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The D3/D7 holographic model aims at a better approximation to QCD by adding to N ¼ 4 SYM theory

Nf of N ¼ 2 supersymmetric hypermultiplets in the fundamental representation of SUðNcÞ—the ‘‘flavor

fields’’ representing the quarks. Motivated by a recent observation of the importance of the Wess-Zumino-

like (WZ) term for realizing the chiral magnetic effect within this model, we revisit the phase diagram of

the finite temperature, massless D3/D7 model in the presence of external electric/magnetic fields and at

finite chemical potential. We point out that the A-V-V triangle anomaly represented by the WZ term in the

D7 brane probe action implies the existence of new phases that have been overlooked in the previous

studies. In the case of an external magnetic field and at finite chemical potential, we find a ‘‘chiral helix’’

phase in which the Uð1ÞA angle of D7 brane embedding increases monotonically along the direction of the

magnetic field—this is a geometric realization of the chiral spiral phase in QCD. We also show that in the

case of parallel electric and magnetic fields (E, B) there exists a phase in which the D7 brane

spontaneously begins to rotate, so that the Uð1ÞA angle changes as a function of time—this may be

called the ‘‘spontaneous rotation’’ phase; it is a geometrical realization of a phase with nonzero chiral

chemical potential. Our results call for a more thorough study of the (T, B, E, �) phase diagram of the

massless D3/D7 model taking a complete account of the WZ term. We also speculate about the possible

phase diagram in the massive case.
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I. INTRODUCTION

This work is motivated in part by a recent realization of
the chiral magnetic effect (CME) [1,2] in the D3/D7 model
via the Wess-Zumino-like (WZ) term in the D7 probe
brane action [3].1 The field theory dual to the D3/D7
holographic model is the N ¼ 4 supersymmetric Yang-
Mills (SYM) theory with Nf of N ¼ 2 hypermultiplets in

the fundamental representation of the color group
SUðNcÞ—the ‘‘flavor fields’’ representing the quarks. In
this dual field theory, the axial phase of a Dirac quark in the
hypermultiplet is tied to a Uð1ÞR subgroup of the SOð6ÞR
symmetry of the N ¼ 4 SYM sector. The hypermultiplet
also has its own flavorUð1ÞV symmetry which is vectorlike
to the hypermultiplet quarks. These ingredients are suffi-
cient to give rise to the Uð1Þ2VUð1ÞR flavor anomaly
through the triangle one-loop diagram involving the hyper-
multiplet quarks. In the holographic picture of D7 probe
brane in the large Nc D3 brane background, this triangle
anomaly is captured by a WZ—like coupling in the D7
probe brane action. A peculiar feature in this setup is
that Uð1ÞR (we will also call it Uð1ÞA interchangeably) is

geometrically realized as a Uð1Þ angle in the 5-sphere of
AdS5 � S5 geometry, whereas the dynamics ofUð1ÞV is, as
usual, described by the gauge field on the D7 brane—
therefore, the triangle anomaly is no longer represented
by a 5D Chern-Simons term.
Because Uð1ÞR is shared by other adjoint matter fields

in N ¼ 4 SYM, the Uð1ÞR charges in the hypermultiplet
can be lost to the adjoint sector, and the axial chemical
potential can be meaningful only in a quasiequilibrium
sense. A novel idea in Ref. [3] is to introduce an external
time-dependent axial phase into the system that simu-
lates an axial chemical potential. As Uð1ÞA is geometri-
cally realized as an angle in the 5-sphere, this can be
achieved by externally rotating the D7 brane along the
Uð1ÞA angle. Considering that the axial charge can be
lost to the adjoint sector, it is a nice way of maintaining
a chiral imbalance in an otherwise equilibrated system
[3]. This is, in fact, similar to the true axial Uð1ÞA
symmetry of real QCD where, at finite temperatures,
the sphalerons can create or annihilate the axial charge.
Indeed, a time-dependent QCD �-angle, which is equiva-
lent to a time-dependent axial phase by anomaly, was
one way of effectively describing the axial chemical
potential, with �A ¼ _� [9]. Since in the �-vacuum pic-
ture � can be interpreted as a quasimomentum (in anal-
ogy to the Bloch crystal), _� may be interpreted as an
external ‘‘force’’ that maintains an imbalance between
the left and right fermions. This can also be realized
holographically, for example, in the Sakai-Sugimoto
model, through a time-dependent C1

RR holographic dual
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1Closely related phenomena have been discussed in the

physics of neutrino emission [4], primordial electroweak
plasma [5] and quantum wires [6]; the separation of electric
charge in QCD plasma induced by the chirality imbalance in
the presence of magnetic field and/or angular momentum was
first discussed in [7,8].
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to �QCD which could clarify the treatment of the holo-

graphic chiral magnetic effect [10–16].
Indeed, one issue with the holographic description of the

CME is that in Minkowski signature black hole space-time,
the temporal component of the vector potential A� at the

uv boundary is not quite equivalent to the chemical poten-
tial even in the case of nonanomalous global symmetries
[14,17]. The thermal Green’s functions in Minkowski sig-
nature black hole space-time have the structure

Tr ensembleðOðtÞOðt0ÞÞtime ordering; (1.1)

where OðtÞ is an operator that evolves as

O ðtÞ ¼ eþiĤtOð0Þe�iĤt; (1.2)

while the ensemble trace can be either grand canonical or
(micro) canonical,

Tr ensemble ¼ Trðe��ðĤ��N̂ÞÞ or Trðe��ĤÞ; (1.3)

where N̂ is the charge operator. A crucial point is that the
Hamiltonian appears here in two places with rather differ-
ent roles—the one appearing in the ensemble trace,

e��ðH��NÞ or e��Ĥ, is responsible for the Euclidean imagi-
nary time evolution of period � while the one appearing in
OðtÞ is responsible for the evolution in Minkowski real
time. In Minkowski black hole space-time, one sees only
the Minkowski evolution and the Euclidean one is not
manifest geometrically. Conversely, in the Euclidean black
hole geometry, only the Euclidean evolution is geometri-
cally realized. To be more explicit, by turning on Atð1Þ at
the uv boundary in Minkowski signature black hole, one
achieves a famous replacement according to the AdS/CFT
dictionary,

Ĥ ! Ĥ � Atð1ÞN̂; (1.4)

the question, however, is which Hamiltonian should we
replace on the field theory side: the one in the ensemble
average or the one in OðtÞ, or both? Since the boundary
field theory is in Minkowski signature space-time, it seems
clear that the Hamiltonian in OðtÞ has to be replaced;
however, the question whether the Hamiltonian in the
ensemble average also has to be replaced is more difficult
to answer. To establish the identification Atð1Þ ¼ � in the
ensemble average one should go to the Euclidean signature
black hole where the imaginary time evolution becomes
geometrically realized.

It is clear from the above discussion that one should not
naively associate Atð1Þ in Minkowski black hole space-
time with a chemical potential. This is relevant because the
ambiguities of the chiral magnetic current appear precisely
due to Atð1Þ in Minkowski signature space-time, and are
likely related to its effect on OðtÞ, which should not have
been the case for the true chemical potential. Without
Atð1Þ the ambiguities of the holographic CME disappear
[14,17]. In Minkowski black hole, the value of the

chemical potential can be obtained by the work done to
a unit charge in bringing it from the uv boundary to the
black hole horizon. The issue of singularity at the horizon
poses no problem because what matters in Minkowski
dynamics is only the future event horizon and the gauge
field is regular there for any choice of Atð1Þ [17]. This is
in accord with the fact that Atð1Þ in Minkowski black
hole is not quite the chemical potential. One may choose
to perform a bulk gauge transformation to remove At

while introducing a time-dependent Ar instead,

Ar ¼ �t@rAtðrÞ: (1.5)

Physically, this introduces a time-dependent Wilson line
stretching from the uv boundary to the horizon,

W ¼ e
i
R1

rH
Ar ¼ eit� ; (1.6)

with frequency which is equal to the chemical potential.
What is important here is that there is no singularity issue
with this Wilson line. In fact, the norm AMANg

MN one
uses in the singularity argument is not a gauge-invariant
concept.
Although one needs an axial chemical potential to ob-

serve the CME, there are other interesting phenomena
stemming from the triangle anomaly. One example is the
chiral separation effect [18,19]: the emergence of an axial

current along the magnetic field ~B ¼ Bx̂3 in the presence
of an ‘‘ordinary’’ vector chemical potential �V ,

j3A ¼ Nc

2�2
�VB: (1.7)

The close connection between the CME and the chiral
separation effect is particularly easy to see in the case of
a strong magnetic field when dimensional reduction is
appropriate [20]. In the dimensionally reduced (1þ 1)
theory, the axial and vector currents are related by j� ¼
���j

�
A, so that the axial charge density j0A induces a vector

current j1 (CME) and the vector charge density j0 induces
an axial current j1A (chiral separation).
Contrary to the axial chemical potential, the vector

chemical potential (as well as magnetic field) is much
easier to introduce in the D7 brane. Once we accept (1.7)
, it is natural to look for a signal of the axial current j3A in

the following way: as Uð1ÞA is geometrically realized, the
axial current will take a form of a chiral spiral [20–26]; that
is, the Uð1ÞA angle of the D7 brane embedding shape
should have a constant gradient along the space direction
x3 � z. Even though one is working in the massless limit,
the D7 brane should develop a profile of nonzero axial
phase gradient along x3 to satisfy the constraint (1.7)
dictated by the triangle anomaly. Wewill call this the chiral
helix phase emphasizing its geometrical realization in the
holographic setup.
The phase diagram of D7 brane dynamics in the pres-

ence of both magnetic field and ordinary chemical poten-
tial has been studied before, both at finite [27,28] and at
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zero temperature [29]. However the triangle anomaly con-
straint (1.7), or equivalently the effect of the WZ term in
the D7 brane action, seems to have been missed in these
analyses. In this paper, we find a significant modification of
the phase diagram due to the anomaly, and prove the
emergence of the chiral helix phase through a dynamical
instability. A more thorough study of the full (B, �) phase
diagram will be presented elsewhere [30].

Another interesting and well-known effect stemming
from the triangle anomaly is the creation or annihilation
of the Uð1ÞA charge in the presence of parallel electric and
magnetic fields,

@�j
�
A � ~E � ~B � 0: (1.8)

At finite chiral chemical potential �A, (1.8) determines the
power of the chiral magnetic current in the case of the
parallel electric and magnetic fields:

P ¼
Z

d3x ~j � ~E ¼ �A

e2

2�2

Z
d3x ~E � ~B: (1.9)

Note that no power is dissipated in the absence of the
electric field, and that depending on the relative signs of
~E � ~B and �A, the power can be either positive or nega-
tive—in the latter case the current is powered by the energy
stored in the system due to the difference of Fermi energies
of left and right chiral charges [2,9]. The reversibility of the
sign of the power signals the lack of dissipation that is a
consequence of the time reversal invariance of chiral
magnetic conductivity and other anomalous transport
coefficients—this provides an important constraint on
the anomalous hydrodynamics [31].

In the holographic setup one can easily introduce the
electric/magnetic fields through world-volume gauge field
on the D7 brane. Because the Uð1ÞA charge is simply the
angular momentum of the D7 brane along the axial angle in
the 5-sphere, the above triangle anomaly constraint implies
that the D7 brane should start rotating along this Uð1ÞA
angle with an increasing speed. Because of the loss of axial
charge (dissipation) to the adjoint sector, one expects the
system to stabilize with a finite angular momentum after-
wards. We will call this the ‘‘spontaneous rotation phase’’.
The existence of this phase seems to have been missed in
the previous analyses in the literature [27,32]; we expect
that the spontaneous rotation phase leads to a significant
modification of the phase diagram. In the present work we
prove the existence of the spontaneous rotation phase by
observing a dynamical instability towards it. The study of
the full phase diagram of (B, E, �) is deferred to future.

We stress that there are no externally driven time-
dependent parameters in our situations, contrary to
Ref. [3]. This is because the chemical potential and elec-
tric/magnetic fields of the baryonic Uð1ÞV symmetry are
easier and more natural to introduce through the D7
world-volume Uð1ÞV gauge field. Yet we observe that the

existence of the Uð1Þ2VUð1ÞR triangle anomaly represented
by the WZ term still leads to interesting consequences.
Although we focus only on the massless case in this

paper, it is interesting to speculate about the massive case.
In the case of the chiral spiral in the chiral-symmetry
broken phase of QCD, the massive case features an inho-
mogeneous chiral spiral: the axial phase jumps only in
narrow periodic ranges of x3 [22]. This is due to a com-
petition of the free energy associated with the phase gra-
dient and the anomaly constraint imposed by (1.7). One
naturally expects that a similar phenomenon would happen
in the massive D3/D7 model, and it will be interesting to
pursue this further.

II. MASSLESS D3/D7 MODELWITH (T, B, �)

We study the dynamics of the probe D7 brane embedded
in a gravity background of large Nc D3 branes at finite
temperature T given by

ds2 ¼ r2

L2

�
�VðrÞdt2þX3

i¼1

ðdxiÞ2
�
þ L2

r2VðrÞdr
2þL2d�2

5;

VðrÞ ¼ 1�
�
�L2T

r

�
4
;

FRR
5 ¼ ð2�lsÞ4Nc

�3
�5; (2.10)

where L4 ¼ 4�gsNcl
4
s � �l4s and �5 is the volume form

of a unit 5-sphere; gs and ls are the string coupling and
string length. In the weak coupling limit, the D3 branes
span (t, xi), i ¼ 1, 2, 3 and the D7 brane wraps additional
four dimensions we call x4;5;6;7. The remaining two dimen-
sions x8;9 are transverse to both D3 and D7 branes. The six
dimensional space x4–9 is the total transverse space to the
D3 brane, and the radial direction r and the 5-sphere�5 in
(2.10) are the radius and angles in this space. The theory of
the D3/D7 branes is N ¼ 4 SYM theory of SUðNcÞ plus
N ¼ 2 hypermultiplet of fundamental representation
fields. In the strong coupling regime that we are interested
in, the D3 branes are replaced by the above gravity-flux
background (2.10) whereas the D7 brane is treated as a
probe brane to this holographic background. On the field
theory side, the dynamics of the probe D7 branes should be
dual to the dynamics of N ¼ 2 hypermultiplet at strong
coupling in the quenched approximation.
The embedding geometry of the D7 probe brane in the

above background (2.10) is explained in Fig. 1. In general,
the D7 brane bends in the transverse direction x8;9, and this
is all the data one has to specify for the shape assuming that
the shape is invariant under rotations in x4;5;6;7 space.
Introducing the radius of x4;5;6;7 space that the D7 brane
spans

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx4Þ2 þ � � � þ ðx7Þ2

q
; (2.11)
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the D7 brane wraps a 3-sphere of constant � for each �.
Note that � ¼ �ðr; x�Þ is in general a nontrivial function of
holographic 5-dimensions (r, x�) depending on the bend-
ing in x8;9 directions by the relation

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðX8ðr; x�ÞÞ2 � ðX9ðr; x�ÞÞ2

q
; (2.12)

where X8;9ðr; x�Þ are functions that specify the bending
shape in x8;9 space. One can conveniently choose the eight-
dimensional D7 brane world-volume coordinates to be
(x�, r, �3), and the embedding geometry is completely
determined by two functions X8;9ðr; x�Þ.

The rotational Uð1Þ in x8;9 space is a part of
SOð6Þ-symmetry of the total transverse space x4�9 which
is the holographic manifestation of SOð6ÞR R-symmetry of
N ¼ 4 SYM theory. For the hypermultiplets it also corre-
sponds to a phase rotation of the N ¼ 2 supersymmetric
complex mass term, as the r ! 1 asymptotic value of
ðX8 þ iX9Þ is precisely such mass parameter for the hyper-
multiplet. Although the hypermultiplet involves scalars
too, at least for the (Dirac) fermions it is very similar to
the axial Uð1ÞA in real QCD. We therefore call it either
Uð1ÞR or Uð1ÞA interchangeably. The novelty here is that
Uð1ÞA is geometrically realized as a real rotation in x8;9

internal space. Several previous studies have explored this
aspect to get useful results relevant for chiral symmetry-
breaking phase transitions in QCD [33–36].2 More relevant
to our present work, Ref. [3] recently simulated the axial
chemical potential in QCD by introducing an external
time-dependent rotation along this x8;9 Uð1Þ angle. One
drawback is that this R-symmetry is shared by adjoint
scalars and fermions in N ¼ 4 SYM theory, so that the
total charge can be lost to the background geometry [3].

However, the effective chemical potential that they intro-
duce by rotation can be kept stationary by continuous
external inflow of necessary charges and one can mean-
ingfully discuss the physics of hypermultiplet sector with a
finite R-symmetry chemical potential.
This bears some similarity to real QCD where axial

charges may be lost due to QCD sphalerons, and indeed
a time-dependent external �QCD-angle (which is equivalent
to the axial phase by anomaly) was one of the ways to
introduce an effective axial chemical potential [9]. It is
perhaps relevant to point out that one can do a similar thing
even in the Sakai-Sugimoto model. The Uð1ÞA suffers
nonconservation due to coupling to the CRR

1 , which is
dual to �QCD-angle. This is a holographic manifestation

of Uð1ÞA anomaly with QCD gluons. Although this effect
has been neglected based on large Nc-suppression, one can
go on to introduce a time-dependent CRR

1 to introduce an
effective axial chemical potential; this procedure would
bypass the issues regarding the holographic chiral mag-
netic effect discussed in the Introduction.
The D7 brane dynamics also includes a baryonic

Uð1Þ symmetry by a Uð1Þ gauge field residing on its
world-volume. The situation we are going to study is
the one having a constant magnetic field along, say
x3 � z direction,

F12 ¼ B; (2.13)

and a finite chemical potential �, both of which are
with respect to this baryonic symmetry. Note that B,
which is constant everywhere, is a trivial solution of
equations of motion. We will focus on the massless
case which means

ðX8; X9Þ ! 0; r ! 1; (2.14)

and we will discuss what might be happening in the
massive case in the last section. The phase diagram of
the system in (T, B, �) has been studied previously in
Ref. [28], but as discussed in the Introduction an inter-
esting role played by Uð1Þ2Uð1ÞR triangle anomaly
represented by a Wess-Zumino term was overlooked.
Given (B, �), the triangle anomaly dictates an existence
of the chiral separation effect:

j3R ¼ Nc

2�2
�B; (2.15)

and in our case of Uð1ÞR geometrically realized as a
rotation in x8;9 space, a finite j3R current would take a
form of a helix, i.e. a nonzero spatial z-gradient of the
Uð1ÞR angle of the D7 brane embedding, see Fig. 2 for
an illustration. This is an analog of the chiral spiral of
pion gradient in low-energy QCD with electromagnetic
B and �B [22], except that the axial phase and the
spiral in our case are realized geometrically and are
easily visualized.

x8
x9

S3

D7 Brane

Black Hole

FIG. 1. A schematic picture of D7 brane embedding in the
D3 background. The (x8, x9) plane of our interest is shown
explicitly.

2As in QCD, Uð1ÞA is not a true symmetry due to the anomaly
involving gluons. A typical justification for discussing chiral
symmetry-breaking with it is a large Nc suppression of this
anomaly.
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This implies that a sizeable fraction of the phase dia-
gram with (B, �) should in fact be the chiral helix phase.
To establish its location in the (T, B,�) phase diagram, one
should compare the grand canonical free energies (includ-
ing the effects from the WZ term) of the phases with and
without the chiral helix. This interesting task will be pur-
sued elsewhere [30], but in this paper we will prove the
existence of this phase by showing a dynamical instability
towards it from the phase which does not possess the chiral
helix. Figure 3 is a rough picture of the phase diagram of
(T, B, �) in Ref. [28] without considering the WZ term.
Because of conformal symmetry, the only meaningful
parameters are ð �ffiffiffi

B
p ; Tffiffiffi

B
p Þ and one sets B ¼ 1.3 The vertical

axis is related to T by

rHffiffiffi
2

p ¼ �ffiffiffi
2

p T: (2.16)

The region III in the upper-right part is the so-called super-
symmetric embedding phase where the D7 brane embed-
ding is straight in x8;9 space without bending all the way to
the black hole horizon, ðX8ðrÞ, X9ðrÞÞ � ð0; 0Þ. We are
going to study the dynamical instability of this phase
towards forming the chiral helix, and as an exemplar case
we will pick one point—the point A in Fig. 3—which has
ðrHffiffi

2
p ; �Þ ¼ ð0:25; 1Þ and is well inside the region III without
any ambiguity. We will indeed find that this point is un-
stable to linearized chiral helix modes.

The action of D7 brane is

SD7 ¼ ��7

Z
d8	e�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg� þ 2�l2sFÞ

q

þ�7

ð2�l2sÞ2
2!

Z
CRR
4 ^ F ^ F; (2.17)

where �7 ¼ ð2�Þ�7l�8
s , e
 ¼ gs, and F is the field

strength of the baryonic Uð1Þ gauge field. Note that the
embedding dynamics of X8;9ðr; x�Þ enters through the
induced world-volume metric g�. Because ls drops in any
field theory observables, one can conveniently choose it
such that L4 ¼ �l4s � 1, and we also rescale ð2�l2sÞF ! F
for simplicity. We are going to study linearized fluctuations
from the configuration of point A in Fig. 3 which has
X8;9ðr; x�Þ � 0. The chemical potential, or equivalently
the background solution of Ftr is obtained from the action

SD7 ¼ � �Nc

16�4

Z
d5xfr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðFtrÞ2

q
g; (2.18)

which gives one in Ar ¼ 0 gauge,

Fð0Þ
tr ¼ �@rA

ð0Þ
t ¼ � Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ r2ðr4 þ B2Þp ; (2.19)

where a constant of motion Q is determined from � by the
condition

� ¼ Að0Þ
t ð1Þ ¼

Z 1

rH

dr
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ r2ðr4 þ B2Þp : (2.20)

It is tedious but straightforward to expand the action (2.17)
quadratically from the background solution in terms of
small linearized perturbations of the modes (X8;9, At, Az)
(we omit �-symbol for simplicity) assuming the depen-
dence only on (t, z, r) that are potentially relevant for the
chiral helix instability. We have verified the consistency of
this ansatz. We find that gauge field perturbations decouple
from those of X8;9 so from now on we keep only X8;9

perturbations that are of interest for us. One subtlety re-
garding CRR

4 should be mentioned: writing the 5-sphere
metric as

r
H/sqrt{2}

0.4 0.8

0.25
A

FIG. 3. A schematic picture of (T, B, �) phase diagram
without considering triangle anomaly (WZ term) from
Ref. [28,32]. B has been set to 1. The region I corresponds to
the phase where the chiral-symmetry is spontaneously broken,
and the meson is stable (the ‘‘Minkowski embedding phase’’). In
the region II, the chiral-symmetry is still spontaneously broken,
but the meson is unstable. Finally, the region III contains the
chirally symmetric phase. The point A has ðrHffiffi

2
p ; �Þ ¼ ð0:25; 1Þ

and has an instability toward chiral helix phase.

x3=z

x8 x8

x8
x9

x9
x9

x8

x9
x3=z

FIG. 2. The D7 brane embedding in the chiral helix phase. The
Uð1ÞR angle 
 in (x8, x9) plane is monotonically increasing
along x3 ¼ z direction. In the space of (x8, x9, z) the shape
indeed looks like a helix.

3Precisely speaking, there is also a rescaling ð2�l2s ÞF ! F and
we choose ls to have L4 ¼ �l4s � 1 before setting B ¼ 1. We
also will use this convention later.
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d�2
5 ¼ d�2 þ sin2�d
2 þ cos2�d�2

3; (2.21)

where 0 � � � �
2 is the angle from the � axis such that

(see Fig. 1)

cos� ¼ �

r
; sin� ¼ R

r
; R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx8Þ2 þ ðx9Þ2

q
;

(2.22)

and 
 is the Uð1ÞR angle in x8;9-plane, the volume form
takes a form

�5 ¼ sin�cos3�d� ^ d
 ^ �3

¼ d

�
� 1

4
cos4� ^ d
 ^ �3

�
; (2.23)

where �3 is the volume form of unit 3-sphere. From this,
one obtains CRR

4 as

CRR
4 ¼ ð2�lsÞ4Nc

�3

1

4
ðC� cos4�Þ ^ d
 ^ �3; (2.24)

where a constant C is a freedom of singular gauge trans-
formations. Since the background D7 brane shape
X8;9ðrÞ � 0 corresponds to � ¼ 0 and we are looking at
small fluctuations around it, we need to choose C such that
CRR
4 is regular around � ¼ 0. At � ¼ 0, the angle 


becomes singular, and CRR
4 should vanish to be regular,

which fixes C ¼ 1. (The other choice C ¼ 0 would make
CRR
4 regular at � ¼ �

2 instead where the 3-sphere vanishes.

This will be suitable when discussing fluctuations around
Minkowski embeddings.) This finally gives us an expres-
sion for the WZ term:

SWZ ¼ �Nc

128�4

Z
d5x

�
2r2 � ðX8Þ2 � ðX9Þ2

r4

�
� �MNPQRðX8@MX

9 � X9@MX
8ÞFNPFQR; (2.25)

where �MNPQR is purely numerical.
After a sizable amount of algebra, the quadratic action

for the fluctuations one gets is

Sð2Þ ¼ �Nc

16�4

Z
d5x

�
1

2
AðrÞð@tX8Þ2 � 1

2
BðrÞð@zX8Þ2

� 1

2
CðrÞ

�
ð@rX8Þ2 � @r

�ðX8Þ2
r

��

þ 1

2
DðrÞðX8Þ2 þ ðsame with X8 $ X9Þ

� 1

2
EðrÞðX8@zX

9 � X9@zX
8Þ
�
; (2.26)

where the coefficient functions are given by

AðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 1

r4VðrÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðFð0Þ
tr Þ2

q ;

BðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 1

r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðFð0Þ

tr Þ2
q

;

CðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p VðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðFð0Þ

tr Þ2
q ;

DðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 3

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðFð0Þ

tr Þ2
q

;

EðrÞ ¼ 4B

r2
Fð0Þ
tr :

(2.27)

The last term results from the WZ term, which plays an
essential role in our discussion.
It is a straightforward exercise to derive the equations of

motion from the above and to study the linearized stability
of the system. As one has a black hole horizon located at
r ¼ rH, one needs to impose a physically relevant incom-
ing boundary condition at the horizon, and for this purpose
it is more convenient to work in the Eddington-Finkelstein
coordinate (t�, r�),

t� ¼ tþ
Z r

1
dr0

ðr0Þ2Vðr0Þ ; r� ¼ r; (2.28)

upon which one has

@t ¼ @t� ; @r ¼ @r� þ
1

r2VðrÞ@t� ;Z
dtdr ¼

Z
dt�dr�:

(2.29)

The quadratic action (2.26) then takes a form in Eddington-
Finkelstein coordinate (we omit subscript � for simplicity),

Sð2ÞEF¼
�Nc

16�4

Z
d5x

�
�1

2
BðrÞð@zX8Þ2�1

2
CðrÞð@rX8Þ2

� CðrÞ
r2VðrÞð@tX

8Þð@rX8Þ�1

2

�
1

r
ð@rCðrÞÞ�DðrÞ

�
ðX8Þ2

þðsamewithX8$X9Þ�1

2
EðrÞðX8@zX

9�X9@zX
8Þ
�
:

(2.30)

Note that ð@tX8;9Þ2 terms disappear completely due to the
identity

AðrÞ ¼ CðrÞ
r4ðVðrÞÞ2 ; (2.31)

and all the coefficient functions that appear in the above,

especially CðrÞ
r2VðrÞ , are regular at the horizon r ¼ rH.

Recall that the usefulness of the Eddington-Finkelstein
coordinate is that simple regularity at the horizon r ¼ rH
automatically guarantees the incoming boundary condi-
tion, while outgoing modes look singular in the coordinate.
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An easier way to see this is to consider a wave oscillating in
time t� in the Eddington-Finkelstein coordinate

e�i!t� ¼ e�i!te�i!
R

r

1ðdr0=ðr0Þ2Vðr0ÞÞ; (2.32)

which automatically contains the necessary incoming ra-
dial phase part in terms of the original Schwarzschild
coordinate, so that any regular wave in Eddington-
Finkelstein coordinate is incoming at the horizon.

Equations of motion from (2.30) are

BðrÞ@2zX8;9 þ @rðCðrÞ@rX8;9Þ þ CðrÞ
r2VðrÞ@t@rX

8;9

þ @t@r

�
CðrÞ
r2VðrÞX

8;9

�
�

�
1

r
ð@rCðrÞ

�
�DðrÞÞX8;9 � EðrÞ@zX9;8 ¼ 0; (2.33)

where the last term mixes X8 and X9 in such a way that

the correct diagonal basis is in fact a helical basis Xð	Þ ¼
X8 	 iX9, which is also tied to the z-direction flipping as
one expects. One can easily see that the modes at hand
indeed correspond to the chiral helix modes with finite

z-momentum. One needs to consider only XðþÞ � X in the

analysis as the equations are invariant under Xð	Þ ! Xð�Þ
and z ! �z.

To study instability associated with a finite z-momentum
one goes to frequency-momentum space by assuming
e�i!tþikz, after which one has

CðrÞ@2rX þ
�
ð@rCðrÞÞ � 2i!

CðrÞ
r2VðrÞ

�
@rX

�
�
1

r
ð@rCðrÞÞ �DðrÞ þ k2BðrÞ þ kEðrÞ

þ i!@r

�
CðrÞ
r2VðrÞ

��
X ¼ 0: (2.34)

As mentioned before, one imposes regularity at the horizon
r ¼ rH for incoming boundary condition. Note that
CðrHÞ ¼ 0 and the boundary condition is not trivial. On
the uv boundary r ! 1, one can have two possible modes
from the above equation as usual in AdS/CFT,

X � X0 � i!
X0

r
þ X1

r2
þ � � � ; (2.35)

where X0 corresponds to the bare mass of the hypermul-
tiplet and the normalizability condition puts the constraint
X0 ¼ 0 in our massless case. These two boundary condi-
tions give a discrete spectrum of ! for a given k, which is
an example of quasinormal mode problem. If the lowest
!ðkÞ ! 0 in the limit k ! 0, this is sometimes called
hydrodynamic dispersion relation for an obvious reason,
but here we are interested in the finite k spectrum. An
inspection of our master Eq. (2.34) shows that ! is purely
imaginary, so that one can write

! ¼ iIm½!
: (2.36)

Considering e�i!t dependence, any positive Im½!
> 0
signals an exponentially growing amplitude and hence an
instability, while one expects Im½!
< 0 for typical dis-
sipative relaxations.
Before delving into numerical searches for instability

that will be described shortly, one can qualitatively under-
stand from (2.34) how the unstable modes of Im½!
> 0
can possibly appear. Consider first a fictitious situation
where there was no WZ term, or equivalently let EðrÞ be
absent in (2.34). This would be a typical situation of D7
brane world-volume fluctuations along transverse X8;9 di-
rections, and one can expect that the modes would simply
be dissipating in the presence of black hole. The depen-
dence on k should obviously be that the larger k2 is the
faster the mode decays, so that the quasinormal spectrum
would be

Im ½!
 ¼ �m2
eff � k2 þ � � � ;  > 0; (2.37)

for a reasonable range of k. Then, in (2.34) the effect of
having WZ contribution is simply replacing BðreffÞk2 with
BðreffÞk2 þ EðreffÞk where reff is the most relevant value of
r for the mode wave function. Therefore the quasinormal
mode spectrum including WZ contribution should qualita-
tively look like

Im ½!
 ¼ �m2
eff � k2 � �kþ � � � ;  > 0; (2.38)

where � is roughly proportional to EðreffÞ. Completing
square of the expression, one arrives at

Im ½!
 ¼ �

�
kþ �

2

�
2 þ �2

4
�m2

eff

¼ �ðk� k0Þ2 þ �2

4
�m2

eff ; (2.39)

so that when �2

4 �m2
eff > 0, Im½!
 can be positive for a

range of nonzero k centered around k ¼ k0. This qualita-
tive picture is confirmed in our numerical studies.
In our numerical simulation, we solve (2.34) from r ¼

rH þ " to a uv cutoff r ¼ rmax given (k, Im½!
) using a
Mathematica package NDSolve. Note that regularity

at r ¼ rH from (2.34) fixes the ratios ð@rXÞ
X and ð@2rXÞ

X at

r ¼ rH unambiguously, which allows one to start from
r ¼ rH þ " with a small number ". As the equation is
linear we are free to choose the normalization XðrHÞ ¼ 1.
We then impose a condition of normalizability jXðrmaxÞj<
"0 with another small number "0. We choose the parameters

" ¼ 0:001; rmax ¼ 10; "0 ¼ 0:05; (2.40)

in our numerical result in Fig. 4, which clearly shows a
range of kwith positive Im½!
. This is a numerical proof of
the existence of the chiral helix phase.

CHIRAL HELIX IN AdS/CFT CORRESPONDENCE WITH . . . PHYSICAL REVIEW D 84, 125011 (2011)

125011-7



III. MASSLESS D3/D7 MODELWITH (T, B, E)

In this section, we study another case of interest that
should also be affected by the triangle anomaly, or equiv-
alently the WZ term: the case when both electric and
magnetic fields are present, and parallel to each other.
The triangle anomaly dictates that the axial Uð1ÞR current
is not conserved under this situation

@�j
�
R � ~E � ~B; (3.41)

and one expects a continuous creation (or annihilation) of
Uð1ÞR charges in the system. Noting that the Uð1ÞR charge
at hand should correspond to the angular momentum of the
D7 brane along the x8;9-plane, the only way to satisfy this
anomaly constraint is to have a spontaneous rotation of D7
brane in x8;9 plane. Initially, the D7 brane angular momen-
tum would increase; then, due to the existence of black
hole horizon, the dissipation of the created Uð1ÞR angular
momentum to the background geometry (or adjoint sector)
turns on, and one can imagine a stationary situation of a
constant angular momentum carried by the rotating D7
brane. We will call this a ‘‘spontaneous rotation phase’’.
Previous studies on the system [27,32] seem to have missed
this possibility, and a more complete study is certainly
desirable [30]. In this section, we will prove the existence
of this phase by showing a dynamical instability toward it
from the configuration that does not possess rotation.

The phase diagram of (T, B, E) from Ref. [32] is
sketched in Fig. 5. We focus only on the zero chemical
potential case for simplicity, but the essential feature of the
analysis in this section is independent of the presence of
chemical potential. Using conformal symmetry, B has been
set to unity, and the conventions are as explained in the
previous section. The region III in the far right is again the
supersymmetric embedding phase where the D7 brane is
straight with X8;9ðrÞ � 0. We will study the spontaneous

axial rotation instability of the point A with ðrHffiffi
2

p ; EÞ ¼
ð0:25; 1Þ which is well inside this region.
To find the zeroth order background solution with con-

stant (B, E) in supersymmetric embedding phase, one starts
with the relevant action component

SD7¼� �Nc

16�4

�
Z
d5x

8<
:r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þB2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þVðrÞðFzrÞ2� 1

r4VðrÞE
2

s 9=
;;

(3.42)

where one turns on external magnetic F12 ¼ B and electric
Ftz ¼ E fields along z ¼ x3 direction. One can check that
the constant B and E solve full equations of motion
consistently, and one only needs to solve for Fzr, or Az

in Ar ¼ 0 gauge. Solving it from the action, one obtains

Fð0Þ
zr ¼ J

VðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

r4VðrÞE
2

r2ðr4 þ B2Þ � J2

VðrÞ

vuuut ; (3.43)

where J is an integration constant which is directly
proportional to the induced baryonic current along z
direction. One notices that the expression inside the
square root in (3.43) can change signs if J is not suitably
chosen [37]. The on-shell action itself also involves
similar factors

Son�shell ¼ � �Nc

16�4

�
Z

d5x

8><
>:r2ðr4 þ B2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

r4VðrÞE
2

r2ðr4 þ B2Þ � J2

VðrÞ

vuuut
9>=
>;;

(3.44)

and one should make sure that the total expression inside
square root remains positive for a meaningful solution.

r
H/sqrt{2}

0.25 A

0.20.1

FIG. 5. A rough picture of phase diagram of (T, B, E) without
considering triangle anomaly in Ref. [32]. B is set to 1. For the
description of the phases I, II and III see the caption of Fig. 3.
The point A has ðrHffiffi

2
p ; EÞ ¼ ð0:25; 1Þ, which will be shown to be

unstable toward spontaneous rotation phase.

1 2 3 4
k

0.6

0.4

0.2

0.2

Im

FIG. 4 (color online). Our numerical result of Im½!
 as a
function of z-momentum k. We set B ¼ 1 and ðrHffiffi

2
p ; �Þ ¼

ð0:25; 1Þ. This shows that Im½!
> 0 for a range of k and
indicates an instability.
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The numerator changes sign at r ¼ r� where

r4� ¼ r4H þ E2; (3.45)

and this should also be the point where the denominator
changes sign, which determines J as [37]

J2 ¼ E2

�
r2� þ B2

r2�

�
¼ E2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4H þ E2

q
þ B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4H þ E2
q �

:

(3.46)

The point r ¼ r� will play an important role when we
discuss linearized fluctuations from this background
solution.

Our task is to expand the D7 brane action quadratically
for linearized fluctuations from this background solution.
After some algebra, one finally arrives at

Sð2Þ ¼ �Nc

16�4

Z
d5x

�
1

2
AðrÞð@tX8Þ2þBðrÞð@tX8Þð@rX8Þ

� 1

2
CðrÞð@rX8Þ2� 1

2

�
1

r
ð@rCðrÞÞ�DðrÞÞðX8Þ2

þðsame with X8 $X9Þþ 1

2
EðrÞðX8@rX

9�X9@rX
8Þ

þ 1

2
FðrÞðX8@tX

9�X9@tX
8Þ
�
; (3.47)

where the last line is from the WZ term. The coefficient
functions are

AðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 1

r4

�
1

VðrÞ þ ðFð0Þ
zr Þ2

�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VðrÞðFð0Þ

zr Þ2 � 1
r4VðrÞE

2
q ;

BðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p E

r4
Fð0Þ
zr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VðrÞðFð0Þ

zr Þ2 � 1
r4VðrÞE

2
q ;

CðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 1

r4
ðr4VðrÞ � E2Þ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VðrÞðFð0Þ

zr Þ2 � 1
r4VðrÞE

2
q ;

DðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p 3

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VðrÞðFð0Þ

zr Þ2 � 1

r4VðrÞE
2

s
;

EðrÞ ¼ 4B

r2
E;

FðrÞ ¼ 4B

r2
Fð0Þ
zr : (3.48)

One should note that the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VðrÞðFð0Þ

zr Þ2 � 1

r4VðrÞE
2

s

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

r4VðrÞE
2

r2ðr4 þ B2Þ � J2

VðrÞ

vuuut (3.49)

is regular and nonvanishing at r ¼ r� precisely because of
the choice of J above, so that all coefficient functions are
regular at r ¼ r�.
It is an important fact, however, that Cðr�Þ ¼ 0, which

implies that the regularity boundary condition at r ¼ r� is a
nontrivial one. Combined with the uv normalizability
boundary condition, these two boundary conditions give
us a discrete quasinormal spectrum of the fluctuations.
Therefore, r ¼ r� (recall r� > rH), instead of the black
hole horizon, seems to play a role of the ir boundary for
linearized fluctuations on the D7 brane [38]. Because AðrÞ
remains finite at r ¼ r�, one does not need to work in the
Eddington-Finkelstein-like coordinate around r ¼ r�, and
a regular wave at r ¼ r� is not necessarily incoming.
The equations of motion are

� AðrÞ@2t X8;9 � BðrÞ@t@rX8;9 � @rðBðrÞ@tX8;9Þ
þ @rðCðrÞ@rX8;9Þ �

�
1

r
ð@rCðrÞ

�
�DðrÞÞX8;9

	 1

2
EðrÞ@rX9;8 	 1

2
@rðEðrÞX9;8Þ 	 FðrÞ@tX9;8 ¼ 0;

(3.50)

and in terms of helicity basis Xð	Þ � X8 	 iX9, the equa-
tions of motion become diagonal. This indicates that the
D7 brane shape will be helical in the radial r direction,
while rotating in. time, see Fig. 6. To study the instability,
we go to the frequency space assuming e�i!t, and find that

x8
x9

Rotating in timeD7 brane

FIG. 6. The shape of the D7 brane in the spontaneous rotation
phase. The shape is helical along the radial direction while the
system rotates in time.
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under XðþÞ $ Xð�Þ the frequency maps to! $ � �! so that

the imaginary part of ! is the same for both Xð	Þ. Since
the instability is signaled by a positive imaginary part

Im½!
> 0, one needs to study XðþÞ � X mode only. The
equation to solve in frequency space is then

CðrÞ@2rX þ ðð@rCðrÞÞ þ 2i!BðrÞ � iEðrÞÞ@rX
þ

�
!2AðrÞ þ i!ð@rBðrÞÞ � 1

r
ð@rCðrÞÞ þDðrÞ

� i

2
ð@rEðrÞÞ �!FðrÞ

�
X ¼ 0: (3.51)

We solve (3.51) numerically from r ¼ r� þ " until a uv
cutoff rmax given a complex !. One can normalize
Xðr�Þ ¼ 1 and the regularity at r ¼ r� fixes the initial
conditions. We then test a uv normalizability condition
jXðrmaxÞj< "0, and if the solution satisfies it we let the
program put a dot in the complex !-plane. Figure 7 is our
result using parameters

" ¼ 0:001; rmax ¼ 10; "0 ¼ 0:05; (3.52)

which clearly proves that the quasinormal spectrum ! has
a positive imaginary part, and hence instability.

IV. SUMMARY

To summarize, we have studied the phase diagram of the
D3/D7 holographic model in two cases: 1) at finite (vector)
chemical potential and in the presence of an external

magnetic field, and 2) in the presence of external parallel
electric and magnetic fields. We have found that the tri-
angle anomaly represented by the Wess-Zumino-like term
in the D7 brane probe action implies the existence of
previously overlooked new phases.
In the case 1), we have found a ‘‘chiral helix’’ phase

in which the Uð1ÞA angle of D7 brane embedding
increases monotonically along the direction of the mag-
netic field. We consider this as a holographic realization
of the chiral spiral phase in QCD. We have found an
axial current propagating in this phase, corresponding to
the chiral separation effect. Previously, the existence of
the chiral magnetic current at finite axial chemical
potential has been established within the same D3/D7
model [3]. It was argued in Ref. [39,40] that the
coupling between the axial and vector charge oscilla-
tions induced by the anomaly should lead to the emer-
gence of a gapless excitation—the chiral magnetic
wave. It would be interesting to establish the presence
of this excitation and to study its properties within the
D3/D7 holographic model.
In the case 2), we have identified the ‘‘spontaneous

rotation’’ phase in which the D7 brane spontaneously
begins to rotate, so that the Uð1ÞA angle changes as a
function of time. This phase is a geometrical realization
of a phase with nonzero chiral chemical potential—in-
deed, the parallel external electric and magnetic fields
generate chirality through the triangle anomaly. In the
D3/D7 model the Uð1ÞA symmetry is shared by other
adjoint matter fields, so the Uð1ÞA charges in the hyper-
multiplet can be lost to the adjoint sector. This loss of
chirality eventually leads to a stationary rotation fre-
quency of the D7 brane, corresponding to some limiting
value of the chiral chemical potential that can be main-
tained in the system. In real QCD plasma, the axial
charge can be lost due to the sphaleron transitions; it
would be interesting to establish whether or not there
exists a corresponding limiting value of the chiral chemi-
cal potential similar to the one we observe in the D3/D7
model. In general, our study indicates an important role
played by the anomaly in the phase diagram of gauge
theories.
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FIG. 7 (color online). Numerical result for the lowest complex
frequency of a linearized spontaneous rotation mode. The back-
ground has ðrHffiffi

2
p ; E; BÞ ¼ ð0:25; 1; 1Þ in the supersymmetric em-

bedding phase. This is a numerical proof of the existence of
spontaneous rotation phase.
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