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It is well known that boundary conditions on quantum fields produce divergences in the renormalized

energy-momentum tensor near the boundaries. Although irrelevant for the computation of Casimir forces

between different bodies, the self-energy couples to gravity, and the divergences may, in principle,

generate large gravitational effects. We present an analysis of the problem in the context of quantum field

theory in curved spaces. Our model consists of a quantum scalar field coupled to a classical field that, in a

certain limit, imposes Dirichlet boundary conditions on the quantum field. We show that the model is

renormalizable and that the divergences in the renormalized energy-momentum tensor disappear for

sufficiently smooth interfaces.
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I. INTRODUCTION

The vacuum energy produces measurable forces be-
tween neutral bodies [1]. But even in the presence of a
single body, the modes of the electromagnetic field are
disturbed and produce a self-energy. Although irrelevant
for the calculation of forces between different objects, this
self-energy is in principle observable through its coupling
to gravity.

In the case of perfect conductors, the vacuum energy
density, or more generally the energy-momentum tensor,
diverges near the boundaries, as noted for the first time by
Deutsch and Candelas a long time ago [2]. These diver-
gences are not the usual ones in quantum field theory,
because they are present in the already renormalized
energy-momentum tensor. The origin of the divergences
is the unphysical assumption of perfect conductivity for all
modes of the electromagnetic field since, on physical
grounds, one expects any material to become transparent
at high energies. More generally, divergences in the renor-
malized energy-momentum tensor are present even for
nonperfect conductors, as long as there is a sharp boundary
between two media with different electromagnetic proper-
ties. In this case, the origin of the divergences is that, for
modes with extremely small wavelengths, it is unphysical
to assume a sharp boundary, since the transition region
between media becomes larger than the wavelength of the
high-frequency modes.

The problem of the divergences in the self-energies has
been considered in flat spacetime in a series of works by
Graham et al [3]. It was pointed out that, if the boundary

conditions are replaced by an interaction with a second
field, the model is renormalizable and the self-energies are
not divergent. In those works, the authors considered a toy
model consisting of a vacuum scalar field � coupled to a
background (classical field) �, with an interaction of the
form �2�. The sharp limit corresponds to consider a
discontinuous �, and the ‘‘perfect conductor’’ limit to
take � ! 1 at a particular point, imposing Dirichlet
boundary conditions on the vacuum field at that point.
When these limits are taken, the self-energy depends on
the ultraviolet cutoff, i.e. on the specific interaction be-
tween the high-energy modes of the quantum field and the
microscopic degrees of freedom of the body. Recently,
Milton [4] and Bouas et al [5] considered a similar prob-
lem, computing the energy density for a scalar vacuum
field in some particular potentials (‘‘soft walls’’), showing
that the energy density near a potential barrier is finite for
sufficiently smooth potentials. For a discussion of some
aspects of the coupling of the Casimir energy to gravity,
see Ref. [6].
A complete analysis of the Casimir self-energies and

their eventual gravitational implications must be per-
formed in the context of quantum field theory in curved
spacetimes. Following Ref. [3], one could replace the
boundary conditions by interactions with a classical field,
and show not only that the matter sector of the theory is
renormalizable, but also that the usual divergences in the
energy-momentum tensor can be absorbed in the coupling
constants of the gravitational sector, resulting in finite and
well-defined semiclassical Einstein equations when the
classical field is sufficiently smooth. The divergences
associated to the unphysical limits will reappear when
considering discontinuous classical fields. The aim of the
present paper is to provide such analysis. We will consider
a scalar vacuum field in curved spacetimes, coupled to a
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classical field � that models the ‘‘mirror.’’ We will show
that, for smooth �, the model is renormalizable using the
standard renormalization procedure for quantum fields in
curved spacetimes. We will provide some examples to
illustrate the appearance of divergences for sharp
interfaces.

It is worth remarking that similar divergences in the
renormalized energy-momentum tensor do appear even
for free fields in curved spacetimes, if one assumes that
the spacetime metric is not sufficiently smooth. A well-
known example, in cosmology, is the divergence in the
energy density that appears when one considers an abrupt
transition between two different epochs (e.g. De Sitter
space to radiation dominated universe [7]), that involves
a discontinuity in the curvature tensor. A less-known ex-
ample is the divergence of the vacuum polarization around
spherically symmetric objects, at a sharp interface between
the object and the vacuum [8].

The paper is organized as follows. In the next section,
we introduce the model. In Sec. III, we prove that the
divergences in the energy-momentum tensor can be ab-
sorbed into the bare constants of the theory, yielding finite
semiclassical Einstein equations. In Sec. IV, we present
some explicit calculations for weakly coupled mirrors,
showing that as long as the potential that models the mirror
is smooth enough, there are no divergences in the renor-
malized energy-momentum tensor and in the renormalized
coincidence limit of the two-point function, h�2i. On the
other hand, discontinuities in the potential or in its first two
derivatives produce infinite answers. Section V contains a
discussion of the main results. We will work with natural
units ℏ ¼ c ¼ 1 and metric signature þ��� .

II. THE MODEL

We consider a quantum vacuum field � interacting with
a background classical field � on a curved spacetime. The
action of the complete system is

S ¼ Smat þ Sgrav; (1)

where

Smat ¼ 1

2

Z
d4x

ffiffiffi
g

p �
�;��

;� �
�
m2

1 þ �1Rþ �1

2
�2

�
�2

þ �;��
;� � ðm2

2 þ �2RÞ�2 � �2

12
�4

�
(2)

and

Sgrav ¼ 1

2

Z
d4x

ffiffiffi
g

p �
1

�
ðR� 2�Þ � �1R

2

� �2R��R
�� � �3R��	�R

��	�

�
: (3)

Here, R�� ¼ R

�
�, � ¼ 8�G, � is the cosmological

constant, and �i, i ¼ 1, 2, 3 are dimensionless parameters.
The terms quadratic in the curvature are needed in order to

renormalize the theory, as is the self-interaction term for�.
Note that the classical field � provides a position-
dependent mass for the field �, and therefore the propa-
gation of� will be suppressed in regions where the mass is
very high. In this sense, � models a mirror. For example, a
thin mirror located at x ¼ x0 is described by the interaction

�1�
2�2 ¼ �1�ðx� x0Þ�2; (4)

and the perfect conductor limit corresponds to �1 ! 1.
The classical field equations are

�
hþm2

1 þ �1Rþ �1

2
�2

�
� ¼ 0; (5)

�
hþm2

2 þ �2Rþ �1

2
�2

�
�þ �2

6
�3 ¼ 0; (6)

1

�
~G�� ¼ �Tð�Þ

�� � Tð�Þ
�� ; (7)

where

2ffiffiffi
g

p �Sgrav
�g�� ¼ 1

�
~G��

¼ 1

�

�
R�� � 1

2
Rg�� þ�g��

�
þ �1H

ð1Þ
��

þ �2H
ð2Þ
�� þ �3H�� (8)

and

2ffiffiffi
g

p �Smat

�g�� ¼ Tð�Þ
�� þ Tð�Þ

�� : (9)

The tensors HðiÞ
�� come from the variation of the terms

quadratic in the curvature contained in the gravitational
action. The classical energy-momentum tensor for the �
field is

Tð�Þ
�� ¼ ð1� 2�2Þ�;��;� þ

�
2�2 � 1

2

�
g���;	�

;	

� 2�2��;�� þ 2�2g���h�

�
�
�2

�
R�� � 1

2
Rg��

�
� g��

2

�
m2

2 þ
�2

12
�2

��
�2;

(10)

while Tð�Þ
�� is the energy-momentum tensor for a free field

with variable mass m2
1 þ �1

2 �
2, that is,

Tð�Þ
�� ¼ ð1� 2�1Þ�;��;� þ

�
2�1 � 1

2

�
g���;	�

;	

� 2�1��;�� þ 2�1g���h�
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�
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�
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1 þ
�1

2
�2

��
�2:

(11)
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We consider now the semiclassical version of the theory,
in which the field � becomes a quantum field while � and
g�� are treated classically. The Heisenberg equation for the

quantum operator associated to � is given by the classical
Eq. (5). The evolution equations for the classical back-
grounds are obtained by taking the mean value of the
classical Eqs. (6) and (7):

1

�
~G�� ¼ �Tð�Þ

�� � hTð�Þ
�� i; (12)

�
hþm2

2 þ �2Rþ �1

2
h�2i

�
�þ �2

6
�3 ¼ 0: (13)

We have therefore established a well-defined model to
study the divergences of the self-energy in Casimir calcu-

lations. The quantities h�2i and hTð�Þ
�� i are formally diver-

gent. The divergences must be absorbed into the bare
constants of the theory. The renormalized version of

hTð�Þ
�� i contains information about the Casimir effect (force

between different objects), as well as the self-energy. The
gravitational effects produced by the vacuum energy can in
principle be computed by considering it as a source of the
semiclassical Einstein equations.

III. RENORMALIZABILITY

The theory of interacting fields in curved spacetimes can
be renormalized using a precise covariant procedure [9]. In
the present model, it is necessary to introduce minor mod-
ifications to take into account that not only the metric but
also one of the interacting fields is treated classically.

It will be particularly useful to adapt the renormalization
method described in Ref. [10]. It is shown there that to
analyze the renormalizability of �’4 theory in curved
spaces at the level of the equations of motion, one can split
the field as ’ ¼ ’0 þ ’̂, where’0 is the mean value of the
field and ’̂ is the quantum operator that describes the
fluctuations around the mean value. To one-loop order, ’̂
satisfies a free-field equation with a variable mass. The
situation in our model is very similar, since the quantum
field � can be thought of as a free field with variable mass.
Therefore, we can follow closely Ref. [10].

We define the renormalized quantities

h�2iren ¼ h�2i � h�2iad2;
hTð�Þ

�� iren ¼ hTð�Þ
�� i � hTð�Þ

�� iad4; (14)

where hTð�Þ
�� iad4 and h�2iad2 are constructed using the

Schwinger-DeWitt expansion up to fourth and second
adiabatic order, respectively [11]. The divergences present
in these quantities are to be absorbed into the bare con-
stants of the theory.

The usual Schwinger-DeWitt expansion for the propa-
gator of a massive field reads [12]

Gð1Þ
SDðx;x0Þ¼�2ImGSD

F ðx;x0Þ
¼�2Im

�
�1=2ðx;x0Þ

Z 1

0

ds

ð4�isÞn=2e
ði�ðx;x0Þ=2sÞ�im2s

�X
j�1

ðisÞj�jðx;x0Þ
�
; (15)

where GF is the Feynman propagator, �ðx; x0Þ is the Van-
Vleck determinant, �ðx; x0Þ is one half of the geodesic
distance between x and x0, and n is the number of space-
time dimensions, that acts as a regulator. The functions
�jðx; x0Þ are defined by a set of recursive equations that

follows from imposing the equation for the propagator.
When the field has a variable mass, this expansion can be

generalized to [10]

Gð1Þ
SDðx;x0Þ¼�2ImGFðx;x0Þ

¼�2Im

�
�1=2ðx;x0Þ

Z 1

0

ds

ð4�isÞn=2e
ði�ðx;x0Þ=2sÞ�ifðx;x0Þs

�X
j�1

ðisÞj�jðx;x0Þ
�
; (16)

where fðx; x0Þ ¼ 1
2 ½M2ðxÞ þM2ðx0Þ� with M2ðxÞ ¼ m2

1 þ
�1

2 �
2.

The quantities to be subtracted to cancel the divergences
of h�2i and hT��i are [10]

h�2iad2 ¼ �Im½GSD
F jad2� (17)

and

hTð�Þ
�� iad4 ¼ �2 Imf�1

2ð½GSD
F �;��Þad4

þ 1
2ð12 � �1Þð½GSD

F �;��Þad4
þ�1

2ð�1 � 1
4Þg��ðh½GSD

F �Þad4
� 1

2�1R��½GSD
F �ad2g: (18)

We emphasize that we are not using a point-splitting
regularization but a dimensional regularization. We will

substitute hTð�Þ
�� i and h�2i in the semiclassical equations

by hTð�Þ
�� iren þ hTð�Þ

�� iad4 and h�2iren þ h�2iad2, respec-

tively, and absorb the infinities contained in hTð�Þ
�� iad4 and

h�2iad2 into the bare constants appearing in those
equations.

A. Renormalization of the
equation for the classical field

The coincidence limit of the two-point function for a
field with variable mass is given by [10]

h�2iad2 ¼ 1

ð4�Þ2
�
M2

n
2 � 1

þ ð�1 � 1

6
ÞR
�

�
�

2

n� 4
þ ln

M2

�2
þOðn� 4Þ

�
; (19)
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where � is an arbitrary constant with dimensions of mass.
Inserting this expression into the semiclassical equation for
� and writing the bare constants in terms of renormalized
ones

m2
2¼m2

2Rþ�m2
2; �2¼�2Rþ��2; �2¼�2Rþ��2;

(20)

we obtain

h�þ½m2
2Rþ�m2

2þð�2Rþ��2ÞR��þ 1

3!
ð�2Rþ��2Þ�3

þ�2R�

32�2

�
M2þ

�
�1�1

6

�
R

�
ln
M2

�2

þ �1�

16�2ðn�4Þ
�
M2

n
2�1

þ
�
�1�1

6

�
R

�

þ�1

2
�h�2iren¼0: (21)

Therefore, the divergences can be absorbed with the
counterterms

�m2
2 ¼ � �1m

2
1

16�2ðn2 � 1Þðn� 4Þ þ�m2
1;

��2 ¼ � �1ð�1 � 1
6Þ

16�2ðn� 4Þ þ��2;

��2 ¼ � 3�2
1

16�2 n
2 ðn2 � 1Þðn� 4Þ þ ��2; (22)

where �m2
2, ��2, and ��2 are finite contributions (they

vanish in the minimal prescription scheme). Note that in
the conformal case (m1 ¼ 0 and �1 ¼ 1=6), only a coun-
terterm for the self-coupling of � is needed.

B. Renormalization of the semiclassical
Einstein equation

Let us now consider the renormalization of the gravita-
tional sector of the theory. As n ! 4, the divergent part of

hTð�Þ
�� iad4 is given by [13]

hTð�Þ
�� idivad4¼þ 1

8�2ðn�4Þ
�
m4

1g��

nðn2�1Þ�
m2

1
n
2�1

�
�1�1

6

�
G��

þ1

2

�
�1�1

6

�
2
Hð1Þ

��þ 1

180
ðH���Hð2Þ

��Þ
�

� �1

16�2ðn�4Þ
��

�1�1

6

�
ð�2

;��þg��h�2Þ

��2

�
��1� 1

6
n
2�1

G��þ
g��

n
2ðn2�1Þðm

2
1þ

�1

4
�2Þ

��
:

(23)

This expression contains both geometric divergences and
divergences dependent on the classical field � (and its
derivatives). The former should be absorbed into a redefi-

nition of the gravitational constants appearing in the left-
hand side of the semiclassical Einstein equations, and the
latter into a redefinition of the constants associated to the�

field, which appear in Tð�Þ
�� .

Inserting Eq. (23) into Eq. (12), one can show that the
divergences dependent on � can be absorbed using the
same counterterms given in Eq. (22). This is a nontrivial
check of our calculations, and a necessary condition for the
renormalizability of the theory. On the other hand, the
geometric divergences can be absorbed into the gravita-
tional constants, by choosing the following counterterns:

�1 ¼ �1R � ð�1 � 1
6Þ2

16�2ðn� 4Þ þ ��1; (24a)

�2 ¼ �2R þ 1

1440�2ðn� 4Þ þ��2; (24b)

�3 ¼ �2R þ 1

1440�2ðn� 4Þ þ��3; (24c)

��1 ¼ ��1
R þ 1

8�2

ð�1 � 1
6Þm2

1

n� 4
þ ���1; (25a)

���1 ¼ ð���1ÞR � 1

8�2

m4
1

nðn=2� 1Þðn� 4Þ þ�ð���1Þ:
(25b)

This completes the proof of the renormalizability of the
model, and is one of the main results of this paper. We have
shown that, if the presence of a mirror is modeled by the
interaction of the vacuum field with a classical background
field, the divergences in the vacuum expectation value

hTð�Þ
�� i can be absorbed into the bare constants appearing

in the semiclassical Einstein equations. Not only the gravi-
tational constants are renormalized but also the bare con-
stants associated to the Lagrangian of the classical
background field. The renormalizability is valid for one
or more mirrors of arbitrary shape, as long as they can be
described by a smooth function �. Note that the divergen-
ces in the energy-momentum tensor are considerably sim-
pler in the conformal case m1 ¼ 0 and �1 ¼ 1=6.
As a final remark, we stress that the quantities h�2iren

and hTð�Þ
�� iren will be finite for a sufficiently smooth back-

ground field � and spacetime metric g��. We will illustrate

this in the next section.

IV. EXPLICIT EVALUATIONS IN THE
WEAK-FIELD APPROXIMATION

In this section, we present simple expressions for eval-

uating explicitly h�2ðxÞi and hTð�Þ
�� ðxÞi for a given back-

ground potential �ðxÞ, within a weak-field approximation.
For simplicity, we will work in Minkowski space, and set
m1 ¼ 0 so that the quantum field is massless. The sense in
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which we define the weak-field approximation is that we
require M4 � hðM2Þ, or in other words �2

1�
4ðxÞ �

�1hð�2ðxÞÞ. This can be achieved by having a weak cou-
pling �1, or a weak and/or rapidly varying field �ðxÞ. The
calculation will stay at the lowest order in �1.

The procedure we follow is similar to the one used in [8].
It is based in solving the equation for the Feynman Green
function,

�
hþ �1

2
�2ðxÞ

�
GFðx; x0Þ ¼ ��ðx� x0Þ; (26)

to first order in �1, and using the resulting Gð1Þ
F ðx; x0Þ to

compute h�2ðxÞið1Þ and hTð�Þ
�� ðxÞið1Þ in the coincidence

limit. Expanding Eq. (26) by writing GF ¼ Gð0Þ
F þGð1Þ

F in
a �1 expansion and discarding the second-order term, we
obtain

hGð1Þ
F ðx; x0Þ ¼ ��1

2
�2ðxÞGð0Þ

F ðx; x0Þ: (27)

This is solved explicitly using a momentum-space repre-

sentation for Gð0Þ
F :

Gð1Þ
F ðx;x0Þ¼ �1

2ð2�Þ8
Z
d4~x

Z
d4k

Z
d4k0

e�ikðx�~xÞ

k2
e�ik0ð~x�x0Þ

k02
:

(28)

After switching variables to p ¼ k� k0 and q ¼ kþ k0,
the k integrals can be done by passing to n-dimensional
space and employing standard dimensional regularization
techniques, with the result in the coincidence limit being

Gð1Þ
F ðx; xÞ ¼ � i

16�2

�1

n� 4
�2ðxÞ � i�1

512�6

Z
d4p

�
Z

d4~xeipðx�~xÞ�2ð~xÞ ln
�
� p2

�2

�
: (29)

Here, � is an arbitrary mass scale introduced in the regu-
larization procedure. The divergence in the first term,
which is purely local, can be absorbed in the coefficient
�2 of the action, as can be seen by comparison with the
second line of Eq. (22). Hence, in accordance with Eq. (17)
we have

h�2ðxÞiren ¼ �1

512�6

Z
d4p

Z
d4~xeipðx�~xÞ�2ð~xÞ ln

�
� p2

�2

�
:

(30)

For example, in the particular case in which the back-
ground potential depends only on the spatial coordinate
z, we shall have

h�2ðzÞiren¼ �1

64�3

Z
dpz

Z
d~ze�ipzðz�~zÞ�2ð~zÞln

�
p2
z

�2

�
: (31)

This expression can be used to compute h�2ðzÞiren for
the case of one or several parallel flat mirrors, which are

‘‘almost transparent’’ in the sense that the expression is
valid to first order in the coupling �1.
We will prove now that according to this model

h�2ðzÞiren is everywhere finite if the background potential
�2ðzÞ is an integrable C2 function. Under this assumption,
it follows as a corollary of the Riemann-Lebesgue lemma
that the Fourier transform of �2ðzÞ [which we note by
�̂2ðpzÞ] falls off faster than p�2

z . Hence, gðpzÞ �
lnjpzj�̂2ðpzÞ is integrable, from which it follows that its
Fourier transform is in turn well defined and finite at all
points. Since according to (31) it is precisely the Fourier
transform of gðpzÞ that gives the nonlocal part of
h�2ðzÞiren, and the local part is the term involving
lnð�2Þ�2ðzÞ, it follows that both the local and the nonlocal
parts of h�2ðzÞiren are finite for all z if�2ðzÞ is an integrable
C2 function.
We have therefore proved that the divergences in h�2i

are removed if the background field modeling the mirrors
is sufficiently well behaved. We are not able to give a
general proof using weaker assumptions than C2 continu-
ity. However, we will see that in simple concrete examples
the assumption of C0 continuity is sufficient to obtain finite
results.
Let us first consider a discontinuous mirror of width 2z0,

specified by the background potential

�2ðzÞ ¼ 1

2Lz0
�ðz0 � jzjÞ; (32)

where �ðzÞ is the unit step function. The parameter L has
length dimension and is introduced so that �2ðzÞ is nor-
malized by

R
�2ðzÞdz ¼ L�1. Introducing this expression

into Eq. (31) we obtain as a result

h�2ðzÞiren ¼ � �1

64�2Lz0
½sgðzþ z0Þ lnðjzþ z0j þ 
Þ

� sgðz� z0Þ lnðjz� z0j þ 
Þ�; (33)

where we omit the local contribution coming from the
lnð�2Þ term. Notice that the result diverges logarithmically
at the boundary of the mirror, where �2ðzÞ is dis-
continuous.
Consider next a continuous mirror given by

�2ðzÞ ¼ 1

Lð2z0þdÞ�

8>>>>>>>>><
>>>>>>>>>:

0 if z<�ðz0þdÞ;
1þ z0þz

d if �ðz0þdÞ<z<�z0;

1 if �z0<z<z0;

1þ z0�z
d if z0<z<z0þd;

0 if z>z0þd;

(34)

wherein the discontinuities in Eq. (32) are resolved with
linear interpolations of width d. For this mirror, the vac-
uum polarization is computed to be
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h�2ðzÞiren ¼ �1

32�2L

1

dð2z0 þ dÞ ½jzþ z0j lnjzþ z0j
þ jz� z0j lnjz� z0j � jzþ z0 þ dj lnjzþ z0

þ dj � jz� z0 � dj lnjz� z0 � dj�; (35)

where we have omitted again a local contribution propor-
tional to �2. This result is everywhere finite; it can be
compared to that of Eq. (33) in the plot in Fig. 1.

We turn now to the study of hTð�Þ
�� ðxÞi to first order in �1.

From the expression (11), it follows that hT��i (we drop the
� label from now on) is obtained from the coincidence
limit of GFðx; x0Þ as

hT��ðxÞi¼�Im

�
ð1�2�1Þ@�@0�GFðx;x0Þ

þ
�
2�1�1

2

�
����

	�@	@
0
�GFðx;x0Þ

�2�1@�@�GFðx;x0Þþ2�1����
	�@	@�GFðx;x0Þ

þ�1

4
���GFðx;x0Þ

���������x¼x0
: (36)

The coincidence limit of the last term is ��1h�2i, and
since h�2i is Oð�1Þ we may discard this term in our first-
order approximation. The coincidence limit of the remain-
ing term can be performed in an analogous way to that of
h�2i, by passing to n-dimensional space, using the
momentum-space representation (28) for the first-order
GFðx; x0Þ, and using standard dimensional regularization
techniques. The divergences appearing are proportional to
�2;�� þ���h�2, and can be absorbed into a redefinition

of �2 as we did before. After the renormalization is per-
formed and we return to n ¼ 4, we are left with

hT��ðxÞiren ¼ �1

512�6

�
�1 � 1

6

�Z
d4p

Z
d4~xeipðx�~xÞ�2ð~xÞ

� ln

�
� p2

�2

�
ðp�p� � p2���Þ; (37)

which is analogous to (30) for h�2ðxÞiren. For the case in
which �2 depends only on z, we get by analogy with (31)

hT��ðzÞiren ¼ �1

64�3

�
�1 � 1

6

�Z
dpz

Z
d~ze�ipzðz�~zÞ�2ð~zÞ

� ln

�
p2
z

�2

�
p2
zð��z��z þ ���Þ: (38)

Comparing with our arguments showing finiteness for
h�2ðzÞiren, it is clear that the components of hT��ðzÞiren will
not diverge as long as hðpzÞ � p2

z lnjpzj�̂2ðpzÞ is inte-
grable. To ensure this, it is sufficient to require �2ðzÞ to
be an integrable C4 function, since then its Fourier trans-
form falls off faster than p�4

z . However, for the simple
particular example of a mirror similar to (34) but with
polynomials with higher degree of continuity interpolating
between z0 and z0 þ d, we have checked that C2 continuity
of �2ðzÞ is enough to render the result finite.
We stress at this point that the results obtained in this

section have their gravitational counterparts: as shown in
Ref. [8], when one computes h�2ðzÞiren and hT��ðzÞiren for
a free quantum field in a curved background, both quanti-
ties diverge at the points where the background is not
sufficiently smooth. The examples described in Ref. [8]
refer to the vacuum polarization around spherically sym-
metric objects, and divergences show up for sharp inter-
faces, where the matter density is discontinuous. The
divergences disappear when the matter density and its first
two derivatives are continuous across the interface.
Similarly, in a cosmological context, divergences in the
renormalized energy-momentum tensor are removed when
one replaces an abrupt transition of the scale factor by a
smoother transition in which the scale factor and its two
first derivatives are continuous. The concrete example of
the transition between the inflationary period and radiation
domination is discussed in detail in Ref. [7].
High vacuum energy densities in the presence of

boundaries may potentially produce large gravitational
effects. In our model, the usual divergences are rendered
finite when the sharp boundary is replaced by a sufficiently
smooth background field. However, the quantum vacuum
energy does attain high values if the background field
varies over short distances. We can make a crude estima-
tion of the maximum value of the energy density using
dimensional analysis. From Eq. (38), it is not difficult to
see that if �2ðzÞ is varying over distances of order d then
we should expect the maximum value of hT��ðzÞiren to be

of order �1�
2
0=d

2, where �2
0 is a representative value

attained by �2ðzÞ. The quantity �1�
2
0 has units of

ðlengthÞ�2, and determines the properties of the mirror.

10 5 5 10
z

0.6

0.2

0.0

64 2L 2 1

FIG. 1 (color online). A comparison of h�2ðzÞiren for a discon-
tinuous potential (red lines, discontinuous at z ¼ �z0) and a
continuous one (blue line, continuous), with z0 ¼ 4 and d ¼ 1.
Note that h�2ðzÞiren diverges at the points where the background
field � is discontinuous, and that the divergences disappear when
� is continuous.
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Therefore, it will be identified with the square of the
plasma frequency !p. Restoring ℏ and c factors, the

mass density associated to the vacuum fluctuations is of
order ℏ!2

p=c
3d2. If we take d to be in the range of the

10�10 meters, representing a smearing of the conductor’s
sharp boundary over atomic length scales, and !p to be in

the range of 1015 Hz, a typical value of the plasma fre-
quency, then we see that firstly, the first-order approxima-
tion assumed in this section is validated, and secondly, the
peak values of the quantum energy densities at the bound-
ary of the conductor are of order 10�13 g=cm3, too small to
be gravitationally detectable.

V. CONCLUSIONS

In this paper, we analyzed the coupling of the vacuum
self-energy to gravity. We considered a model in which the
presence of the bodies that disturb the modes of the quan-
tum fields is described by the interaction with a back-
ground classical field. We have shown that the
divergences in the energy-momentum tensor of the quan-
tum fields are consistent with the semiclassical Einstein
equations, that is, they can be absorbed into the bare
constants of the theory. As expected, the divergences in
the renormalized energy-momentum tensor noticed in pre-
vious works only appear when considering unphysical
limits of perfect conductivity and/or sharp interfaces,
that in our model would correspond to taking a nonsmooth

background field. We have shown that modeling the mir-
rors in the Casimir effect with a background potential �2

removes the divergences attached to the boundaries, as
long as �2 is a sufficiently smooth integrable function
(C2 continuity is sufficient for h�2iren and C4 continuity
for hT��iren, though weaker assumptions are enough in

simple examples). The proof is carried to first order in
the coupling �1. These results are in tune with those found
in Refs. [4,5], where finiteness of the results is shown with
exact calculations for some particular examples of �2, and
are analogous to those in Refs. [7,8] for the vacuum
polarization of free fields in curved backgrounds, when
the metric and its first two derivatives are continuous. We
expect that similar conditions for finiteness can be obtained
beyond the perturbative approximation.
We have considered a toy model for a vacuum scalar

field. We have presented some specific examples to illus-
trate the appearance of divergences for sharp interfaces.
The examples suggest that the gravitational effects of the
self-energy near mirrors are extremely small for realistic
values of the relevant parameters. We expect similar results
to be valid for more realistic models involving the electro-
magnetic field.
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