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This paper presents a concise derivation of a new set of solutions for the interior structure of accreting,

rotating black holes. The solutions are conformally stationary, axisymmetric, and conformally separable.

Hyper-relativistic counter-streaming between freely-falling collisionless ingoing and outgoing streams

leads to mass inflation at the inner horizon, followed by collapse. The solutions fail at an exponentially

tiny radius, where the rotational motion of the streams becomes comparable to their radial motion. The

papers provide a fully nonlinear, dynamical solution for the interior structure of a rotating black hole from

just above the inner horizon inward, down to a tiny scale.
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I. INTRODUCTION

Twocompanion technical papers [1,2], hereafter Papers 2
and 3, present conformally stationary, axisymmetric, con-
formally separable solutions for the interior structure
of a rotating black hole that accretes a collisionless fluid,
undergoes inflation at its inner horizon, and then collapses.
Paper 2 deals with uncharged black holes, while Paper 3
generalizes to charged black holes. The purpose of the
present paper is to give an abbreviated derivation of the
solution for an uncharged black hole, and to summarize
the principal features of the solution. A Mathematica note-
book containing many details of the calculations is at [3].

The papers consider only classical general relativity, not
alternate theories of gravity, nor speculative quantum pro-
cesses that might occur at the outer horizon.

The Penrose diagram of the analytically extended Kerr
[4] geometry, Fig. 1, provides a good starting point for
understanding where and how the interior Kerr geometry
fails. A spherical charged (Reissner-Nordström) black hole
has a similar interior structure, with essentially the same
Penrose diagram, and much of the literature has focused on
this simpler case. The Kerr geometry, and more generally
the Kerr-Newman geometry, has two inner horizons that
are gateways to regions of unpredictability, signalled by
the presence of timelike singularities. In 1968, Penrose [5]
pointed out that an observer passing through the outgoing
inner horizon (the Cauchy horizon) of a spherical charged
black hole would see the outside Universe infinitely blue-
shifted, and he suggested that the infinite blueshift would
destabilize the inner horizon. The infinite blueshift is plain
from the Penrose diagram, Fig. 1, which shows that a
person passing through the outgoing inner horizon sees
the entire future of the outside Universe go by in a finite
time. Perturbation theory, much of it expounded in
Chandrasekhar’s (1983) monograph [6], confirmed that

waves from the outside Universe would amplify to a di-
verging energy density on the outgoing inner horizon of a
spherical charged black hole. The result was widely inter-
preted as indicating the instability of the inner horizon.
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FIG. 1 (color online). Partial Penrose diagram illustrating why
the Kerr geometry is subject to the inflationary instability.
Ingoing and outgoing streams just outside the inner horizon
must pass through separate ingoing and outgoing inner horizons
into causally separated pieces of spacetime where the timelike
Kerr time coordinate t goes in opposite directions. To accom-
plish this, the ingoing and outgoing streams must exceed the
speed of light through each other, which physically they cannot
do. In reality, hyper-relativistic counter-streaming between the
ingoing and outgoing streams ignites and then drives the ex-
ponentially growing inflationary instability. The inset shows the
direction of coordinate time t in the various regions. Proper time
of course always increases upward in a Penrose diagram.
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It was not until 1990 that the full nonlinear nature of the
instability at the inner horizon was eventually clarified by
Poisson & Israel [7]. Poisson & Israel showed that if
ingoing and outgoing streams are simultaneously pre-
sent just above the inner horizon of a spherical charged
black hole, then cross-flow between the two streams would
lead to an exponential growth of the interior mass. They
called the instability ‘‘mass inflation.’’ Shortly thereafter,
Barrabès, Israel & Poisson [8] generalized the arguments
to the case of rotating black holes, showing that whenever
two null sheets cross, an effective mass parameter defined
by the product of the expansions of the null bundles
inflates. The inflationary instability in spherical charged
black holes was confirmed analytically and numerically in
several studies, as reviewed by [9].

The physical reason for the inflationary instability can
be seen in the Penrose diagram, Fig. 1. In the black hole
region between the outer and inner horizons, the time
coordinate (the one that expresses time translation symme-
try) is spacelike, so that it is possible to go either forward or
backward in time. Inside the inner horizon, the time coor-
dinate reverts to being timelike. Ingoing particles want to
fall into a region where the time coordinate is progressing
forwards, while outgoing particles want to fall into a region
where the time coordinate is progressing backwards. The
Penrose diagram, Fig. 1, shows that indeed there are two
distinct ingoing and outgoing inner horizons which dis-
gorge on to two causally separated pieces of spacetime
where the time coordinate is pointed in opposite directions.
To achieve this causal separation, the ingoing and out-
going streams must exceed the speed of light relative to
each other. This is Penrose’s infinite blueshift. In reality, if

ingoing and outgoing streams are present, then their at-
tempt to exceed the speed of light relative to each other
produces a counter-streaming energy and pressure that,
however tiny the initial streams may be, inevitably grows
to the point that it becomes a significant source of gravity.
As expounded by [9], the counter-streaming pressure pro-
duces a gravitational force that is in opposite directions
for ingoing and outgoing streams, accelerating the streams
ever faster through each other, in turn increasing the
counter-streaming pressure. The inflationary instability
thus grows exponentially.

II. APPROACH

The strategy adopted in the present papers is motivated
by two key physical insights.
The first insight is that, as shown in Sec. Vof Paper 2 [1],

collisionless ingoing and outgoing streams falling towards
the inner horizon of the Kerr-Newman geometry become
highly focused into twin narrow, intense beams pointed
along the ingoing and outgoing principal null directions.
The focusing is along these two special directions regard-
less of the initial distributions of orbital parameters of the
streams. This implies that the energy-momentum tensor of
the ingoing and outgoing streams takes a simple and pre-
dictable form near the inner horizon. (We use the term
inner horizon to describe the narrow region where inflation
takes place, even though the inner horizon is destroyed by
inflation, and therefore does not actually exist).
As first shown by [10], the Kerr-Newman geometry

(and some other electrovac geometries) is Hamilton-
Jacobi separable in a tetrad aligned with the principal

FIG. 2 (color online). Contours of constant radius x and latitude y in an uncharged black hole with spin parameter a ¼ 0:96M�.
The thicker contours mark the outer and inner horizons. The left panel depicts a Kerr black hole. The right panel depicts a black hole of
the kind considered in the present series of papers, which undergoes inflation just above the inner horizon, then collapses. In the Kerr
geometry, surfaces of constant radius are confocal ellipsoids in Boyer-Lindquist coordinates, while surfaces of constant latitude are
confocal hyperboloids, with a ring singularity at their focus. In the inflationary geometry, the streaming energy density and pressure,
and Weyl curvature, inflate to exponentially huge values at (just above) the inner horizon, which is destroyed. In the conformally
separable solutions presented here, the geometry then collapses radially to exponentially tiny size without changing shape.
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null directions. The fact that collisionless streams focus
near the inner horizon along precisely these principal null
directions suggests that the spacetime might continue to be
separable in the presence of inflation.

The second insight is that the geometry of a spherical
charged black hole undergoing inflation at ( just above)
its inner horizon has a step-function character. The space-
time is well-approximated by the electrovac (Reissner-
Nordström) geometry down to just above the inner horizon.
Then, in a tiny interval of radius and proper time near
the inner horizon, the center-of-mass counter-streaming
energy and pressure, the Weyl curvature, and the interior
mass all inflate to exponentially huge values. Counter-
intuitively, the smaller the incident ingoing and outgoing
streams, the more rapidly quantities exponentiate [9]. In
the limit of tiny accretion rate, the geometry tends to a step-
function. This suggests that inflationary spacetimes might
be found by looking for solutions with a steplike character.
The steplike character of the inflationary solutions can be
seen in the sharp turns at the inner horizon in the contours
of constant radius and latitude in Fig. 2.

As an aside, it is worth commenting on the challenges
and pitfalls of computing inflationary spacetimes numeri-
cally rather than analytically. One major numerical chal-
lenge arises from the fact that during inflation physical
quantities inflate to exponentially huge values over tiny
intervals of distance and time. One potential pitfall is that
inflation requires ingoing and outgoing streams that can
stream relativistically through each other. A code, or in-
deed analytic model, that treats the matter as a single fluid
with a sound speed less than the speed of light artificially
suppresses inflation by disallowing the relativistic counter-
streaming that drives it.

III. SUMMARY DERIVATION

This section summarizes the derivation of the solution
for an uncharged rotating black hole. Complete details are
given in Paper 2.

The solutions presented in this series of papers are
conformally stationary, axisymmetric, and conformally
separable. Conformally stationarity combines the assump-
tion of conformal time translation invariance (self-
similarity) with an infinitesimal expansion rate. Let x� �
fx; t; y; �g be coordinates in which t is conformal time,� is
the azimuthal angle, and x and y are radial and angular
coordinates. As shown in Appendix A of Paper 2 [1], the
line-element may be taken to be

ds2 ¼ �2

�
dx2

�x

� �x

�4
ðdt�!yd�Þ2 þ dy2

�y

þ�y

�4
ðd��!xdtÞ2

�
; (1)

where

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!x!y

q
: (2)

The determinant of the 2� 2 submatrix of t-� metric
coefficents defines the radial and angular horizon functions
�x and �y:

gttg�� � g2t� ¼ � �4

�4
�x�y: (3)

Horizons occur when one or other of the horizon functions
�x and �y vanish. The focus here is the region near the

inner horizon where the radial horizon function �x is
negative and tending to zero. The line-element (1) defines
a tetrad that is aligned with the principal null directions.
Since the radial coordinate x is timelike near the inner
horizon, it is convenient to take x as the time coordinate of
the tetrad, and to choose the sign of x so that it increases
inwards, the direction of advancing time.
The conformal factor � is a product of separable

(electrovac) �s, time-dependent evt, and inflationary e��

factors,

� ¼ �se
vt��: (4)

Conformal time translation symmetry is expressed by
the fact that the spacetime expands conformally (that is,
without changing shape) by factor � ! ev�t� when the
conformal time increases by t ! tþ�t. Conformal sta-
tionarity means taking the limit of small expansion rate, or
small accretion rate, after calculations are complete,

v ! 0: (5)

This is not the same as stationarity, which sets v to zero
at the outset. A feature of inflation is that the smaller the
accretion rate, the faster inflation exponentiates. Even in
the limit of infinitesimal accretion rate, inflation drives the
center-of-mass streaming density and pressure, and the
Weyl curvature, to exponentially huge values. Mathe-
matically, Einstein’s equations contain terms of order
�v=�x that grow large at the inner horizon �x ! �0
however small the accretion rate v may be.
This paper adopts a collisionless fluid as the source

of energy-momentum that ignites and then drives infla-
tion. Because collisionless particles stream hyper-
relativistically through each other during inflation, the
trajectories of massive freely-falling particles are well-
approximated by those of massless particles. Conformal
separability posits that the equations of motion of freely-
falling massless particles are Hamilton-Jacobi separable,
which implies that a conformal Killing tensor exists. As
shown in Appendix A of Paper 2, conformal separability
requires that

!x;�x are functions of x only;

!y;�y are functions of y only:
(6)
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Unlike strict separability (for massive as well massless
particles), conformal separability does not impose condi-
tions on the conformal factor �.

Conformally separable inflationary solutions are ob-
tained by separating the Einstein equations systematically.
Homogeneous solution of the Einstein components Gxy,

Gt�, and Gxx þGtt and Gyy �G�� leads to the usual

electrovac solutions for the electrovac conformal factor
�s and the vierbein coefficients !x and !y:

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x þ �2

y

q
;

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0 � g1!x

ðf0g1 þ f1g0Þðf0 þ f1!xÞ
s

;

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g1 � g0!y

ðf0g1 þ f1g0Þðf1 þ f0!yÞ
s

;

(7)

d!x

dx
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf0 þ f1!xÞðg0 � g1!xÞ

q
;

d!y

dy
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf1 þ f0!yÞðg1 � g0!yÞ

q
;

(8)

where f0, f1, g0, and g1 are constants determined by
boundary conditions. Eqs. (7) and (8) continue to hold
throughout inflation and collapse. The inflationary solu-
tions are generic, applying wherever a separable electrovac

spacetime has an inner horizon, so the specific choice of
constants f0, f1, g0, and g1 does not affect the argument.
The most important Einstein equations, since they lead

to equations governing the evolution of the inflationary
exponent � and the horizon function �x, are those for the
Einstein components Gxx �Gtt and Gyy þG��. The col-

lisionless source of both these components can be treated
as negligible, in the conformally stationary limit of small
accretion rate. The angular components are negligible
because inflation amplifies the radial, not angular compo-
nents; and the trace of the collisionless energy-momentum
remains small because it depends on the rest mass of the
particles, which is unchanged by inflation. Define Ux, Uy,

Xx, Xy, Yx, and Yy by

Ux � �@�

@x
�x; Uy � @�

@y
�y; (9a)

Xx � @Ux

@x
þ 2

U2
x � v2

�x

; Xy �
@Uy

@y
� 2

U2
y þ v2!2

y

�y

;

(9b)

Yx � d�x

dx
þ 3Ux � �x

d

dx
ln

�
ðf0 þ f1!xÞ d!x

dx

�
;

Yy �
d�y

dy
� 3Uy � �y

d

dy
ln

�
ðf1 þ f0!yÞ

d!y

dy

�
: (9c)

In terms of these quantities, the Einstein components
Gxx �Gtt and Gyy þG�� are

�2ðGxx �GttÞ ¼ 1

�2

�
Yx

d ln!x

dx
� Yy

d ln!y

dy

�
� 2Xx þ Yx

d

dx
ln

�
f0 þ f1!x

!x

�
þ Xy �

@Yy

@y
þ Yy

d

dy
ln

�
!yðf1 þ f0!yÞ

d!y=dy

�

þUx

@

@x
ln½�2ðf0 þ f1!xÞ� �Uy

@

@y
ln

�ðg1 � g0!yÞ
�2

d!y

dy

�
; (10a)

�2ðGyy þG��Þ ¼ 1

�2

�
Yx

d ln!x

dx
� Yy

d ln!y

dy

�
� 2Xy � Yy

d

dy
ln

�
f1 þ f0!y

!y

�
þ Xx þ @Yx

@x
� Yx

d

dx
ln

�
!xðf0 þ f1!xÞ

d!x=dx

�

þUy

@

@y
ln½�2ðf1 þ f0!yÞ� �Ux

@

@x
ln

�ðg0 � g1!xÞ
�2

d!x

dx

�
: (10b)

Homogeneous solutions of these equations can be found by
supposing that Ux, Xx, and Yx are all functions of radius x,
while Uy, Xy, and Yy are all functions of radius y, and by
separating each of the equations as

1

�2

�
f0h0 þ h2!x þ f1h1!

2
x

!x

� f1h1 þ h2!y þ f0h0!
2
y

!y

�

� f0h0 þ h3!x

!x

þ f1h1 þ h3!y

!y

¼ 0; (11)

for some constants h0, h1, h2, and h3. If one attempts to
separate Eqs. (10) exactly, then the attempt fails unless Ux

and Uy are identically zero, which is the usual electrovac
case. But if Ux is taken to be small but finite, then separa-
tion succeeds, and inflation emerges. If Ux and Uy on the

second lines of Eqs. (10) are treated as negligibly small,
then separating the first lines of each of Eqs. (10) according
to the pattern of Eq. (11) leads to the homogeneous
solutions

Xx ¼ 0; Xy ¼ 0; (12a)

Yx ¼ ðf0 þ f1!xÞðh0 þ h1!xÞ
d!x=dx

;

Yy ¼
ðf1 þ f0!yÞðh1 þ h0!yÞ

d!y=dy
: (12b)

IfUx ¼ Uy ¼ 0, then solution of Eqs. (9c) and (12b) for Yx

and Yy, subject to appropriate boundary conditions, yields
the radial and angular horizon functions �x and �y of the
Kerr line-element. The result is easily generalized to other
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electrovac spacetimes by admitting appropriate sources for
Yx and Yy.

The quantity Xy defined by Eq. (9b) determines the

evolution of Uy, and the solution Xy ¼ 0, Eq. (12a), then

implies that inflation leaves Uy unchanged, and sensibly

equal to its electrovac value of zero, in the conformally
stationary limit. Thus inflation leaves the angular horizon
function �y unchanged from its electrovac value.

On the other hand, inflation drives Ux away from zero
however small it might initially be. In the vicinity of the
inner horizon, where �x ! �0, the solutions (12) for Xx

and Yx defined by Eqs. (9b) and (9c) imply the evolution
equations

@Ux

@x
þ 2

U2
x � v2

�x

¼ 0; (13a)

d�x

dx
þ 3Ux ¼ �0

x; (13b)

where �0
x � d�x=dxjxin is the (positive) derivative of the

electrovac horizon function at the inner horizon x ¼ xin.
Below, Eq. (28c), it will be found that the radius x remains
frozen at its inner horizon value xin throughout inflation
and collapse, so the right-hand side of Eq. (13b), which is
the electrovac solution for Yx evaluated at the inner hori-
zon, is constant during inflation and collapse. The evolu-
tion Eq. (13a) forUx involves a term inversely proportional
to the horizon function �x, which diverges at the inner
horizon �x ! �0, driving Ux away from zero however
small Ux might initially be.

Equation (13a) leads to instability only at the inner
horizon, where �x ! �0. At the outer horizon, where
�x ! 0, solutions of Eq. (13a) decay rather than grow.

The separation of the Einstein components (10) that
leads to the evolution Eqs. (13) was premised on the
assumption that the terms proportional to Ux and Uy on

the second lines of Eqs. (10) could be neglected. However,
the separation continues to remain valid during inflation
and collapse when Ux grows huge. The reason for this is
that the dominant terms in the Einstein components (10)
during inflation and collapse are of order U2

x=�x, coming
from the expression (9b) for Xx. Thus, onceUx ceases to be
negligible, the condition for the validity of the separation
becomes Ux � U2

x=j�xj, or equivalently j�xj � Ux.
Consequently the condition for the validity of the separa-
tion of the Einstein components (10) is

either Ux � 1 or j�xj � Ux: (14)

Condition (14) holds from electrovac through inflation and
collapse, provided that the accretion rate is small, as con-
formal stationarity prescribes. The fact that condition (14)
suffices is verified in Sec. VIIIJ of Paper 2, where the
Einstein equations are solved to next order in �x=Ux, and
it is shown that the effect on the evolution of the infla-
tionary exponent � and horizon function �x is negligible.

The evolution Eqs. (13) are solved in the next section,
Sec. IV, but first it is necessary to attend to the other
Einstein equations.
In the conformally separable geometry, freely-falling

collisionless ingoing and outgoing streams become highly
focused along the principal ingoing and outgoing null
directions as they approach the inner horizon. Inflation
accelerates the streams even faster along the same null
directions, causing the x and t components of the tetrad-
frame momenta of freely-falling collisionless streams to
grow exponentially. Consequently the collisionless energy-
momentum is dominated by its x-t components. The asso-
ciated components of the Einstein tensor are

�2

�
Gxx þGtt

2
�Gxt

�

¼ ðUx 	 vÞ
�
Yx � v

��x

� d

dx
ln

�
d!x

dx

��
þ Xx: (15)

Since Xx ¼ 0, and Yx ¼ �0
x, and the term proportional to

d lnðd!x=dxÞ=dx is subdominant (in fact the term disap-
pears when the Einstein components (10) and correspond-
ing evolution Eqs. (13) are solved to next order in �x=Ux;
see Paper 2), Eq. (15) simplifies to

�2

�
Gxx þGtt

2
�Gxt

�
¼ 1

��x

ðUx 	 vÞð�0
x � vÞ: (16)

The right-hand side of Eq. (15) agrees with 8� times the
energy-momentum tensor of two collisionless streams, one
ingoing (þ) and one outgoing (�),

Tkl ¼ Nþpþ
k p

þ
l þ N�p�

k p
�
l ; (17)

with densities

N� ¼ 1

16�
ðUx 	 vÞð�0

x � vÞ; (18)

and tetrad-frame momenta

p�
k ¼ 1

�

�
� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;	 1ffiffiffiffiffiffiffiffiffiffi��x

p ; 0; 0

�
: (19)

The tetrad-frame momenta (19) are null vectors pointed
along the principal ingoing and outgoing null directions.
That Eqs. (18) and (19) describe correctly the behavior
of freely-falling streams can be shown by solving the
Hamilton-Jacobi and collisionless Boltzmann equations
(see Paper 2), and can be confirmed by checking that
the densities and momenta satisfy, to requisite accuracy,
covariant number conservation, DkN�p�

k ¼ 0, and the

geodesic equation dp�
k =d� ¼ 0, where � is an affine pa-

rameter. It might seem somewhat miraculous that the x-t
components of the Einstein equations are satisfied with
a collisionless source, but it is no coincidence. Einstein’s
equations enforce covariant energy-momentum conser-
vation, DkTkl ¼ 0. Since the angular components are
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subdominant, only the 3 distinct x-t components of the
energy-momentum tensor are important. The 3 compo-
nents are subject to 2 energy-momentum conservation
equations, but in the present instance the 2 conservation
equations are redundant, so there is effectively 1 conser-
vation equation. However, the energy-momentum conser-
vation equations for freely-falling ingoing and outgoing
streams are symmetrically related to each other by
v ! �v, so conservation of the sum of their energies, as
enforced by Einstein, implies conservation of both. The
two conservation equations, coupled with solution of the
Einstein equation for Gxx �Gtt, Eq. (10a), leads to a
complete, self-consistent set of equations.

The angular motions of the freely-falling streams are
small compared to their radial motions, but not necessarily
zero. Next in order of magnitude, after the 3 radial (x-t)
components of the energy-momentum tensor, are its 4 off-
diagonal radial-angular components. The corresponding
components of the Einstein tensor are

�2ðGxy�GtyÞ¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q ðUx	vÞ
�
�y

@ln�2
s

@y
�2Uy

�

�
ffiffiffiffiffiffiffiffiffiffi��x

�y

s �
Uy

@ln�2
s

@x
�v!y

�2

d!y

dy

�
; (20a)

�2ðGx��Gt�Þ¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q ðUx	vÞ
�
�y

�2

d!x

dx
	2v!y

�

	
ffiffiffiffiffiffiffiffiffiffi��x

�y

s �
Uy

�2

d!y

dy
	v!y

@ln�2
s

@x

�
: (20b)

Since Uy and the terms proportional to v
ffiffiffiffiffiffiffiffiffiffi��x

p
are negli-

gible, Eqs. (20) simplify to

�2ðGxy �GtyÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q ðUx 	 vÞ�y

@ ln�2
s

@y
; (21a)

�2ðGx� �Gt�Þ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��x�y

q ðUx 	 vÞ
�
�y!

0
x

�2
	 2v!y

�
;

(21b)

where !0
x � d!x=dxjxin , which is effectively constant

throughout inflation and collapse, is the derivative of !x

at the inner horizon x ¼ xin, Eq. (8). The right-hand sides
of Eqs. (21) agree with 8� times the energy-momentum
tensor of ingoing and outgoing streams with the same
densities N� as before, Eq. (18), but with tetrad-frame
momenta p�

k having finite rather than zero angular

components:

p�
k ¼ 1

�

�
� 1ffiffiffiffiffiffiffiffiffiffi��x

p ;	 1ffiffiffiffiffiffiffiffiffiffi��x

p ;
1ffiffiffiffiffiffi
�y

q

�
�
�y@ ln�

2
s=@y

�0
x � v

�
;	 1ffiffiffiffiffiffi

�y

q �
�y!

0
x=�

2 	 2v!y

�0
x � v

��
:

(22)

The tetrad-frame momenta (22) satisfy the Hamilton-
Jacobi equations with constant Hamilton-Jacobi parame-
ters along the path of the streams. The angular components
of the momenta are small compared to the radial compo-
nents as long as

j�xj � 1: (23)

The momentum (22) is hyper-relativistic, and p�
t ¼ �p�

x

to an excellent approximation so long as condition (23) is
true. If the condition (23) is violated, then it signifies that
angular motions are becoming important, and the solution
is breaking down.
It should be emphasized that, as long as condition (23)

holds, the purely radial (x-t) Einstein equations hold re-
gardless of angular motions, and thus the radial solution is
unaffected by angular motions. However, if one requires
that the subdominant radial-angular Einstein equations are
also satisfied, then the angular motion of the collisionless
streams must be as given by Eq. (22). One might perhaps
have expected that conformally separable solutions would
require that the collisionless streams would move exactly
along the principal null directions, but Eq. (22) shows that
this is not true.
Again, it might seem remarkable that the radial-angular

Einstein equations are satisfied by collisionless ingoing and
outgoing streams. And again, this coincidence results from
energy-momentumconservation. There are 4 radial-angular
Einstein components, subject to 2 energy-momentum con-
servation equations. The energy-momentum conservation
equations for the freely-falling ingoing and outgoing
streams are symmetrically related by v ! �v, so conser-
vation of their sum implies conservation of both.
The final, sub-sub-dominant, components of the energy-

momentum tensor are the 3 purely angular (y-�) compo-
nents. The component Gyy þG�� component has already

been addressed, Eq. (10b). The remaining 2 components are

�2

�
Gyy �G��

2
� iGy�

�

¼ ðUy 	 iv!yÞ
��Yy � iv!y

�y

� d

dy
ln

�
d!y

dy

��

þ Xy 	 iv
d!y

dy
: (24)

Since Xy ¼ 0, andUy and v are negligibly small, and there

are no denominators of the radial horizon function �x,
Eq. (24) simplifies to
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�2

�
Gyy �G��

2
� iGy�

�
¼ 0: (25)

During inflation, the collisionless streams have negligible
angular components of energy-momentumbecause the den-
sities of the accreting streams are negligible, in the con-
formally stationary limit, and inflation does not amplify
angular motions. During collapse, the conformal factor �
shrinks, and angular motions grow. However, as long as the
angular motions are subdominant, which is true as long as
condition (23) is satisfied, the angular components of
the energy-momentum can be neglected consistently: the
Einstein equations for the purely radial components, and for
the radial-angular components, are unaffected by the angu-
lar components (25) (the angular component Gyy þG��,

along with Gxx �Gtt, Eqs. (10), determined the angular
horizon function �y, which inflation leaves unaltered from

its electrovac form). Equation (25) requires that the 2� 2
angular submatrix of the energy-momentum tensor be iso-
tropic, proportional to the 2� 2 unitmatrix. As discussed in
Paper 2, it is possible to arrange the angular energy-
momentum to be isotropic by admitting multiple ingoing
and outgoing streams, with mean momenta set by Eq. (22)
and isotropicmean squaredmomenta. Treating the diagonal
components of the angular energy-momentum requires tak-
ing Eqs. (10) to next order in �x=Ux, but this can be done.

Eventually however, the angular components do become
important, when j�xj � 1, and the solution fails.

IV. INFLATION AND COLLAPSE

Denote the initial value of Ux, Eq. (9a), incident on the
inner horizon by u, a small parameter of order v,

Ux ¼ u initially: (26)

The densities N� of ingoing and outgoing streams incident
on the inner horizon are proportional to u	 v, Eq. (18).
Inflation is driven by counter-streaming between ingoing
and outgoing streams, so both streams must be present for
inflation to occur, but even the tiniest amount suffices to
trigger inflation. Positivity of both ingoing and outgoing
densities requires that

u > v > 0; (27)

the condition v > 0 coming from the fact that the black
hole must expand as it accretes. The case v ¼ 0 is the
stationary (or homogeneous) approximation of [11]. The
densities N�, Eq. (18), are also proportional to �0

x 	 v,
where �0

x is the positive derivative of the electrovac hori-
zon function at the inner horizon. Positivity of both ingoing
and outgoing densities requires �0

x to be strictly positive,
which excludes extremal black holes, whose inner and
outer horizons coincide, and which have �0

x ¼ 0 at the
horizon.

Solution of the evolution Eqs. (13) for Ux and �x yields

Ux¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þðu2�v2Þe4�

q
; (28a)

�x¼�
�
U2

x�v2

u2�v2

�
3=4

�ðUxþvÞðu�vÞ
ðUx�vÞðuþvÞ

�
�0

x=ð4vÞ
; (28b)

x�xin¼�
Z �xdUx

2ðU2
x�v2Þ : (28c)

The integral on the right-hand side of Eq. (28c) can be
expressed analytically as an incomplete beta function, but
the expression is not useful. Physically, Eq. (28c) says that
the radius x is frozen at its inner horizon value xin during
inflation and collapse, where Ux is growing, while �x

remains small.
Figure 3 illustrates the evolution of Ux and the horizon

function �x as a function of the inflationary exponent �,
for parameters v ¼ 0:001 and u ¼ 0:002. The value v ¼
0:001, which physically represents the velocity with which
a distant observer sees the characteristic radius of the black
hole expand, is large compared to a typical astronomical
accretion rate, but a large value is needed to avoid numeri-
cal overflow. Inflation ignites near the inner horizon as the
horizon function j�xj drops below u. During inflation, the
horizon function j�xj decreases exponentially, while Ux

increases slowly. During inflation, the inflationary expo-
nent � in the conformal factor �, Eq. (4), satisfies

� � d�

dx
� d2�

dx2
; (29)

which is the behavior characteristic of a step-function.
The inequalities (29) essentially say that the acceleration
d2�=dx2 of the inflationary exponent, which is driven by
the radial energy-momentum of the collisionless streams,
is much larger than the velocity d�=dx, which in turn is
much larger than the distance moved �.
Inflation ends when the absolute value of the horizon

function reaches a minimum, at an exponentially tiny
value,

j�xj � e�1=v; (30)

at which point the spacetime collapses. During collapse,
the horizon function j�xj increases, while the conformal
factor � / e�� shrinks exponentially, no longer satisfying
the inequalities (29). The radial coordinate x remains
frozen even while the conformal factor � is shrinking.
That the spacetime collapses rather than leads to a null
singularity accords with the conclusion of [9] that the
outcome of inflation is collapse when a black hole contin-
ues to accrete, as is ensured in the present case by the
assumption of conformal time translation invariance
(self-similarity).
During collapse the horizon function increases back to

of order unity, j�xj � 1. At this point the angular motion of
the freely-falling ingoing and outgoing streams becomes
comparable to their radial motion, and the solution breaks
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down. This happens when the conformal factor has col-
lapsed to an exponentially tiny value,

�� e�1=v: (31)

The right panel of Fig. 3 shows the magnitudes of the
radial, radial-angular, and angular components Txx, Txy,

and Tyy of the tetrad-frame energy-momenta of the colli-

sionless streams. During inflation, the radial energy-
momentum grows fastest, reaching an exponentially huge
value

Txx � e1=v: (32)

During collapse, the angular energy-momentum grows
fastest.

The Weyl curvature tensor has only a spin-0 component,
which classifies the spacetime as Petrov Type D. The right
panel of Fig. 3 shows minus the polar (real) part of the
spin-0 component of the Weyl curvature.

It is notable that the smaller the accretion rate v, the
more rapidly inflation exponentiates, and the larger the
energy-momentum and curvature grow, in agreement
with the conclusions of [9,12].

V. BOUNDARY CONDITIONS

The solutions are determined by boundary conditions of
the collisionless streams incident on the inner horizon.
Since the solution above the inner horizon is well-
approximated by the Kerr (or other electrovac) solution,

the behavior of gas above the inner horizon does not affect
the solution.
The requirement of conformal separability imposes spe-

cial boundary conditions. The densities N� of ingoing (þ)
and outgoing (�) streams incident on the inner horizon are,
Eq. (18), since Ux ¼ u initially,

N� ¼ 1

16�
ðu	 vÞð�0

x � vÞ: (33)

This is just a constant, independent of angular position on
the inner horizon. Thus conformal separability requires
that the incident flow of ingoing and outgoing streams be
‘‘monopole,’’ independent of latitude. It makes physical
sense that conformal separability would require this high
degree of symmetry of the accretion flow.
As emphasized in Sec. III, because the radial motions of

collisionless streams dominate their angular motions dur-
ing inflation and collapse (up until the angular motions
become important, at j�xj � 1), the radial Einstein equa-
tions are unaffected by the angular motion, and the bound-
ary condition (33) is all that is needed to ensure conformal
separability with sufficient accuracy. However, if it is
required that the subdominant radial-angular components
of the Einstein equations are also satisfied, which is a more
stringent constraint on conformal separability, then the
tetrad-frame momenta p�

k of the streams must have finite

angular components, satisfying Eq. (22). Figure 4 illus-
trates the required flow pattern for a black hole of spin
parameter a ¼ 0:96M�. The energy per unit mass of
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FIG. 3 (color online). Evolution of the geometry and energy-momenta from electrovac through inflation and collapse. (Left) The
parameter Ux � ��xd�=dx and the horizon function �x, Eqs. (28), as a function of the inflationary exponent �, for parameters
v ¼ 0:001, u ¼ 0:002, and �0

x ¼ 1 (the solutions in this paper apply in the limit of tiny v and u; small finite values are adopted in this
plot to avoid numerical overflow). Inflation ignites as the horizon function j�xj decreases belowUx. Inflation ends as the absolute value
of the horizon function goes through a minimum, and the geometry proceeds to collapse. Once j�xj * 1, the angular components of
the collisionless streams exceed their radial components, and the solution breaks down, but this happens only after the geometry has
collapsed to exponentially tiny scale. (Right) The tetrad-frame radial, radial-angular, and angular collisionless energy-momenta Txx /
��2Ux=j�xj, Txy / ��2Ux=

ffiffiffiffiffiffiffiffiffij�xj
p

, and Tyy / ��2Ux. The energy-momenta grow exponentially huge despite their small initial values.

Indeed, the smaller the initial energy-momenta, the faster and larger they grow. The dashed line is minus the polar (real) spin-0
component of the Weyl curvature, �C / ��2U2

x=j�xj. The axial (imaginary) spin-0 Weyl component is comparable to Tyy.
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infalling particles, which is unspecified by boundary con-
ditions, is chosen here to be E=m ¼ �1.

As described in Paper 2, the required angular flow
pattern cannot be achieved with collisionless streams fall-
ing from outside the outer horizon. Streams that fall from
outside the outer horizon must necessarily be ingoing at the
outer horizon, which eliminates half the phase space avail-
able to collisionless streams, making it impossible to sat-
isfy the required conditions on the angular motion of the
streams. Thus, if the angular conditions are imposed, then
the collisionless ingoing and outgoing streams must be
considered as being delivered ad hoc to just above the
inner horizon.

VI. CONCLUSION

This paper has presented conformally stationary, axi-
symmetric, conformally separable solutions for the interior
structure of an uncharged rotating black hole that under-
goes inflation just above its inner horizon, then collapses. It
has long been known that linear perturbations diverge at
the inner horizon of the Kerr geometry, and it has been
suspected that perturbations would develop nonlinearly
similarly to the inflationary instability [7] known to operate

in spherical charged black holes [9], and expected to occur
also in rotating black holes [8]. The self-consistent non-
linear solutions found here confirm that, at least in the
conformally separable special case considered here, the
inflationary instability develops in rotating black holes as
anticipated.
A feature of the Kerr geometry (and other separable

electrovac geometries) is that, as freely-falling ingoing
and outgoing particles approach the inner horizon, they
become highly focused along the ingoing and outgoing
null directions, regardless of their initial angular motion.
However small the accretion rate may be, eventually the
energy and pressure of the twin beams of particles counter-
streaming hyper-relativistically along the ingoing and out-
going null directions grows large enough to be a source of
gravity. The gravity produced by the counter-streaming
acts to accelerate ingoing and outgoing stream even faster
through each other, leading to an exponential growth in the
streaming density and pressure, and in the curvature. This
is inflation. The huge gravitational acceleration produced
by the counter-streaming is in the inward direction, to
smaller radius, but each stream thinks that they are moving
in the inward direction, so the streams are accelerated in
opposite directions.
Inflation takes place over an extremely short interval of

proper time. Inflation is like a bullet fired in the chamber of a
gun: an explosion accelerates the bullet, and shortly after
the bullet achieves high velocity, but still the bullet has
hardly moved (see the inequalities (29)). Inflation does in
due course alter the geometry, but in a predictable way: the
conformal factor, having been accelerated to huge velocity
inward, proceeds to shrink rapidly. The geometry collapses.
During inflation, the ingoing and outgoing streams were

accelerated along the principal null directions, without
amplifying the angular motion. During collapse, the angu-
lar motions grow. At an exponentially tiny scale, the an-
gular motions become comparable to the radial motion,
and the solutions considered in this paper break down.
What happens then is undetermined.
The existence of conformally separable solutions for the

inflationary zones of rotating black holes is not surprising.
Ingoing and outgoing streams focus along the principal
null directions as they approach the inner horizon, and the
streaming energy and pressure generated by the radial
beams accelerates the streams along the same null direc-
tions. The acceleration depends on the accretion rate. If the
densities of ingoing and outgoing streams incident on the
inner horizon are uniform, independent of latitude, then
inflation accelerates the beams at the same rate at all
latitudes. When the geometry begins to collapse, it does
so uniformly, preserving conformal separability. What
happens in the more general case when the accretion
flow on to the inner horizon varies with angular position
remains to be seen. But that inflation will occur is physi-
cally inevitable.

FIG. 4 (color online). Angular flow pattern of freely-falling
particles that produces the conditions (22) at the inner horizon
required if conformal separability is imposed to subdominant
radial-angular order, for an uncharged black hole with spin
parameter a ¼ 0:96M�. The thicker contours mark the outer
and inner horizons, the latter being destroyed by inflation.
Ingoing and outgoing particles fall along the same trajectories
in the x-y plane, but have opposite motions in the azimuthal �
coordinate. Trajectories near the equatorial plane change from
ingoing to outgoing, or vice versa, inside the outer horizon; the
transition is marked by the lines changing from dashed to solid.
The angular flow pattern cannot be achieved with collisionless
streams that fall from outside the outer horizon. In the equatorial
region, outgoing but not ingoing particles can fall from outside
the outer horizon, while in the polar region, ingoing but not
outgoing particles can fall from outside the outer horizon.
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