purposes. By means of the general root decom-
position of Lie algebras, it then follows immediately that
the set of broken generators splits into pairs whose com-
mutator has possibly nonzero vacuum expectation value
(see Appendix D for details).

A cautious reader may have noticed that, strictly speak-
ing, the above choice of basis may not be compatible with
the choice made in Eq. (11). Therefore, the material of
Appendix C cannot be directly used in our proof. However,
as already stressed, it is of great practical utility, and in
addition, it can be used for an alternative derivation of the
inequality nBS � nNG � ð1=2Þ rank�, which is given in
Appendix D. This derivation provides us with a new insight
into the nature of the NG bosons associated with charge
density.

IV. SOME SPECULATIONS AND OUTLOOK

In this paper we pointed out the intimate connection
between the number of NG bosons in a quantum many-
body system exhibiting SSB and the densities of conserved
charges in the ground state. Our main result is summarized
in Eq. (1). The method used to (partially) prove it, follow-
ing closely Ref. [4], suggests that a different classification
of NG bosons than that based on the dispersion relation
might be useful. Let us denote a NG boson that couples to
some combination of broken charges C�

paQa introduced in

Sec. III as type C (‘‘charged’’), and the remaining NG
bosons as type N (‘‘neutral’’). The argument in Sec. III
then immediately proves that

nN þ 2nC ¼ nBS; (14)

with obvious notation. Moreover, our conjecture (1) can
then be cast in the form nC ¼ ð1=2Þ rank�.

As follows from the proof of the Nielsen-Chadha theo-
rem [4], all type C NG bosons are necessarily type II. On

the other hand, as pointed out already in Sec. III B, type N
NG bosons can be both type I and type II. In the systems
usually discussed in literature, all type N NG bosons
actually are type I; hence the two classifications coincide
and the NC inequality is saturated as a consequence of
Eq. (1). However, the explicit example in Appendix A
shows that there may exist NG bosons which are simulta-
neously type N and type II. We may say that such NG
bosons are ‘‘accidentally’’ type II since their nonlinear,
typically quadratic, dispersion relation is achieved by tun-
ing the parameters of the model. On the contrary, all type C
NG bosons are ‘‘robustly’’ type II due to the connection
with the conserved charge densities. The physical origin of
these two different kinds of type II NG bosons is obviously
very different.
Of course, in order that this classification of NG bosons

is consistently defined, one first has to prove that it does not
depend on the choice of the operatorsQa. For instance, the
type II NG boson of Appendix A would be classified as
type N. However, one could imagine that there is another
conserved charge which couples to the same NG boson and
has a nonzero commutator with the Noether charge of the
shift symmetry of the theory (A1). The same NG boson
would then be classified as type C. Of course, the conjec-
ture (1) would be satisfied in both cases. That is why we
only propose this classification here in the form of a
speculation. It would be interesting to investigate this issue
further.
Another interesting problem is what happens when sym-

metry whose spontaneous breaking gives rise to a reduced
number of NG bosons is gauged. How many massive
spin-one bosons appear in the spectrum as a consequence
of the Anderson-Higgs mechanism? Is their number equal
to nNG or rather to nBS? This question has been addressed
in Refs. [15,16], but so far only for one particular model,
whose global version was introduced earlier in
Refs. [8,17]. The problem would certainly deserve a
more general investigation.
Finally, note that in this paper we concentrated solely on

NG bosons of spontaneously broken uniform symmetries.
While a generalization of the Goldstone theorem to spon-
taneously broken nonuniform symmetries, which ensures
the existence of at least one NG boson, was given in
Appendix B, the issue of the count of the NG bosons in
such a case is still open. Any result with the same level of
generality as well as rigor as the Goldstone theorem would
significantly improve our understanding of spacetime as
well as other nonuniform symmetries.

ACKNOWLEDGMENTS

We thank H. Abuki, H. Aoki, T. Hatsuda, T. Hayata, T.
Kanazawa, and T. Kugo for fruitful discussions. Part of
the work was carried out during the stay of H.W. at
the University of Bielefeld. H.W. acknowledges the
University of Tokyo exchange program for a partial

NUMBER OF NAMBU-GOLDSTONE BOSONS AND ITS . . . PHYSICAL REVIEW D 84, 125013 (2011)

125013-5



support of his visit to Bielefeld. The work of T. B. was
supported by the Sofja Kovalevskaja program of the
Alexander von Humboldt Foundation.

Note added.—After this work was completed, we
learned that the result proven in Appendix C is a special
case of the following general theorem known in mathe-
matical literature: If G is a compact connected Lie group
and T is a maximal torus, then each element of G is
conjugate to a member of T (theorem 4.36 in Ref. [22]).
We are indebted to S. Naito and R. Sakamoto for bringing
this theorem to our attention.

APPENDIX A: INEQUALITY IN THE NC
COUNTING RULE

Here we propose an example in which a strict inequality
in the NC counting rule holds. Similarly to the example in
Sec. II A, let us consider a class of free scalar field theories
defined by the Lagrangian density

L ¼ 1
2@0�@0�� 1

2�D�; (A1)

where D ¼ P1
n¼1 cnð�r2Þn. This Lagrangian is invariant

under a (real) constant shift of the field, �ðxÞ ! �ðxÞ þ �.
By choosing the ground state j0i for simplicity as the

Fock vacuum, we get

h0jj½iQ;�ðxÞ�j0i ¼ 1: (A2)

Thus, the shift symmetry is always spontaneously broken.
The corresponding NG boson is nothing but the one-
particle state in the Fock space of this noninteracting field

theory, jnki ¼ ayk j0i with the dispersion relation "ðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ncnjkj2n

q
. For the usual Lorentz-invariant case (cn ¼

�n;1), we have "ðkÞ ¼ jkj which represents a type I NG

boson so that the NC inequality is saturated. However,
despite being somewhat pathological, it is also possible
to choose cn / �n;2. In this case, "ðkÞ / jkj2 which de-

scribes a type II NG boson; hence a strict inequality occurs
in the NC counting rule. The punch line is that the power of
momentum in the dispersion relation of the NG boson can
be modified by tuning the parameters of the Lagrangian.
We expect the same is also true in other models such as the
Heisenberg ferromagnet with a sufficient number of cou-
pling constants.

APPENDIX B: GOLDSTONE THEOREM FOR
NONUNIFORM SYMMETRIES

The alternative proof of the Goldstone theorem [2]
usually makes use of the quantum effective potential,
which is a function of classical uniform fields, and thus
cannot be applied directly to nonuniform symmetry trans-
formations. We offer here a generalization of the argument
that relies on the full quantum effective action.

Following essentially Weinberg [18], we consider a
theory of a set of (not necessarily scalar) fields, �iðxÞ,

and assume that the classical action of the theory is invari-
ant under the infinitesimal shift ��iðxÞ ¼ �Fi½x;��. Here
� is a parameter of the transformation, and Fi is in general
a functional of the fields and a function of the coordinate x.
This classical symmetry is shared by the quantum effective
action, �½��, that is,

Z
d4y

��½��
��jðyÞFj½y;�� ¼ 0; (B1)

provided Fi is linear in the fields. Taking now the varia-
tional derivative of Eq. (B1) with respect to �iðxÞ and
setting the field equal to its expectation value,
h0j�iðxÞj0i � viðxÞ, we obtain

Z
d4y

�2�½v�
��iðxÞ��jðyÞFj½y;v� ¼ 0: (B2)

Finally, we assume for the sake of simplicity full transla-
tional invariance of the vacuum. The second derivative of
the effective action can then be expressed in terms of the
inverse propagator of the theory, G�1

ij ðkÞ.
For uniform symmetries we can immediately infer that

G�1
ij ð0ÞFj½v� ¼ 0. In other words, SSB implies the exis-

tence of a gapless pole in the propagator. This is equivalent
to the more common formulation of the proof using the
effective potential. Our argument is nevertheless more
general since it also applies to theories with a nonlocal
action which cannot be expressed as a spacetime integral of
a local Lagrangian density.
For nonuniform symmetries, we have to make one fur-

ther step, that is, multiply Eq. (B2) by eik�x and integrate
over the coordinate x, which yields

G�1
ij ðkÞ

Z
d4yeik�yFj½y;v� ¼ 0: (B3)

(Nonzero momentum k is used just to ensure the conver-
gence of the integral.) Once again, in the limit k ! 0, the
integral of Fj½y;v� represents a zero mode of the inverse

propagator, which establishes the existence of a massless
particle in the spectrum.
Applying Eq. (B3) to the example discussed in Sec. II A,

we can immediately see that all five spontaneously broken
charges of Eq. (6) give rise to the same zero mode of the
inverse propagator. Generally, it follows from Eq. (B3) that
two broken symmetries that have the same local form will
give the same zero mode of the inverse propagator, that is,
the same NG boson. This is in accord with the conclusion
of Low andManohar [11]. Nevertheless, in contrast to their
classical field theory argument, our derivation actually
proves the existence of the massless mode in the spectrum
of the quantum theory, and is only limited by the assumed
translational invariance and the linearity of the symmetry
transformation in the fields.
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APPENDIX C: CHARGE DENSITIES AND THE
CARTAN SUBALGEBRA

In this appendix we will discuss in detail the statement
made in Sec. III B that one can always choose the ground
state in such a way that only mutually commuting charges
have nonzero vacuum expectation value. As explained
there, this is of great practical help in the classification of
the NG bosons. Even though we have not been able to
prove this claim in the full generality, we give below a
detailed proof that applies to all compact semisimple Lie
groups which are given by direct products of classical
simple Lie groups. This is sufficient for virtually all prac-
tical purposes. Our claim can be reformulated mathemati-
cally as the statement that every adjoint orbit of the
symmetry group passes through the Cartan subalgebra of
its Lie algebra. We will prove it in turn for all classes of
classical simple Lie groups and address the generalization
to semisimple groups in the end.

Let us first introduce some notation. By Ta and Q̂a we
will denote the generators of the symmetry group in its
defining representation, and its representation on the
Hilbert space of the quantum system, respectively. The
corresponding finite symmetry transformations will then

be Uð�Þ � ei�aTa and Ûð�Þ � ei�aQ̂a . Finally, Rð�Þ will
stand for the adjoint representation of the same transfor-
mation. Note that for the sake of clarity, we use in this
appendix hats to distinguish operators on the Hilbert space
from finite-dimensional matrices.

We now introduce the charge expectation values,

qa � h0jQ̂aj0i, and construct the matrix M � qaTa be-
longing to the Lie algebra of the symmetry group. Upon a
symmetry transformation, the ground state j0i becomes

j�i � Ûð�Þj0i. The charges qa then transform to [19]

q0a � h�jQ̂aj�i ¼ h0jÛð�ÞyQ̂aÛð�Þj0i
¼ h0jRð�Þ�1

ab Q̂bj0i ¼ Rð�Þbaqb: (C1)

Hence M transforms to

M 0 � q0bTb ¼ qaRð�ÞabTb ¼ Uð�ÞMUð�Þy: (C2)

We can see that M transforms in the adjoint representa-
tion, which provides a link between the physical and the
mathematical formulation of the problem; the fact that only
q0a’s corresponding to mutually commuting generators are
nonzero simply means that the matrixM0 lies in the Cartan
subalgebra. In the following, we will use the more concise
mathematical formulation of the problem.

1. Proof for the groups SUðNÞ
Since the Cartan subalgebra is in this case formed by all

real diagonal traceless matrices, our claim follows trivially
from the well-known fact that every Hermitian matrix can
be diagonalized by a suitable (unimodular) unitary trans-
formation. To the best of our knowledge, the proof in this

case was given for the first time in Ref. [20] using an
argument essentially identical to ours.

2. Proof for the groups SOðNÞ
The Cartan subalgebra in this case can be chosen as the set

of all (purely imaginary and antisymmetric) matrices whose
only nonzero entries are localized in 2� 2 blocks along the
diagonal. Our task is to prove that every purely imaginary
antisymmetric matrix M can be brought into such block-
diagonal form by a special orthogonal transformation.
We know that the (real) eigenvalues of a purely imagi-

nary antisymmetric matrix come in pairs with opposite
signs and that the corresponding eigenvectors are related
by complex conjugation. Let us denote these eigenvectors
as uk, u

�
k. Every such pair of vectors spans an invariant

subspace of M. We can trade them for real vectors vk �
ðuk þ u�kÞ=

ffiffiffi
2

p
and wk � �iðuk � u�kÞ=

ffiffiffi
2

p
. (In case of odd

N, there will be an additional real eigenvector associated
with zero eigenvalue.) Since the basis of eigenvectors

fuk; u�kgN=2
k¼1 is orthonormal, so is the basis fvk;wkgN=2

k¼1.

It is real and hence connected to the basis we started
from by a real orthogonal transformation. In this basis,
M takes the desired block-diagonal form. Finally, by
flipping the sign of one of the basis vectors if necessary,
we can ensure that the similarity transformation leading to

fvk;wkgN=2
k¼1 is unimodular.

3. Proof for the groups Spð2NÞ
Recall that the group Spð2NÞ consists of all 2N � 2N

unitary matricesU such thatUIUT ¼ I where I � i�2 	
1N�N with �2 the second Pauli matrix. We can say that
Spð2NÞ contains all unitary matrices which are simulta-
neously I-orthogonal. Likewise, the generators of Spð2NÞ
are Hermitian and I-antisymmetric, TT

a ¼ �ITaI�1. As a
consequence, the generators of Spð2NÞ take the form

T ¼ A B
By �AT

� �
; (C3)

where A is a Hermitian and B a symmetric complex N � N
matrix. The Cartan subalgebra then consists of all matrices
of this form with A real and diagonal and B ¼ 0.
We are now to prove that every I-antisymmetric (and

Hermitian) matrix M can be diagonalized by a unitary
symplectic transformation. First, observe that if uk is its
eigenvector with the (real) eigenvalue �k, then its I con-
jugate, Iu�k, is also an eigenvector with the eigenvalue

��k. Hence the eigenvalues of M once again come in
pairs with opposite sign and we can thus construct an
orthonormal basis of eigenvectors and organize them in
the columns of a unitary matrix [21],

P � ðu1; . . . ; uN; Iu�1; . . . ; Iu�NÞ: (C4)

In this basis, M acquires the desired diagonal form and a
simple calculation shows that P itself is symplectic as
required. This completes the proof.
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4. Proof for semisimple groups

Let us prove our claim for a direct product of two groups
of the type discussed in the preceding three subsections.
The general case will then follow by induction. The
two (commuting) sets of generators will be denoted Ta 	
1 and 1 	 T�, where we use Latin and Greek indices
to distinguish the two groups. The matrix M then
becomes

M ¼ ðqaTaÞ 	 1þ 1 	 ðq�T�Þ: (C5)

The transformations from the two groups are labeled
by independent parameters �a and ��, that is, Uð�Þ �
ei�aTa and Vð�Þ � ei��T� . Under a general transformation
from the product group,Uð�Þ 	 Vð�Þ, the matrixM trans-
forms to

M 0 ¼ ½Uð�Þ 	 Vð�Þ�M½Uð�Þ 	 Vð�Þ�y
¼ ½Uð�ÞqaTaUð�Þy� 	 1þ 1 	 ½Vð�Þq�T�Vð�Þy�:

(C6)

Obviously, one can choose the transformations in the two
groups independently to diagonalize the respective parts of
M so that, in the end,M0 will lie in the Cartan subalgebra
of the product group, which is just a direct sum of the two
Cartan subalgebras.

APPENDIX D: CLASSIFICATION OF NG BOSONS
VIA CARTAN DECOMPOSITION

In order to view the NG bosons associated with charge
densities from a different perspective, let us recall the root
decomposition from the theory of Lie algebras. (Our argu-
ment will apply to all Lie algebras to which the result of
Appendix C applies, that is, to all compact semisimple Lie
algebras which are given by direct products of classical
simple Lie algebras.) There, one constructs linear combi-
nations of the Lie algebra generators in the form of root

generators E�, such that ½E�; E
y
	� ¼ ��	�iHi, where � is

the associated root vector and Hi is the basis of the Cartan
subalgebra.

Using the result of Appendix C, we now choose the basis
of the Lie algebra so that only the generators Hi can
have a nonzero vacuum expectation value. Concretely,
let us consider all the roots �c, c ¼ 1; . . . ;�n0 such that

�0
c � ð�cÞih0jHij0i � 0. Defining analogously to Eq. (10)

the set of 2�n0 generators Q

c as

Qþ
c ¼ 1

2
ðE�c

þ Ey
�c
Þ; Q�

c ¼ 1

2i
ðE�c

� Ey
�c
Þ; (D1)

and adding nBS � 2�n0 generators Q0
s in order to obtain a

complete basis of generators, the commutator matrix �
becomes

� ¼ lim
�!1

1

2�

�

0 �0
1

��0
1 0 0

. .
.

0

0 0 �0
�n0

��0
�n0 0

0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(D2)

All nonzero entries of the matrix are located in �n0 2� 2
blocks along the diagonal. Ordering the generators as in
Eq. (11), we next choose the first 2�n0 interpolating fields
�a in the commutator (2) as (j0þ1 ; j0�1 ; . . . ; j0þ

�n0 ; j
0�
�n0). For

s ¼ 2�n0 þ 1; . . . ; nBS and a ¼ 1; . . . ; 2�n0, we now have
Msa ¼ 0, and the SSB condition detM � 0 demands that
detM0 � 0 whereM0

st is the ðnBS � 2�n0Þ � ðnBS � 2�n0Þ
lower-right corner of Mab. Finally, we observe that since
the expectation values of commutators of all pairs of gen-
erators Q0

s vanish, according to the theorem of Schäfer
et al. [8] there must be nBS � 2�n0 NG bosons as inter-
mediate states in the commutatorM0

st. At the same time, at
least one NG boson must appear as an intermediate state in
the commutator h0j½Qþ

c ; j
0�
c ð0Þ�j0i for each c ¼

1; . . . ;�n0. Therefore, the number of NG bosons as
bounded from below as nNG � ðnBS � 2�n0Þ þ�n0 ¼
nBS � �n0 ¼ nBS � ð1=2Þ rank�, as proved by a different
method in Sec. III A. While the above argument uses the
notation for charge densities introduced in Sec. II for
systems with continuous translational invariance, it goes
through without change if we replace j0a with �a—a charge
density on a spatial lattice—as in Eq. (3).
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