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This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric,

conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the

present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black

hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-

relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the

inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal

separability holds during early inflation, but fails as inflation develops. If conformal separability is

imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be

charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions

on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary

conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but

the charge per particle must vary with latitude such that the incident charge densities vary in proportion to

the radial electric field. The subdominant angular boundary conditions require specific forms of the

incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon,

then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral

stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be

delivered ad hoc to just above the inner horizon.

DOI: 10.1103/PhysRevD.84.124057 PACS numbers: 04.20.�q

I. INTRODUCTION

A companion paper [1], hereafter Paper 2, presents
conformally stationary, axisymmetric, conformally sepa-
rable solutions for the interior of an uncharged rotating
black hole that undergoes inflation at its inner horizon and
then collapses. The purpose of this paper is to extend these
solutions to the case of a charged rotating black hole. A
MATHEMATICA notebook containing many details of the

calculations is at [2].
Because of the strength of electromagnetism and the

overall charge neutrality of the Universe, real astronomical
black holes are expected to have little electric charge.
However, a black hole is likely to build up a residual
positive charge because positively charged protons are
more massive than negatively charged electrons, so
protons are more able to overcome a Coulomb barrier
against accretion. The charge-to-mass ratio of a proton is
e=mp � 1018 in Planck units (c ¼ G ¼ ℏ ¼ 1). A black

hole might be able to build up a charge-to-mass of the order
of the reciprocal of this ratio [3]. If so, then trajectories of
charged particles falling into the black hole would be
affected by the black hole’s charge notwithstanding its
small value.

As shown in Appendix A of Paper 2, given the assump-
tions of conformal time-translation invariance, axisymme-
try, and conformal separability, the line element can be
taken to be

ds2 ¼ �2

�
dx2

�x

� �x

�4
ðdt�!yd�Þ2 þ dy2

�y

þ�y

�4
ðd��!xdtÞ2

�
; (1)

where t is conformal time, � is the azimuthal coordinate,
x and y are radial and angular coordinates, �x and �y

are radial and angular horizon functions, and � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!x!y

p
. The conformal factor � ¼ �se

vt�� is a prod-

uct of separable (electrovac) �s, time-dependent evt, and
inflationary e�� factors.

II. COLLISIONLESS STREAMS

As in Paper 2 [1], the present paper takes a general freely
falling collisionless fluid as the source of energy that
ignites and then drives inflation. In the present paper,
collisionless streams are allowed to be electrically charged.

A. Conformal separability conditions

The tetrad-frame electromagnetic potential Ak is con-
veniently written in terms of a set of Hamilton-Jacobi
potentials Ak [the following repeats Eq. (24) of Paper 2],

Ak � 1

�

8<
:

Axffiffiffiffiffiffiffiffiffiffi��x

p ;
Atffiffiffiffiffiffiffiffiffiffi��x

p ;
Ayffiffiffiffiffiffi
�y

q ;
A�ffiffiffiffiffiffi
�y

q
9=
;: (2)

As shown in Appendix A of Paper 2, conformal separabil-
ity requires that*Andrew.Hamilton@colorado.edu
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!x; �x are functions of x only;

!y; �y are functions of y only;
(3)

and also that

Ax; At are functions of x only;

Ay; A� are functions of Y only:
(4)

However, dimensional analysis shows that the condition of
conformal time-translation symmetry requires that the po-
tentials Ak must be proportional to the time-dependent
factor evt of the conformal factor,

A k / evt; (5)

contradicting conditions (4). The dimensional argument is
robust; the proportionality (5) is correct. Thus, the separa-
bility conditions adopted in this paper are, in place of
conditions (4),

e�vtAx; e�vtAt are functions of x only;

e�vtAy; e�vtA� are functions of y only:
(6)

B. Hamilton-Jacobi separation

The fact that the conformal separability conditions (4) fail
and must be replaced by conditions (6) implies that the
equations of motion of charged particles in conformally
separable spacetimes are not exactly Hamilton-Jacobi sepa-
rable. A similar situation occurred in Paper 2, where it was
found that the equations of motion of massive particles,
though not exactly Hamilton-Jacobi separable, are ade-
quately so under the hyper-relativistic conditions of infla-
tion. This suggests that the Hamilton-Jacobi equations might
still provide an adequate approximation to the equations of
motion of charged particles under the conditions peculiar to
inflation. This subsection shows that the Hamilton-Jacobi
equations do in fact provide an adequate approximation, but
only subject to the special condition (14). Physically, these
conditions require that only one of the ingoing and outgoing
streams can be charged, the other being neutral, Sec. IVC.

As shown in Sec. IV of Paper 2, the tetrad-frame mo-
mentum pk of a particle of rest mass m and charge q
predicted by the Hamilton-Jacobi equations is

pk ¼ 1

�

�
Pxffiffiffiffiffiffiffiffiffiffi��x

p ;
Ptffiffiffiffiffiffiffiffiffiffi��x

p ;
Pyffiffiffiffiffiffi
�y

q ;
P�ffiffiffiffiffiffi
�y

q
�
; (7)

where the Hamilton-Jacobi parameters Pt and P� are

related to the particle’s conserved energy �t ¼ �E and
angular momentum �� ¼ L and to the potentials At and

A� by

Pt ¼ �t þ ��!x � qAt;

P� ¼ �� þ �t!y � qA�;
(8)

and Px and Py are then obtained from [the following are

Eq. (35) of Paper 2]

Px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
t � ½m2ð�2 � �2

yÞ þK��x

q
;

Py ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P2

� � ðm2�2
y �KÞ�y

q
:

(9)

As it stands, the tetrad-frame momentum pk given by
Eqs. (7)–(9) does not satisfy the Lorentz force law
dpk=d� ¼ qplFlk to adequate accuracy.
A fix that proves to work under inflationary conditions

is, firstly, to replaceAt in Eq. (8) for Pt by ðAt �AxÞ=2,
respectively, for ingoing (þ ) and outgoing (� ) particles,
so that [given also that A� ¼ 0, Eq. (28)]

Pt � �t þ ��!x � q
At �Ax

2
;

P� ¼ �� þ �t!y;
(10)

and secondly, to replace the time-dependent factor evt in
At �Ax by its value as a function of x along the path of
the particle predicted by the Hamilton-Jacobi equations,

dt

dx
¼ � 1

Px

�
Pt

��x

þ!yP�

�y

�
: (11)

The equation of motion predicted by Eqs. (9)–(11) is [the
following equation omits the dependency on rest mass m,
given previously by Eq. (39) of Paper 2; the quantities Zk

are defined later, Eq. (24)]

dpk

d�
� qplFlk ¼ q

2�3
ffiffiffiffiffiffiffiffiffiffi��x

p
�
vðAt �AxÞPt � Px

Px�x

� ðAt �AxÞ
�
@

@x
ln

�
1

�2

d!x

dx

�
� P�

Px

v!y

�y

�
� Zt � Zx

�

� fPt; Px; 0; 0g þ q

2�3
ffiffiffiffiffiffi
�y

q ðAt �AxÞ 1

�2

d!y

dy
f0; 0; P�;�Pyg

þ qv!y

�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q AxPx �AtPt

Px

�
P�ffiffiffiffiffiffi
�y

q ; 0; 0;
Pxffiffiffiffiffiffiffiffiffiffi��x

p
�
: (12)
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The right-hand side of Eq. (12), which would vanish if the
equations of motion of charged particles were exactly
Hamilton-Jacobi separable, does not vanish because the
Hamilton-Jacobi approximation (9)–(11) is not exact.
Appendix D of Paper 2 gives criteria under which integrals
along the path of a particle may be deemed small, in the
conformally stationary limit. By these criteria, all but one
of the terms in Eq. (12) yield a small result when integrated
over the path of a particle through inflation and collapse.
The discrepant term is the azimuthal � component of
the last term, proportional to AxPx �AtPt, which has
� ¼ �1 and � ¼ �3 in the terminology of Appendix D
of Paper 2, violating (marginally) condition (D4) during
inflation. Integrated over the path of the particle, the term
would produce a finite difference between the true azimu-
thal momentum p� and that predicted by Eqs. (9)–(11).
The finite difference appears during inflation when
j�xj�1. The exception to this conclusion is that the
term would vanish provided that the factor AxPx �
AtPt multiplying it is zero,

A xPx ¼ AtPt: (13)

But, particles are hyper-relativistic, Pt ¼ �Px, under the
conditions j�xj � 1 where the difference occurs. Then,
condition (13) holds provided that

A x ¼ �At: (14)

In other words, the Hamilton-Jacobi approximation
(9)–(11) works for ingoing particles only if At ¼ Ax,
and for outgoing particles only if At ¼ �Ax. Later,
Sec. IVC, it will be concluded that condition (14) is
equivalent to requiring that only one of the ingoing and
outgoing streams can be charged; the other stream must
be neutral.

One might try to go beyond the Hamilton-Jacobi ap-
proximation, but there is no point. In Sec. III C, it will be
found that the nonisotropic diagonal angular component of
the electromagnetic energy-momentum tensor, which con-
formal separability requires must vanish, diverges unless
condition (14) is true. Condition (14) appears necessary
for the conformally separable solutions considered in this
paper to hold.

C. Electric current

Equations governing the density N and number current
nk of a collisionless stream were derived in Sec. VII of
Paper 2. For a single stream of particles of charge q with
fixed constants of motion, the tetrad-frame current jk is the
particle charge q times the number current nk, which is
itself the number density N times the momentum pk,

jk ¼ qnk; nk ¼ Npk: (15)

The Hamilton-Jacobi equations predict that the number
density N along a single stream satisfies

N / �2

�2PxPy

: (16)

As discussed in Sec. II B, the equations of motion of
charged particles are not exactly Hamilton-Jacobi sepa-
rable. The accuracy of the Hamilton-Jacobi approximation
(9)–(11) can be checked by seeing how closely the cova-
riant divergenceDknk that they predict vanishes. The result
is [the following equation omits the dependency on rest
mass m given previously by Eq. (63) of Paper 2]

Dknk ¼ 0; (17)

which happens to vanish identically, confirming that the
Hamilton-Jacobi approximation (9)–(11) is satisfactorily
accurate.

III. ELECTROMAGNETISM

Maxwell’s equations prove to separate in a manner
consistent with the separation of Einstein’s equations car-
ried out in Sec. VIII of Paper 2 [1]. In this section, the
spacetime is taken to be conformally time-translation
symmetric (not necessarily conformally stationary) and
axisymmetric, and to satisfy the conformal separability
conditions (3) and (6).
Homogeneous solution of the stationary, separable

Einstein equations leads to the usual electrovac solutions
for the vierbein coefficients !x and !y of the line element,

and, as is well known, homogeneous solution of the sta-
tionary, separable Maxwell equations leads to the same
result [the following repeats Eq. (73) of Paper 2]:

d!x

dx
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf0 þ f1!xÞðg0 � g1!xÞ

q
;

d!y

dy
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf1 þ f0!yÞðg1 � g0!yÞ

q
;

(18)

where f0, f1, g0, and g1 are constants set by boundary
conditions. Equation (18) continues to hold through infla-
tion and collapse in charged as well as neutral black holes.
As found in Paper 2, inflation occurs generically at an inner
horizon �x ! �0 regardless of the specific choice of the
constants f0, f1, g0, and g1.

A. Electromagnetic field

The electromagnetic field Fmn is a bivector, and as such
has a natural complex structure [4], with the real part being
the electric field, which changes sign under parity trans-
formation (a change of sign of all spatial coordinates), and
the imaginary part being the magnetic field, which is
unchanged by a parity transformation. The complex struc-
ture is manifest in a complexified electromagnetic field
~Fmn defined by

~F kl � 1
2ðFkl þ 	FklÞ; (19)

where 	Fkl denotes the Hodge dual of Fkl,
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	Fkl �
i

2
"kl

mnFmn; (20)

with "klmn the totally antisymmetric tensor, normalized
here to "klmn ¼ ½klmn� in an orthonormal tetrad frame.

The complexified electromagnetic field tensor is self-dual,
	 ~Fkl ¼ ~Fkl. Given conformal time-translation symmetry
(not necessarily conformally stationarity), axisymmetry,
and conformal separability, the tetrad-frame complexified
electromagnatic field tensor ~Fmn is

~Fxt � 1

2
ðFxt þ iF�yÞ ¼ 1

2�2

�
�
�
@At

@x
þ!yAt �A�

�2

d!x

dx

�
þ i

�
@A�

@y
þ!xA� �At

�2

d!y

dy

�
� v

�
Ax

�x

þ i
!yAy

�y

��
;

(21a)

~Fxy � 1

2
ðFxy þ iFt�Þ ¼ i

vð!yAt �A�Þ
2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q ; (21b)

~Fx� � 1

2
ðFx� þ iFytÞ ¼

vð!yAx þ iAyÞ
2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q : (21c)

If the spacetime were strictly stationary, v � 0, then the
only nonvanishing component of the complexified electro-
magnetic field would be the radial component ~Fxt. In
inflationary spacetimes, however, the radial horizon func-
tion �x goes to zero at the inner horizon, and the angular
components ~Fxy and ~Fx� of the electromagnetic field can
grow large at the inner horizon, however small the accre-
tion rate v may be.

The only electromagnetic gauge freedom that respects
conformal time-translation symmetry and the conformal
separability conditions (6) is Ak ! Ak þ �@ke

vt for some
constant �, which transforms

A t ! At þ �vevt; A� ! A� þ �v!ye
vt:

(22)

Define the enclosed electric charge Q within radius x,
and the enclosed magnetic charge Q above latitude y, by

Q � �2ðf0g1 þ f1g0Þ At

d!x=dx
; (23a)

Q � �2ðf0g1 þ f1g0Þ
A�

d!y=dy
: (23b)

Further, define the quantities Zk by

Zx � d!x

dx

@

@x

�
Ax

d!x=dx

�
þ vAt

�x

; Zt � d!x

dx

@

@x

�
At

d!x=dx

�
þ vAx

�x

;(24a)

Zy �
d!y

dy

@

@y

� Ay

d!y=dy

�
þ v!yA�

�y

; Z� � d!y

dy

@

@y

� A�

d!y=dy

�
� v!yAy

�y

:(24b)

The conventional radial electric and magnetic fields E and
B constitute the real and imaginary parts of (twice) the
radial electromagnetic field. The radial electromagnetic
field ~Fxt can be written in terms of the enclosed electric
and magnetic charges Q and Q and the Zk as

2 ~Fxt ¼ Eþ iB ¼ 1

�2

�
ðQþ iQÞ�x þ i�y

�x � i�y

� Zt þ iZ�

�
;

(25)

where �x and �y are the x and y components of the

separable conformal factor �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x þ �2

y

q
, Eq. (72) of

Paper 2.

B. Maxwell’s equations

Maxwell’s equations are embodied in the complex
equation

Dm ~Fmn ¼ 2�jn; (26)

whose real (electric) and imaginary (magnetic) parts con-
stitute, respectively, the source and source-free Maxwell’s
equations. Given conformal time-translation invariance
and the conformal separability conditions (3) and (6), the
source-free Maxwell’s equations are satisfied identically
with vanishing magnetic current. Since the magnetic cur-
rent, and, in particular, its time component the magnetic
charge, necessarily vanishes, the solutions preclude the
accretion of any magnetic charge. Although strictly sta-
tionary solutions admit a black hole with magnetic charge,
conformally stationary solutions do not.
In terms of the Zk defined by Eq. (24), and given Eq. (18)

for d!x=dx and d!y=dy, the sourced Maxwell’s equations

can be written
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jx � jt ¼ 1

4��3

�
vffiffiffiffiffiffiffiffiffiffi��x

p
�
ðAx �AtÞ

�
� @

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

�
�Ay

@

@y
ln

�
1

�2

d!y

dy

�
�A�

1

�2

d!x

dx

�

þ vffiffiffiffiffiffiffiffiffiffi��x

p ðZt � ZyÞ �
ffiffiffiffiffiffiffiffiffiffi��x

p �
@Zt

@x
þ Zt

@

@x
ln

�
1

�2

d!x

dx

�
� Z�

1

�2

d!y

dy

��
; (27a)

jy � ij� ¼ 1

4��3

�
v!yffiffiffiffiffiffi
�y

q
�
ðAy � iA�Þ

�
�i

@

@y
ln

�
1

�2

d!y

dy

�
þ v

!y�x

�
� iAx

@

@x
ln

�
1

�2

d!x

dx

�
�At

1

�2

d!y

dy

�

þ v!yffiffiffiffiffiffi
�y

q ðZ� � iZxÞ � i
ffiffiffiffiffiffi
�y

q �
@Z�

@y
þ Z�

@

@y
ln

�
1

�2

d!y

dy

�
� Zt

1

�2

d!x

dx

��
: (27b)

These equations yield both electrovac and inflationary
solutions.

Electrovac solutions correspond to the case of strict
stationarity, v ¼ 0. In strictly stationary spacetimes, Ax

andAy can be set to zero by a gauge transformation, as is

evident from the fact that for v ¼ 0 the electromagnetic
field, Eq. (21), is independent of Ax and Ay. This gauge

freedom is available in strictly stationary but not confor-
mally stationary spacetimes. The homogeneous solutions
of Maxwell’s equations (27) are those with Zt ¼ Z� ¼ 0,

which given the definitions (24) of Zk, correspond to space-
times with constant electric and magnetic charges Q and
Q, Eq. (23).

Inflationary solutions of Maxwell’s equations (27) have
small but nonzero accretion rate v. During inflation, the
angular currents jy and j� available from a collisionless

source are small. The term proportional to Ay þ iA� in

Eq. (27b) involves a factor of v=�x which diverges at the
inner horizon �x ! �0 however small the accretion rate v

might be. The only way that this term can remain small is
that

A y ¼ A� ¼ 0; (28)

which is equivalent to requiring that the magnetic charge
be identically zero [an apparent exception to this argument
is that if A� is chosen to be a constant times !y, then the

divergent term can cancel against a corresponding term
proportional toAt in Zx; but that simply reflects the gauge
freedom (22) in A�]. That magnetic charge must vanish

accords with the conclusion at the beginning of this sub-
section, that conformal time-translation invariance and
conformal separability force the magnetic current to vanish
identically, so the black hole cannot accrete magnetic
charge, so its cumulative magnetic charge must be zero.
Given the vanishing of Ay and A�, it follows that Zy

and Z� vanish identically, and Maxwell’s equations (27)

reduce to

4��2ðjx � jtÞ ¼ 1

�

�
vffiffiffiffiffiffiffiffiffiffi��x

p ðAx �AtÞ
�
� @

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

�
� ffiffiffiffiffiffiffiffiffiffi��x

p �
@

@x
� v

�x

þ @

@x
ln

�
1

�2

d!x

dx

��
Zt

�
; (29a)

4��2ðjy � ij�Þ ¼ 1

�

�
v!yffiffiffiffiffiffi
�y

q
�
�iAx

@

@x
ln

�
1

�2

d!x

dx

�
�At

1

�2

d!y

dy

�
� i

�
Zx

v!yffiffiffiffiffiffi
�y

q � Zt

ffiffiffiffiffiffi
�y

q 1

�2

d!x

dx

��
: (29b)

C. Electromagnetic energy-momentum

In terms of the complexified electromagnetic field ~Fmn, the tetrad-frame electromagnetic energy-momentum tensor Te
kl

satisfies

4�Te
kl ¼ 	mnð ~Fkm

~F	
ln þ ~Fkn

~F	
lmÞ; (30)

in which 	 denotes the complex conjugate (not the Hodge dual). Given that the angular electromagnetic potentialsAy and
A� vanish, the tetrad-frame electromagnetic energy-momentum tensor Te

kl is
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Te
xx � Te

tt ¼ Te
yy þ Te

�� ¼ E2 þ B2

4�
; (31a)

Te
xx þ Te

tt

2
� Te

xt ¼ �v2!2
yðAx �AtÞ2
8��4�x�y

; (31b)

Te
xy � Te

ty ¼ � v!y

4��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q BðAx �AtÞ; (31c)

Te
x� � Te

t� ¼ � v!y

4��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q EðAx �AtÞ; (31d)

Te
yy � Te

��

2
� iTe

y� ¼ � v2!2
y

8��4�x�y

ðAx þAtÞðAx �AtÞ; (31e)

where E and B are the radial electric and magnetic fields
from Eq. (25).

As discussed in Sec. VIII I of Paper 2, the condition of
conformal separability requires that the 2� 2 angular
submatrix of the energy-momentum tensor must be iso-
tropic (proportional to the unit 2� 2 unit matrix), since the
nonisotropic angular Einstein components depend only on
angle y (modulo an overall conformal factor), and being
initially negligible in the conformally stationary limit,
must remain so at any radius x. The isotropy of the angular
energy-momentum requires that the components given by
Eq. (31e) must be negligible. On the other hand, the right-
hand side of expression (31e) is proportional to 1=�x,
which diverges at the inner horizon �x ! �0. The only
way out is that one of the remaining factors in the expres-
sion must vanish, which requires that

A x ¼ �At: (32)

Condition (32) is the same as that (14) found previously in
order that the equations of motion of charged particles be
Hamilton-Jacobi separable to adequate accuracy.

IV. INFLATIONARY SOLUTIONS

This section presents inflationary solutions to the com-
bined Maxwell and Einstein equations. Section IVA de-
rives the evolution of the electric potentials Ax and At

from the vanishing of Zx and Zt, which Maxwell’s equa-
tions sourced by a collisionless current require to be small.
The case of small but finite Zk is deferred to the Appendix.
Section IVB shows that, with these potentials, Maxwell’s
equations are satisfied by a sum of currents from ingoing
and outgoing collisionless streams. Section IVC concludes
that only one or other of the ingoing and outgoing streams
can be charged. Section IVD reviews 8 of the Einstein
components, and Sec. IVE shows that the energy-
momentum required by these 8 Einsteins, after subtraction
of the electromagnetic energy-momentum, is satisfied by
the energy-momentum of ingoing and outgoing collision-
less streams. The remaining 2 Einstein components were

shown in Sec. VIII D, E of Paper 2 to govern the evolution
of the inflationary exponent � and horizon function �x.
Section IVF, following along the lines of Sec. VIII J of
Paper 2, shows how the subdominant electromagnetic
source for these 2 Einstein components can be taken into
account by solving the Einstein equations to next higher
order.

A. Evolution of the electromagnetic potential
and enclosed charge

The definitions (24) of Zk provide evolutionary equa-
tions for the electric potentials Ax and At:

�
@

@x
� v

�x

�
Ax �At

d!x=dx
¼ Zx � Zt

d!x=dx
: (33)

Since the angular components of the collisionless current
must be small, Maxwell’s equations (29b) require that Zx

and Zt be small. The dominant driving term in Eq. (33) is
then the one proportional to v=�x, which diverges at the
inner horizon�x ! �0 however small the accretion rate v
may be. By comparison, the effect of a small but finite Zx

and Zt is essentially negligible. In the Appendix, the effect
of small but finite Zk will be considered, but for the
remainder of this paper Zx and Zt will be taken to
vanish:

Zx ¼ Zt ¼ 0: (34)

Thus, the solutions of interest are the homogeneous
solutions of Eq. (33), those with vanishing right-hand
side. Equation (33) depends on the horizon function �x,
whose behavior as a function of radius x was solved in
Paper 2. Equation (93a) of Paper 2 gives

dx

�x

¼ � dUx

2ðU2
x � v2Þ ¼

1

4v
d ln

�
Ux þ v

Ux � v

�
: (35)

Consequently, the homogeneous solutions of Eq. (33) are

ANDREW J. S. HAMILTON PHYSICAL REVIEW D 84, 124057 (2011)

124057-6



Ax �At

d!x=dx
¼ � Q�

4ðf0g1 þ f1g0Þ ; (36)

where Q� are ingoing (þ) and outgoing (�) enclosed
electric charges satisfying

Q� ¼ Q�
 evt
�ðUx � vÞðuþ vÞ
ðUx þ vÞðu� vÞ

��1=4
; (37)

with Q�
 constants of integration. The total enclosed elec-
tric charge Q, which is related to the potential At by
Eq. (23a), is a sum of the ingoing and outgoing enclosed
charges,

Q ¼ Qþ þQ�: (38)

The constants Q�
 physically represent the cumulative in-
going and outgoing electric charge accreted by the black
hole up to t ¼ 0. The total electric charge Q
 of the black
hole at t ¼ 0, as seen by an observer well outside the
horizon, is a sum of the ingoing and outgoing cumulative
charges,

Q
 ¼ Qþ
 þQ�
 : (39)

The relation between time t and radius x along the path
of a particle is given by Eq. (11). In the hyper-relativistic
conditions Pt ¼ �Px characteristic of inflation and
collapse when j�xj � 1, Eq. (11) simplifies to dt=dx ¼
�1=�x, which given Eq. (35) integrates to

evt ¼
�ðUx þ vÞðu� vÞ
ðUx � vÞðuþ vÞ

��1=4
: (40)

The relation (40) continues to hold even at the end of
collapse, when j�xj ceases to be small, and Ux is growing
exponentially huge, and the time coordinate t is
frozen.

The solutions (37) for the enclosed electric charges Q�
have the salient feature that, in view of Eq. (40), the
ingoing chargeQþ is constant along the path of an ingoing
particle, while the outgoing charge Q� is constant along
the path of an outgoing particle. As found in Sec. VIII E of
Paper 2, in the conformally stationary limit the coordinates
x and y along the path of a freely falling stream remain
frozen throughout inflation and collapse, so the factor
d!x=dx in the relation (36) is constant. Consequently,
the potentials Ax �At are also constant along the paths
of, respectively, ingoing and outgoing particles. Among
other things, this implies that the Hamilton-Jacobi parame-
ter Pt defined by Eq. (10) is constant along the path of an
ingoing or outgoing particle. Likewise, the Hamilton-
Jacobi parameter Px defined by Eq. (9) is constant along

the path of an ingoing or outgoing particle during inflation
and collapse, as long as j�xj � 1.
Maxwell’s equations (29) show that the potentials

Ax �At are sourced, respectively, by ingoing and out-
going currents, and may thus be called ingoing and out-
going potentials. To bring out the dependence on the
ingoing and outgoing potentials Ax �At, it is helpful
to reexpress Maxwell’s equations (29) in terms of a sum of
ingoing and outgoing currents

jk ¼ jþk þ j�k ; (41)

where for vanishing Zk, Eq. (34),

j�x ¼ �j�t ¼ 1

8��3

vffiffiffiffiffiffiffiffiffiffi��x

p ðAx �AtÞ

�
�
� @

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

�
; (42a)

j�y � � 1

8��3

v!yffiffiffiffiffiffi
�y

q ðAx �AtÞ 1

�2

d!y

dy
; (42b)

j�� � � 1

8��3

v!yffiffiffiffiffiffi
�y

q ðAx �AtÞ @@x ln

�
1

�2

d!x

dx

�
:

(42c)

Should not the term proportional to v inside square brack-
ets on the right-hand side of Eq. (42a) be neglected com-
pared to the dominant first term, in the conformally
stationary limit v ! 0? No. The term is needed to ensure
that the equations hold not only to leading radial order but
also to subdominant angular order.

B. Collisionless source of electric current

Maxwell’s equations (41) and (42) can be satisfied by
currents from a sum of ingoing and outgoing collisionless
streams,

j�k ¼ q�N�p�
k ; (43)

with charge densities

q�N� ¼ vQ�

32��2ðf0g1 þ f1g0Þ
d!x

dx

�
�
@

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

�
; (44)

and hyper-relativistic tetrad-frame momenta
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p�
k ¼ 1

�

�
� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;
1ffiffiffiffiffiffi
�y

q
1
�2

d!y

dy

@
@x lnð 1�2

d!x

dx Þ � v!2
y

�y

;

� 1ffiffiffiffiffiffi
�y

q
@
@x lnð 1�2

d!x

dx Þ
@
@x lnð 1�2

d!x

dx Þ � v!2
y

�y

�
: (45)

The densities (44) and momenta (45) are defined up to
arbitrary normalization factors such that their product is
constant. The densities (44) and momenta (45) conform
with the behavior of collisionless streams during inflation
and collapse as long as

j�xj � 1; (46)

which is to say before the angular motions of the streams
become important. The Hamilton-Jacobi result (16) re-
quires that the density along a stream evolve as

N / 1

�2
; (47)

since the Hamilton-Jacobi parameters Px and Py are con-

stant and � is frozen at its inner horizon value. The
densities from Eq. (44) indeed satisfy the proportionality
(47), since all other factors in the equation are constant
along the path of the stream (includingQ�, as shown in the
previous Sec. IVA). Similarly, the tetrad-frame momentum
p�
k , Eq. (45), accords with the Hamilton-Jacobi form (7),

with constant Hamilton-Jacobi parameters Pk along the
path of the stream.

C. Only one stream can be charged

In Sec. II B, the condition At ¼ �Ax, Eq. (14),
emerged from requiring that the motions of charged parti-
cles be adequately described by the Hamilton-Jacobi equa-
tions, and in Sec. III C the same condition, Eq. (32),
emerged from requiring that the angular components of
the electromagnetic energy-momentum be isotropic, as
conformal separability requires.

It has now been seen that the potentials Ax �At are
sourced, respectively, by ingoing and outgoing collision-
less streams, Sec. IVB. Thus, the condition At ¼ �Ax

requires that only one of the streams can be charged,
and the other must be neutral. If the ingoing stream is
charged, then At ¼ Ax, while if the outgoing stream is
charged, then At ¼ �Ax.

If the ingoing stream is charged, then Qþ
 is nonzero,
while if the outgoing stream is charged, then Q�
 is
nonzero.

In a real astronomical black hole, collisions and magne-
tohydrodynamic processes are likely to keep charged par-
ticles tightly coupled above the inner horizon, forcing them

into a common ingoing or outgoing stream before inflation
ignites. Thus, the condition that only one stream be
charged is physically realistic.

D. Einstein and energy-momentum tensors

For the solutions to be valid, Einstein’s equations must
also be satisfied. Equation (124) of Paper 2 gives 8 of the
Einstein components in the conformally stationary limit
(the remaining 2 components are considered in Sec. IV F):

�2

�
GxxþGtt

2
�Gxt

�
¼Ux�v

��x

ð�0
x�vÞ; (48a)

�2ðGxy�GtyÞ ¼� Ux�vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q �y

@ ln�2
s

@y
; (48b)

�2ðGx��Gt�Þ ¼� Ux�vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q
�
�y

�2

d!x

dx
� 2v!y

�
;

(48c)

�2

�
Gyy�G��

2
� iGy�

�
¼ 0; (48d)

in which�0
x � d�x=dxjxin is the (positive) derivative of the

electrovac horizon function�x at the inner horizon x¼ xin.
In the present situation, there are two sources of energy-

momentum, electromagnetic and collisionless. Given the
expressions (25) for the radial electric and magnetic fields
E and B, and the solutions (36) for the potentials Ax �
At, and given that only one of the ingoing or outgoing
streams can be charged (which implies that QþQ� ¼ 0),
Eq. (31) for the electromagnetic energy-momentum Te

kl is

8��2

�
Te
xx þ Te

tt

2
� Te

xt

�
¼ Ux � v

��x

X� v!y

�y

; (49a)

8��2ðTe
xy � Te

tyÞ ¼ � Ux � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q X� 1

�2

d!y

dy
; (49b)

8��2ðTe
x� � Te

t�Þ ¼
Ux � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q X� @

@x
ln

�
1

�2

d!x

dx

�
;

(49c)

Te
yy � Te

��

2
� iTe

y� ¼ 0; (49d)

where

X� � v!y

u� v

�
Q�


4�sðf0g1 þ g1g0Þ
d!x

dx

�
2
: (50)

The total energy-momentum prescribed by the Einstein
components (48), minus the electromagnetic energy-
momentum (49), is
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8��2

�
Txx þ Ttt

2
� Txt

�
¼ Ux � v

��x

�
�0

x � v� X� v!y

�y

�
; (51a)

8��2ðTxy � TtyÞ ¼ � Ux � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q
�
�y

@ ln�2
s

@y
� X� 1

�2

d!y

dy

�
; (51b)

8��2ðTx� � Tt�Þ ¼ � Ux � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q
�
�y

1

�2

d!x

dx
� 2v!y � X� @

@x
ln

�
1

�2

d!x

dx

��
; (51c)

8��2

�
Tyy � T��

2
� iTy�

�
¼ 0: (51d)

For the solution to be consistent, the energy-momentum
tensor given by Eq. (51) must be consistent with being
sourced by collisionless streams. Indeed it is, as shown in
the next subsection.

E. Collisionless source of energy-momentum

The energy-momentum tensor (51) coincides with that
of a sum of ingoing (þ ) and outgoing (� ) collisionless
streams

Tkl ¼ Nþpþ
k p

þ
l þ N�p�

k p
�
l ; (52)

with number densities

N� ¼ 1

16�
ðUx � vÞ

�
�0

x � v� X� v!y

�y

�
; (53)

and tetrad-frame momenta

p�
k ¼ 1

�

�
� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;
1ffiffiffiffiffiffi
�y

q �y
@ ln�2

s

@y � X� 1
�2

d!y

dy

�0
x � v� X� v!y

�y

;

� 1ffiffiffiffiffiffi
�y

q �y
1
�2

d!x

dx � 2v!y � X� @
@x lnð 1�2

d!x

dx Þ
�0

x � v� X� v!y

�y

�
; (54)

as long as condition (46) on the horizon function �x holds.
The densities (53) and momenta (54) are defined up to
arbitrary normalization factors such that the energy-
momentum (52) is fixed. The ingoing and outgoing den-
sities N�, Eq. (53), conform to the Hamilton-Jacobi be-
havior (16), satisfying [see Eq. (117) of Paper 2]

N� / 1

�2
/ Ux � v; (55)

the remaining factors in Eq. (53) being constant along the
path of a stream. Similarly, the tetrad-frame momentum
p�
k , Eq. (54), accords with the Hamilton-Jacobi form (7),

with constant Hamilton-Jacobi parameters Pk along the
path of the stream.

If the black hole were uncharged, then X� defined by
Eq. (50) would vanish, and Eqs. (53) and (54) would
reduce to Eqs. (127) and (128) of Paper 2. If the black
hole’s charge-to-mass ratio Q
=M
 is of order unity, then
(one of, if only one stream is charged) X� is of order unity,

but if the black hole’s charge is small, then X� too will be
small. In any case, the charge of the black hole has little
effect on the collisionless densities N�, Eq. (53), the term
proportional to X� being of order v compared to the
principal term �0

x. This expresses the fact that the radial
components of the energy-momentum are dominated by
the streaming energy-momentum, not the electromagnetic
energy-momentum. This in turn reflects the fact that the
inflationary instability is fundamentally gravitational, not
electromagnetic. However, if the black hole’s charge-to-
mass ratio is of order unity, then it has order unity effect on
the angular components of the collisionless momenta p�

k ,

Eq. (54).
The mean charge hq�i per accreted particle is the ratio

of the charge density q�N�, Eq. (44), to the number
density N�, Eq. (53):

hq�i � q�N�

N�

¼ e�vt vQ�

2�2

s ðf0g1 þ f1g0Þ
d!x

dx ½ @@x lnð 1�2
d!x

dx Þ � v!2
y

�y
�

�0
x � v� X� v!y

�y

:

(56)

The mean charge per particle (56) decreases with time
as the black hole expands, consistent with dimensional
analysis:

hq�i / e�vt: (57)

This contrasts with the number densities N�, which are
dimensionless, independent of conformal time t. Aside
from the dependence on t, the remaining factors in the
mean charge per particle (56) are just functions of lati-
tude y, the dependence on radius x being frozen at its inner
horizon value.
The angular components of the number-weighted mo-

menta p�
k given by Eq. (54) differ from those of the charge-

weighted momenta p�
k given by Eq. (45). The difference

poses no great difficulty, but it does mean that the angular
conditions on the current and the energy-momentum of the
charged stream cannot be accomplished simultaneously
with a single collisionless component. Two components
to the charged stream would suffice. For example, one
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component could be charged, fulfilling the conditions (44)
and (45), and the other could be neutral, its number and
momentum chosen such that, when added to those of the
charged component, their sum fulfills the conditions (53)
and (54). More generally, both components could be
charged, the more highly charged stream providing much
of the current, and the more lightly charge stream provid-
ing much of the number density.

F. Remaining Einstein components

The remaining 2 Einstein components, besides the 8
given as Eq. (48), are Gxx �Gtt and Gyy þG��. These

two components govern the evolution of the horizon
function �x and inflationary exponent �, as described in
Sec. VIII D, E of Paper 2. Unlike other Einstein compo-
nents, these 2 Einstein components do not grow during
inflation, although they do grow during collapse when the
conformal factor shrinks. They do not grow firstly because
the trace of the collisionless energy-momentum remains
negligible, and the trace of the electromagnetic energy-
momentum is zero, and secondly because the combination
Gyy þG�� of angular components of the energy-

momentum is, for both collisionless and electromagnetic
contributions, independent of the radial horizon function
�x, and therefore they do not grow large at the inner
horizon where �x ! �0, unlike radial components which
are proportional to inverse powers of �x.

To dominant order, the evolution of the horizon function
and inflationary exponent during inflation and collapse are
unaffected by the collisionless and electromagnetic
energy-momentum, except that the initial electrovac solu-
tion sets the derivative �0

x of the horizon function at the
inner horizon.

The effect of the subdominant purely angular compo-
nents of the energy-momentum may be taken into account
by solving the Einstein equations for the 2 components to
next higher order in �x=Ux, as described in Sec. VIII J of
Paper 2. Given the expressions (25) for the radial electric
and magnetic fields E and B, and the solutions (36) for the
potentialsAx �At, the relevant components (31a) of the
electromagnetic energy-momentum Te

kl are

8��2ðTe
xx�Te

ttÞ

¼ 8��2ðTe
yyþTe

��Þ
1

2

�
ðUx�vÞ X

þ

v!y

þðUxþvÞ X
�

v!y

�

�
��

@

@x
ln

�
1

�2

d!x

dx

��
2þ

�
1

�2

d!y

dy

�
2
�
: (58)

If the charge-to-mass ratio of the black hole is of order
unity, so that one of X� is of order unity, then the electro-
magnetic energy-momentum (58), which is of order
�Ux=v, is larger by of order 1=v than the corresponding
collisionless energy-momentum given by Eq. (136) of
Paper 2. Thus, the angular components of the electromag-
netic energy-momentum, though still a subdominant

influence on the evolution of the horizon function and in-
flationary exponent during inflation and collapse, have a
potentially larger influence than the angular components of
the collisionless energy-momentum.
The electromagnetic energy-momentum components

(58) can be taken into account in the Einstein equations
by introducing source functions FX and FY to the evolu-
tionary equations for Ux and �x, Eq. (139) of Paper 2. The
relevant source functions are

FX ¼ FY ¼ 4��2ðTe
yy þ Te

��Þ
Ux

: (59)

During early inflation, while Ux remains at its initial value
of u, the source functions are just those of the electrovac
spacetime, which are already taken into account in the
solution. Once Ux has increased appreciably above u, the

horizon function is already exponentially tiny, j�xj �
e�1=v. The condition that the sources FX and FY have
negligible influence on the evolution of Ux and �x is that
UxFX � U2

x=j�xj, which for the source functions (59) is
equivalent to j�xj=Ux � 1=v. This is well satisfied during
inflation because j�xj is exponentially tiny, and during
collapse because j�xj remains small and Ux grows expo-
nentially large.
Eventually, the conformally separable solution breaks

down, but not because of the electromagnetic energy-
momentum (provided that only one of the ingoing and
outgoing streams is charged). Rather, when the angular
motion of the collisionless streams becomes comparable
to their radial motion, which happens when j�xj * 1 at
the end of collapse, the conformally separable Einstein
and Maxwell equations cease to be satisfied by the
energy-momentum and current of freely falling collision-
less streams.

V. BOUNDARY CONDITIONS

Maxwell’s and Einstein’s equations have prescribed
the forms of the electric current (43)–(45) and energy-
momentum (52)–(54) of the freely falling ingoing and
outgoing collisionless streams during inflation and col-
lapse. These forms are required by the condition of
conformal separability. As in Paper 2, because the accre-
tion rate is asymptotically tiny, the charge and energy-
momentum of the collisionless streams are negligible
above the inner horizon, so they have negligible effect on
the geometry above the inner horizon. From the perspec-
tive of boundary conditions, what is important is the form
of the collisionless streams incident on the inner horizon.
During inflation and collapse, the radial (x� t) compo-

nents of the momenta p�
k of the streams are of order

1=
ffiffiffiffiffiffiffiffiffiffi��x

p
times the angular (y��) components, and

dominate as long as j�xj � 1. The solution for the domi-
nant radial components is essentially unaffected by
the angular components. If only the dominant radial
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Maxwell and Einstein equations are required to be satis-
fied, then only radial boundary conditions, Sec. VA, need
be imposed. If the subdominant angular Maxwell and
Einstein equations are required to be satisfied, then also
angular boundary conditions, Sec. VB, must be imposed.
If the sub-sub-dominant purely angular Einstein equations
are further required to be satisfied, then yet further bound-
ary conditions, Sec. VD, must be imposed.

A. Density and charge of collisionless streams
incident on the inner horizon

The indispensable boundary conditions are those on the
radial (x� t) components of the collisionless current and
energy-momentum incident on the inner horizon.

The ingoing (þ) and outgoing (�) radial energy-
momenta during inflation and collapse are, Eqs. (52)–(54),

T�
xx ¼ �T�

xt ¼ T�
xx ¼ N�

�2j�xj
: (60)

The initial values of these components are set by the
incident number densities N�, Eq. (53), which are, since
Ux ¼ u initially,

N� ¼ 1

16�
ðu� vÞ

�
�0

x � v� X� v!y

�y

�
: (61)

If the subdominant parts proportional to v are neglected,
then the density (61) is uniform, independent of latitude,
meaning that the required accretion flow is monopole. If the
subdominant contributions proportional to v are taken into
account, which is necessary if the boundary conditions are
to be imposed to angular order, Sec. VB, then the part
proportional to X�, which arises from the presence of the
electromagnetic field, introduces a small angular depen-
dence of the incident densities N�.

The ingoing (þ) and outgoing (�) radial currents during
inflation and collapse are, Eqs. (43)–(45),

j�x ¼ �j�t ¼ q�N�

�
ffiffiffiffiffiffiffiffiffiffi��x

p : (62)

The initial values of the radial currents (62) are set by the
incident charge densities q�N�, Eq. (44), which are

q�N�¼ vQ�

32��2

s ðf0g1þf1g0Þ
d!x

dx

�
@

@x
ln

�
1

�2

d!x

dx

�
�v!2

y

�y

�
:

(63)

Unlike the number density N�, the charge density q�N�
varies significantly with latitude. If the subdominant term
proportional to v inside square brackets on the right-hand
side of Eq. (63) is neglected, then the incident charge
density is proportional to the radial electric field E,

q�N� ¼ vE

4�
: (64)

The different angular behaviors of the number and charge
and densities (61)–(63) mean that the mean charge per
particle must vary with latitude, Eq. (56).
The charge density Eq. (63) relates the ingoing and

outgoing cumulative black hole charges Q�
 to the rates
q�N� at which ingoing and outgoing charges are accreted.
This is a feature of conformally time-translation symmetric
(self-similar) spacetimes, that cumulative properties are
determined by the rate of their accretion.

B. Angular motions of collisionless streams
incident on the inner horizon

The angular components of the momenta of the colli-
sionless streams are subdominant during inflation and col-
lapse. If the subdominant Einstein and Maxwell equations
are to be satisfied, then angular boundary conditions must
be imposed in addition to the radial boundary conditions.
Equation (54) specifies the required number-weighted

tetrad-frame momentum p�
k of the ingoing and outgoing

streams. The corresponding number-weighted Hamilton-
Jacobi parameters P�

k are

P�
k ¼

8<
:�1;�1;

�y
@ ln�2

s

@y � X� 1
�2

d!y

dy

�0
x � v� X� v!y

�y

;

� �y
1
�2

d!x

dx � 2v!y � X� @
@x lnð 1�2

d!x

dx Þ
�0

x � v� X� v!y

�y

9=
;: (65)

Similarly, Eq. (45) specifies the required charge-weighted
tetrad-frame momentum p�

k of whichever of the ingoing or

outgoing streams is charged, and the corresponding
charge-weighted Hamilton-Jacobi parameters P�

k are

P�
k ¼

�
�1;�1;

1
�2

d!y

dy

@
@x lnð 1�2

d!x

dx Þ�v!2
y

�y

;�
@
@x lnð 1�2

d!x

dx Þ
@
@x lnð 1�2

d!x

dx Þ�v!2
y

�y

�
:

(66)

The angular components P�
y and P�

� vary with latitude y,

but remain frozen at their inner horizon values along the
path of a stream during inflation and collapse, as long as
j�xj � 1, that is, until angular motions become important
at the end of collapse, when j�xj * 1.
The number- and charge-weighted angular motions (65)

and (66) differ. To achieve both angular conditions requires
that the charged stream contain more than one component.
As remarked in Sec. IVE, both conditions (65) and (66)
together can be accomplished with two (or more) compo-
nents, a more highly charged component that produces
most of the current, and a more lightly charged component
that produces most of the number density.
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C. Feasibility of the angular boundary conditions
with collisionless streams accreted from

outside the outer horizon

Can the boundary conditions (65) and (66) on the angu-
lar motions of incident ingoing and outgoing streams be
accomplished by real collisionless streams? In Sec. X C of
Paper 2 [1], it was shown that, in the case of an uncharged
black hole, the conditions cannot be accomplished if the
collisionless streams are required to be accreted from out-
side the outer horizon. In the present subsection, it is shown
that electric charge alleviates the problem, but does not
eliminate it.

If every particle is accreted from outside the outer
horizon, then the Hamilton-Jacobi parameter Pt must nec-
essarily be negative (ingoing) at the outer horizon for every
particle. For a particle of charge q, the Pt and P� of the

particle at the inner horizon must then satisfy the inequal-
ity, generalizing inequality (161) of Paper 2,

Pt � P�

!x;in �!x;out

1�!x;out!y;in

þ q

�
�At;in þ

1�!x;in!y;in

1�!x;out!y;in

At;out

�
; (67)

where subscripts out and in denote values at the outer
and inner horizons. If the particle has the same charge as
the black hole, as is more likely since the black hole
inherits its charge from the accreted streams, then the
charge-dependent factor in condition (67) is positive, so
that the allowed region of the Pt � P� plane includes a

finite region around the origin Pt ¼ P� ¼ 0. Physically,

the black hole’s charge repels the charged particle between
the outer and inner horizon, increasing its Pt. This is
sufficient to allow the ratio Pt=P� prescribed by either of

Eqs. (65) and (66) to be accomplished at all latitudes.
If both ingoing and outgoing streams were permitted to

be charged, with the same charge as the black hole, then
condition (67) could be accomplished by both streams at
all latitudes. If both streams are charged, however, the
spacetime does not remain conformally separable because
the diagonal angular components of the electromagnetic
energy-momentum diverge near the inner horizon.
Conformal separability begins to break down when the
diverging component �2ðTe

yy � Te
��Þ, Eq. (31e), which is

dimensionless, is of order unity, which happens when

j�xj � v2Qþ
Q�

�2

: (68)

This is small, both because it is proportional to the square
v2 of the small accretion rate v, and because real black
holes are likely to have small charge, so Q�
 will be small.
The black hole charge can, despite its smallness, affect
charged particles because of the large charge-to-mass
ratio of real particles, protons and electrons. Although

the value (68) of the horizon function �x when conformal
separability fails is small, it is nonetheless large compared
to the exponentially tiny values to which the horizon
function is driven during inflation.
If conformal separability is required to persist during

inflation and collapse, then one or other of the ingoing
and outgoing streams must be neutral. For the neutral
stream, as discussed in Sec. X C of Paper 2, the condition
(67) (with q ¼ 0) cannot be satisfied simultaneously at all
latitudes.
To summarize, if conformal separability to angular order

is demanded only during the early part of inflation, then
the required conditions on the incident angular motions
of ingoing and outgoing streams can be accomplished by
collisionless streams accreted entirely from outside the
outer horizon, provided that both streams are charged,
with the same charge as the black hole. However, if con-
formal separability is demanded throughout inflation and
collapse, then one of the streams must be neutral, and the
angular conditions on that neutral stream cannot be accom-
plished by a collisionless stream accreted entirely from
outside the outer horizon.

D. Dispersion of angular motions incident
on the inner horizon

The purely angular components of the energy-
momentum tensor are sub-sub-dominant during inflation
and collapse while j�xj � 1. Their effect can nevertheless
be taken into account by solving the Einstein equations to
next higher order in�x=Ux, as described in Sec. IV F. If the
Einstein equations are required to hold to this order, then
the condition of conformal separability requires that the
2� 2 angular submatrix of the energy-momentum tensor
must be isotropic. The electromagnetic energy-momentum
tensor (31) satisfies the condition of isotropy provided that
condition (32) holds, which is true provided that only one
of the ingoing or outgoing streams is charged. As discussed
in Sec. X D of Paper 2, the condition of angular isotropy on
the collisionless energy-momentum can also be contrived,
by allowing multiple incident ingoing and outgoing
streams whose angular components of momentum satisfy
(65) in the mean, but are isotropic in their mean squares.
The more precisely the Einstein and Maxwell equations

are required to be satisfied, the more special and contrived
the conditions required by conformal separability become.

VI. CONCLUSIONS

The conformally stationary, axisymmetric, conformally
separable solutions for the interior structure of rotating
black holes found in Paper 2 [1] generalize to the case of
charged rotating black holes. Maxwell’s equations separate
consistently with Einstein’s equations. The collisionless
fluid accreted by the black hole is permitted to be electri-
cally charged, and the charge of the black hole is produced
self-consistently by the accretion of charge. As in the
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uncharged case, hyper-relativistic counterstreaming be-
tween ingoing and outgoing streams drives mass inflation
at the inner horizon, followed by collapse.

The only anomaly is that conformal separability in
charged black holes requires that only one of the ingoing
or outgoing streams can be charged: the other stream must
be neutral. If both streams are charged, then conformal
separability holds during early inflation, but radially coun-
terstreaming electric currents, in concert with the rotation
of the black hole, generate angular electromagnetic fields
that cause the nonisotropic diagonal angular component of
the electromagnetic energy-momentum to diverge, de-
stroying conformal separability. I suspect that the physical
reason for the breakdown of conformal separability is that
if both streams are charged, then they can exchange
energy-momentum via the electromagnetic field that they
mutually create. This breaks the v $ �v symmetry be-
tween the ingoing and outgoing streams, which appears to
be important to the existence of the solutions.

In practice, the condition that only one stream be
charged is physically realistic, since collisions and mag-
netohydrodynamic processes are likely to keep charged
particles tightly coupled above the inner horizon, forcing
them into a common ingoing or outgoing stream before
inflation ignites.

The most important equations in this paper are the
Maxwell equations (27). These equations hold over the
entire regime of interest, from electrovac through inflation
and collapse. In concert with the Einstein equations (88)
from Paper 2, their solution yields the full suite of both
stationary, separable electrovac, and conformally station-
ary, conformally separable inflationary solutions.

The condition of conformal separability imposes a
hierarchy of boundary conditions on the collisionless
streams incident on the inner horizon. The indispensible
boundary condition is on the dominant radial components
of the collisionless energy-momentum and current. The
radial conditions require that the incident number densities
N�, Eq. (61), of the ingoing and outgoing streams must
be uniform with latitude (with a subdominant order v
angular dependence arising from the electromagnetic
field). By contrast, the incident charge densities q�N�,
Eq. (63), must vary with latitude with, to leading order, the
same angular dependence as the radial electric field E,
Eq. (64). The different angular dependences of the num-
ber and charge densities N� and q�N� imply that the
incident mean charge per particle must vary with latitude,
Eq. (56).

If the subdominant radial-angular components of the
Einstein equations and angular components of the
Maxwell equations are required to be satisfied, then con-
formal separability requires that the angular components of
the number-weighted and charge-weighted momenta of the
incident streams have Hamilton-Jacobi parameters Pk sat-
isfying Eqs. (65) and (66), respectively. The number- and

charge-weighted angular motions differ, implying that the
conditions cannot be accomplished by a collisionless
charged stream containing just one component. However,
the angular conditions on a charged stream can be achieved
with two (or more) components, a more highly charged
component that produces most of the current, and a more
lightly charged component that produces most of the num-
ber density.
In Paper 2, it was emphasized that the solutions had the

limitation that the angular conditions on the incident in-
going and outgoing streams could not be achieved by
collisionless streams that fall freely from outside the outer
horizon. The present paper finds that the required angular
conditions can be achieved by a charged stream, provided
that the stream has the same sign charge as the black hole,
but not by a neutral stream. As commented above, if both
streams are charged, then conformal separability holds
only during early inflation. If conformal separability is
required to hold throughout inflation and collapse, then
one of the streams must be neutral, and then the angular
conditions on the incident neutral stream cannot be
achieved by a stream that falls freely from outside the
outer horizon.
If the sub-sub-dominant purely angular Einstein equa-

tions are required to be satisfied, then conformal separa-
bility requires that the angular energy-momentum tensor
be isotropic (proportional to the unit 2� 2 matrix). The
electromagnetic energy-momentum is isotropic provided
that only one of the ingoing or outgoing streams is charged,
and the collisionless energy-momentum can be contrived
to be isotropic.
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APPENDIX A: NON-VANISHING Zx AND Zt

The calculation of the evolution of the potentials
Ax �At in Sec. IVA was premised in part on the
vanishing of Zx and Zt defined by Eq. (24). This
Appendix examines what happens if Zx and Zt do not
vanish.
The conclusion is that Zx and Zt must take a certain form

(A5) in order that Maxwell’s equations can continue to be
satisfied by the current of collisionless streams. By adjust-
ing the proportionality factor z in this form (A5), the
angular current j�� of the collisionless ingoing or outgoing

stream can be adjusted to be an essentially arbitrary func-
tion of latitude y. This change relaxes the angular condi-
tions on the current imposed by the assumption of
conformal separability, but leaves all the conclusions of
the main text unchanged. Only the azimuthal angular
current j�� is adjustable: the radial currents j�x and j�t are
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scarcely affected, and the angular current j�y is not affected

at all.

1. Required form of Zx and Zt

Currents sourced by Maxwell’s equations (29) with non-
vanishing Zx and Zt must continue to fit the form of
collisionless currents. For the radial currents jx � jt, this
requires that the set of terms proportional to Zt on the right-
hand side of Eq. (29a) must be proportional to Ax �At

times an appropriate factor of the horizon function �x (the
subdominant third term inside square brackets is tempo-
rarily neglected in this Sec. A 1, but is reinstated there-
after):

�
@

@x
� v

�x

�
Zt / Ax �At

�x

: (A1)

Equation (A1) requires that

@Zt

@x
¼ �Ax

At

v

�x

Zt; (A2)

which, given that Ax ¼ �At, integrates to

Zt / Ax �At; (A3)

whichever one ofAx�At is nonvanishing. Equation (33)
shows that Zx � Zt is a source for the evolution of
Ax �At. To ensure that the combination Ax �At

that vanishes continues to vanish as j�xj decreases to
exponentially tiny values, the corresponding source

Zx � Zt must also vanish. Putting this condition together
with (A3) requires that

Zx ¼ �Zt / Ax �At; (A4)

for whichever one of Ax �At is nonvanishing. The
constraints (A4) on Zx and Zt are conveniently written

Zx � Zt ¼ z
v!y

�y

ðAx �AtÞ; (A5)

for some factor z, which could be an arbitrary function of
angle y.

2. Evolution of the electromagnetic potential
and enclosed charge

Inserting the result (A5) for Zx � Zt into the evolution-
ary Eq. (33) for Ax �At gives�

@

@x
� v

�x

� z
v!y

�y

�
Ax �At

d!x=dx
¼ 0: (A6)

The driving term proportional to v=�x, which diverges at
the inner horizon �x ! �0, dominates the term propor-
tional to z in the conformally stationary limit. The z term
changes the evolution of the potentials negligibly.

3. Maxwell’s equations

Given Zx and Zt from Eq. (A5), Maxwell’s
equations (29) become Eq. (41) with, in the same format
as Eq. (42),

j�x ¼�j�t � 1

8��3

vffiffiffiffiffiffiffiffiffiffi��x

p ðAx�AtÞ
�
� @

@x
ln

�
1

�2

d!x

dx

�
�v!2

y

�y

þz
!y

�y

�
�v��x

�
@

@x
ln

�
1

�

d!x

dx

�
þ z

2

v!y

�y

���
; (A7a)

j�� �� 1

8��3

v!yffiffiffiffiffiffi
�y

q ðAx�AtÞ
�
@

@x
ln

�
1

�2

d!x

dx

�
�z

�
� 1

�2

d!x

dx
�v!y

�y

��
; (A7b)

while the expression (42b) for j�y remains unchanged.
The term proportional to �x on the far right-hand side of
Eq. (A7a) is negligible compared to the other terms for
j�xj � 1, so the radial Maxwell equation (A7a) simpli-
fies to

j�x ¼ �j�t

¼ 1

8��3

vffiffiffiffiffiffiffiffiffiffi��x

p ðAx �AtÞ

�
�
� @

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

� z
v!y

�y

�
: (A8)

4. Collisionless source of electric current

Maxwell’s equations (41) with currents given by
Eqs. (A8), (42b), and (A7b) can be satisfied by currents
from a sum of ingoing and outgoing collisionless streams,
Eq. (43), with charge densities

q�N� ¼ � vQ�

32��2ðf0g1 þ f1g0Þ
d!x

dx

�
�
@

@x
ln

�
1

�2

d!x

dx

�
� v!2

y

�y

þ z
v!y

�y

�
; (A9)

and charge-weighted tetrad-frame momenta
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p�
k ¼ 1

�

�
� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;

1ffiffiffiffiffiffi
�y

q
1
�2

d!y

dy

@
@x lnð 1�2

d!x

dx Þ � v!2
y

�y
þ z

v!y

�y

;

� 1ffiffiffiffiffiffi
�y

q
@
@x lnð 1�2

d!x

dx Þ � zð� 1
�2

d!x

dx þ v!y

�y
Þ

@
@x lnð 1�2

d!x

dx Þ � v!2
y

�y
þ z

v!y

�y

�
: (A10)

The adjustable angle-dependent factor z makes only a
subdominant order v change to the charge densities
q�N�, Eq. (A9), but an order unity change to the azimu-
thal component p�

� of the momentum (A10). Adjusting z

changes the azimuthal current j�� arbitrarily, but leaves the

other current components essentially unchanged.
It is worth commenting that z can be adjusted so that the

azimuthal current j�� is zero for whichever stream is

charged. This in no way affects the conclusion that only
one of the ingoing or outgoing streams can be charged.
The divergence in the angular component (31e) of the
electromagnetic energy-momentum tensor is driven by
counterstreaming of radial, not angular, ingoing and

outgoing currents, coupled to the rotation of the black
hole. The only way to remove the divergence, as conformal
separability requires, is to allow only one of the radial
currents to be charged.

5. Energy-momenta

A finite Zx � Zt affects the radial electric field E,
Eq. (25), to subdominant order v. This small change
propagates into corresponding components (31) of the
electromagnetic energy-momentum tensor, which leads
to a small change in the azimuthal component p�

� of the

number-weighted tetrad-frame momenta of collisionless
ingoing and outgoing streams. The small change amounts
to changing

@

@x
ln

�
1

�2

d!x

dx

�
! @

@x
ln

�
1

�2

d!x

dx

�
þ z

v!y

�y

(A11)

in expressions (49c) and (58) for the electromagnetic
energy-momentum components Te

x� � Te
t� and Te

xx � Te
tt,

and in Eq. (54) for the azimuthal component p�
� of the

number-weighted tetrad-frame momenta.
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