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We resolve a problem of finding the Poincaré symmetries from Hamiltonian gauge symmetries

constructed through a canonical procedure of handling constrained systems. Through the use of

Noether identities corresponding to the symmetries, we motivate a procedure of finding the map between

the Hamiltonian and Poincaré gauge parameters. Using this map, we show that the Poincaré and

Hamiltonian gauge symmetries are equivalent, modulo trivial gauge transformations.
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I. INTRODUCTION

Gauge symmetries in various diffeomorphism invariant
theories are a matter of continued interest. Some, among
the multitude of models where gauge symmetries have
been studied, are Chern-Simons gauge theory [1],
Einstein-Cartan gravity [2,3], topological gravity with tor-
sion [4,5] and topologically massive gravities [6,7] includ-
ing Bergshoeff-Holm-Townsend (BHT) or ‘‘new massive
gravity’’ [8–10]. By gauge symmetries we mean those
transformations of the basic fields of the action, parame-
trized by arbitrary functions of time, that leave the action
invariant under appropriate boundary conditions [11]. The
arbitrary functions of time are the gauge parameters.

On the other hand, diffeomorphism invariant theories
have the Poincaré symmetries ‘‘�PGT,’’ i.e. local Lorentz
rotations and translations, as off-shell symmetries by con-
struction. They are found in the usual manner of gauge
theories, through localization of the Poincaré symmetries
[2,12–15] and so their form does not depend on the par-
ticular diffeomorphism invariant model being considered.
Say, for example, let us first consider the Einstein-Cartan
action in three dimensions (3D)

S1 ¼
Z

d3x ����bi�Ri��;

and then add to it the torsion Ti�� enforced by a parameter

�4

S2 ¼
Z

d3x����

�
bi�Ri�� þ �4

2
bi�Ti��

�
;

where bi� is the triad and Ri�� is the Riemann tensor. The

Poincaré symmetry of the (for example) triad field is the
same for both of these actions

�PGTb
i
� ¼ ��ijkb

j
��

k � @��
�bi� � ��@�b

i
�

and as we can see, it does not involve the coupling constant
�4. It is off shell by construction and this can be easily

checked explicitly [5]. The gauge parameters here are ��

for translations and �i for local Lorentz rotations.
To study the Hamiltonian gauge symmetries ‘‘�G,’’

canonical Hamiltonian analysis of all the models men-
tioned above has been carried out extensively, in the lit-
erature cited above (also see references therein). The
nature of the Hamiltonian symmetries depend intimately
on the particular model being studied, through the struc-
tural nature of the constraints. These Hamiltonian symme-
tries reveal a striking feature, in all of the models.
The Poincaré symmetries are not identifiable from the
Hamiltonian gauge symmetries. For example, for the
Einstein-Cartan action with torsion we get

�Gb
i
� ¼ r�"

i þ �4�
i
jkb

j
�"

k þ �ijkb
j
�	

k;

where "i and 	i are the gauge parameters. Note that �G ex-
plicitly involves the coupling constant �4. To compare
�PGT and �G we first have to map the (arbitrary) gauge
parameters of the Hamiltonian symmetries �G to those of
the Poincaré symmetries �PGT. The gauge parameters be-
come different as the Poincaré parameters are dictated by
either geometric or group theoretic demands while the
Hamiltonian parameters depend on the structure of the
constraints arising in the theory. The required redefinition
is usually done through an ad hoc, field-dependant map
[1,2,4,5,7–10]. After such a mapping it is seen that the
Hamiltonian symmetries indeed give back the Poincaré
symmetries, but modulo terms proportional to equations
of motion [4,5].

�Gb
i
� � �PGTb

i
� þ equations of motion

So the Hamiltonian symmetries are not exactly equal to the
Poincaré symmetries and it seems that we may have two
independent sets of symmetries for the same action! Each
of these symmetries will now give rise to their own inde-
pendent Noether identities.
This is not a desirable situation. It leads to an increase in

the total number of independent gauge parameters over and
above that found through the canonical analysis. We now
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have to take the Poincaré symmetry parameters in addi-
tion to the Hamiltonian gauge parameters, if they are
distinct. Also, we have to deal with more number of inde-
pendent Noether identities than the number of Poincaré
symmetries present in the model. But we know that the
number of gauge parameters and Noether identities must
match the total number of independent, primary, first-class
constraints [16–18]. This creates an apparent paradoxical
situation.

In this article we provide a resolution of this paradox by
pointing out that the pair of symmetries differ only through
trivial gauge transformations. These types of transforma-
tions [11] are not generated by first-class constraints of the
theory. Thus they do not introduce any new arbitrary
functions of time, i.e. they give rise to no new gauge
parameters. Hence they indicate no degeneracy in the
equations of motion and their solutions, representing
physical states, are not mapped to new degenerate states
through these transformations. Thus trivial gauge symme-
tries are not physical and the Hamiltonian mechanism
actually reproduce the Poincaré symmetries as the only
physically relevant symmetries of the theory. Such sym-
metries also produce no new independent Noether identity
and so the total number of identities and gauge parameters
match the original number of Poincaré symmetries. By
exploiting the Noether identities we provide a method to
construct the map between the Hamiltonian and Poincaré
gauge parameters. Finally, through this work, explicit ex-
amples of trivial gauge symmetries and the role they play
in many well studied field theories get highlighted.

We now explain the organization of our article. In Sec. II
we give a brief overview of trivial gauge symmetries from
a general point of view, including a discussion on their role
in the Noether identities. In Sec. III, we take up the first
order generalization of Einstein gravity—the Einstein-
Cartan model. We explicitly show how the two sets of
symmetries and Noether identities corresponding to
Hamiltonian and Poincaré gauge theory (PGT) formula-
tions are related via trivial gauge transformations. We also
motivate an algorithm to find suitable map between gauge
parameters to enable a comparison between these two sets
of symmetries. In Sec. IV, the analysis is performed in a
generalization of the previous model to a Mielke-Baekler
(MB) type gravity [19,20] extended by a cosmological
term. This provides a further nontrivial demonstration of
our results. Finally, we conclude in Sec. V.

Summary of conventions: Latin indices refer to the local
Lorentz frame and the Greek indices refer to the coordinate
frame. The beginning letters of both alphabets ða; b; c; . . .Þ
and ð�;
; �; . . .Þ run over the space part (1, 2) while the
middle alphabet letters ði; j; k; . . .Þ and ð�; �; �; . . .Þ run
over all coordinates (0, 1, 2). The totally antisymmetric
tensor �ijk and the tensor density ���� are both normalized
so that �012 ¼ 1. The signature of space-time adopted here
is  ¼ diagðþ;�;�Þ.

II. GAUGE SYMMETRIES AND TRIVIAL
GAUGE SYMMETRIES

Let S½qi� describe an action with the basic field variables
being qi (i ¼ 1; 2; . . . ; n). The canonical momenta are then
defined as �i ¼ �S

� _qi
and the Hamiltonian phase space is

constructed out of the conjugate pair ðqi; �iÞ. The standard
canonical procedure [21] yields all the constraints. Let us
denote the first-class constraints as �a, (a ¼ 1; 2; . . . ; f)
and the second class constraints as �b (b ¼ 1; 2; . . . ; s),
with P ¼ fþ s being the total number of constraints. The
Dirac prescription gives the gauge generator as a linear
combination of all first-class constraints

G ¼ �a�a;

�a’s being arbitrary parameters in time. However, not all
the parameters �a are independent. We can eliminate the
dependant ones systematically and write the gauge genera-
tor in terms of only the independent �a’s, following a
completely off-shell method [16–18].1 The final generator
yields the gauge transformations of fields through a
Poisson bracket2 operation with the fields. There exist
two different possibilities of defining this operation
fq;Gg, results being equivalent up to terms proportional
in constraints.

�1q ¼ fq;�a�ag or; �2q ¼ �afq;�ag: (1)

These two definitions of gauge transformations �1 and �2

differ up to ‘‘trivial gauge transformations’’ [16].
Trivial gauge transformations keep the action invariant

simply by a specific antisymmetric structure within them.
To write explicitly, let us consider transformations of the
form

�qi ¼ �ij

�S

�qj
; �ij ¼ ��ji: (2)

Here �S
�qj

is the Euler derivative corresponding to the field qj

and its equation of motion is given by setting this Euler
derivative to zero. Thus on shell, i.e. after imposition of
equations of motion, trivial gauge transformations vanish.
However invariance of the action (�S ¼ 0) is achieved off
shell due to the antisymmetry of �ij

�S ¼ �S

�qi
�qi ¼ �S

�qi
�ij

�S

�qj
¼ 0; (3)

as the product �S
�qi

�S
�qj

is symmetric in i and j. Since these

transformations vanish on shell they imply no degeneracy
in the solutions of the equations of motion; i.e. they do not
map a set of solutions to any other set through arbitrary
functions of time, unlike true gauge transformations. Given

1There are other methods of construction of a gauge generator
like [22], though it is not an off-shell one.

2Or a Dirac bracket, if the second class sector has been
eliminated through introduction of Dirac brackets.
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any action, they can always be added as symmetry trans-
formations and the specific form of the coefficients do not
matter, as long as they are antisymmetric in the field
indices. They are not generated by first-class constraints
in the Hamiltonian formalism and give rise to zero gauge
current as they are on-shell symmetries. Thus, trivial gauge
symmetries are not true gauge symmetries and are of no
physical importance.

As a consequence of the above discussion, it can be
anticipated that the trivial gauge symmetries do not give
rise to any new Noether identities, other than those already
present due to the true symmetries of the system. Given any
gauge symmetry parametrized by an arbitrary time func-
tion � (known as the gauge parameter),

�qi ¼ Ri��
� þ ~Ri�

�@��
�;

where Ri’s and ~Ri’s are functions of the fields qi and
possibly their derivatives, the invariance of the action
leads to

�S ¼
Z �L

�qi
�qi ¼

Z �L
�qi

ðRi��
� þ ~Ri�

�@��
�Þ

¼
Z �

�L
�qi

Ri� � @�

�
�L
�qi

~Ri�
�

��
�� ¼ 0: (4)

Since � is an arbitrary function, we can write

�L
�qi

Ri� � @�

�
�L
�qi

~Ri�
�

�
¼ 0; (5)

which are the Noether identities of the system.3 They imply

a dependence of the Euler derivatives �L
�qi

among them-

selves and thus the equations of motion are not all inde-
pendent. Note that each Noether identity is proportional to
a gauge parameter (here��). Thus combinations of one set
of independent Noether identities among themselves to
give rise to another equivalent set of identities is reflected
at the symmetry level as a redefinition of the old gauge
parameters into a new set of gauge parameters.

Now trivial gauge symmetries may affect the Noether
identities in many ways. In a direct manner, if Ri has
antisymmetric contributions like

Ri� ! Ri� þ ð�ijÞ� �L
�qj

ð�ijÞ� ¼ �ð�jiÞ�;

as can arise from transformations like (2), then we will
have extensions of the gauge identities (5) as shown below

�L
�qi

Ri� � @�

�
�L
�qi

~Ri�
�

�
þ �L

�qi
ð�ijÞ� �L

�qj
¼ 0: (6)

However the last term vanishes by itself, without depend-
ing on the particular structure of the Euler derivatives,

through (anti)symmetry. This generates no new identities
and thus the Noether identities (5) and (6) are in fact
equivalent to each other and correspond to only one physi-
cal symmetry.
In the following sections, we work with explicit models

(Einstein-Cartan gravity and a Mielke-Baekler [19,20]
type gravity) to show the role of trivial gauge symmetries
in relating Hamiltonian symmetries to the Poincaré sym-
metries. The analysis in each case will be based on the
general formalism outlined in this section.

III. EINSTEIN-CARTAN GRAVITY

The Einstein-Cartan formulation of gravity is a first
order generalization of Einstein’s general relativity. It is
constructed through a PGT construction, [2,12–15] on a
Riemann-Cartan space-time having both curvature, as well
as torsion. To start with, triad fields bi�ðxÞ are set up at

each point of space-time to translate between local coor-
dinates xi and global coordinates x�. Thus, for any vector
A�, we have A� ¼ bi�Ai. The global metric g�� is written

in terms of the triads and the local flat Minkowski metric
ij as

g�� ¼ bi�b
j
�ij:

At this stage, there is a global Poincaré symmetry parame-
trized by Lorentz rotations and translations. To localize this
Poincaré symmetry, covariant derivatives are brought in to
replace partial derivatives and spin-connection fields !i

�

are introduced. These comprise independent fields in PGT.
The corresponding field strengths that come into play
through the commutators of covariant derivatives give
rise to torsion Ti

�� and curvature R
i
�� tensors. Their forms

turn out to be

Ri
�� ¼ @�!

i
� � @�!

i
� þ �ijk!

j
�!

k
�

Ti
�� ¼ r�b

i
� �r�b

i
�:

(7)

Here the covariant derivative of the triad is defined as
r�b

i
� ¼ @�b

i
� þ �ijk!

j
�b

k
�. The PGT gravity models

are constructed to be invariant under the local Poincaré
transformations

�PGTb
i
� ¼ ��ijkb

j
��

k � @��
�bi� � ��@�b

i
�

�PGT!
i
� ¼ �@��

i � �ijk!
j
��

k � @��
�!i

� � ��@�!
i
�:

(8)

In the above symmetries, the parameter describing local
Lorentz transformations is �i and that describing general
coordinate transformations is �� (both transformations
being of infinitesimal order). Intuitively, this explains the
structure of the transformations (8) where the index ‘‘i’’
transforms as a Lorentz index while ‘‘�’’ transforms as a
general coordinate index.4 The number of independent

3For a Lagrangian analysis based on these identities, in the
context of the Mielke-Baekler model, see [23]. 4For a more detailed discussion one may refer to [4,5].
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Poincaré symmetries for each field (b,!, or any other field,
if present) is reflected in the number of independent gauge
parameters. In our model in 3D, i ¼ 0, 1, 2 and � ¼ 0, 1, 2.
So the total number is

3 against�� þ 3 against �i ¼ 6: (9)

So we expect to find 6 independent gauge parameters and 6
independent Noether identities in our model and no more.

The Einstein-Cartan theory in Riemann-Cartan space-
time gives back the standard Einstein gravity on imposition
of the zero torsion condition. The action, in 3D, is

S ¼
Z

d3xa����bi�Ri��: (10)

The basic variables of the theory are bi� and !i
� with the

corresponding conjugate momenta being denoted by �i
�

and �i
� respectively. The variational equations of motion

are given by setting the Euler derivatives �S
�bi�

and �S
�!i

�
to

zero.

�S

�bi�
¼ a����Ri�� ¼ 0;

�S

�!i
�

¼ a����Ti�� ¼ 0:

(11)

A Dirac canonical analysis leads to the constraint structure
[4,5] as given in Table I. The relevant quantities in Table I
are defined below:

�i
� ¼ �i

� �i
� ¼ �i

� � 2a�0�
bi
�
�
�

�H i ¼ ½�a�0�
Ri�
� � r��i
�

�Ki ¼ ½�a�0�
Ti�
� � r��i
� � �ijkb

j
��

k�

(12)

Once we have the constraints, we can construct the gen-
erator through an explicitly off-shell method [17,18]. For
Einstein-Cartan gravity, it turns out to be [5]

G ¼ _"i�i
0 þ "i½ �H i � �ijk!

j
0�

k0� þ _	i�i
0

þ 	i½ �Ki � �ijkðbj0�k0 þ!j
0�

k0Þ�: (13)

The Hamiltonian gauge symmetries are calculated from
the generatorG, adopting the second among the definitions
in (1)

�Gb
i
� ¼ r�"

i þ �ijkb
j
�	

k

�G!
i
� ¼ r�	

i:
(14)

Now the generator (13) is constructed as a linear combi-
nation of the products of first-class constraints with gauge

parameters. Looking at the first-class constraints in Table I,
we see that they all have one local index as their free-index.
This fixes the structure of the gauge parameters "i and 	i in
the Hamiltonian formulation and they turn out to be differ-
ent from the Poincaré gauge parameters �� and �i, trans-
lations and local Lorentz rotations, seen in (8). However, to
compare between the two symmetries �G and �PGT we
must first have structurally similar set of gauge parameters
in both sets of symmetries. This is achieved by introducing
a field-dependent map between the Hamiltonian and
Poincaré gauge parameters [2,4,5]

"i ¼ ���bi� & 	i ¼ ��i � ��!i
�: (15)

But this map is usually proposed arbitrarily and there is no
process to generate this map from physical considerations.
Using this map in the symmetries (14) and after a bit of
manipulations, we arrive at

�Gb
i
� ¼ �PGTb

i
� þ 1

2a
������

�S

�!i�

�G!
i
� ¼ �PGT!

i
� þ 1

2a
������

�S

�bi�
;

(16)

where the Euler derivatives are defined in (11). So the two
sets of symmetries are different, and match only on shell.
Consequently, they also give rise to two sets of Noether
identities.
The Noether identities corresponding to the PGT sym-

metries (8) can be found by proceeding along the route
leading to (5). Explicitly, they are [5]

Pk ¼ �S

�bi�
"ijkb

j
� þ �S

�!i
�

"ijk!
j
�

� @�

�
�S

�!k
�

�
¼ 0 (17a)

R� ¼ �S

�bi�
@�b

i
� þ �S

�!i
�

@�!
i
�

� @�

�
bi�

�S

�bi�
þ!i

�

�S

�!i
�

�
¼ 0: (17b)

The total number is 3þ 3 ¼ 6, as expected. Those corre-
sponding to the Hamiltonian gauge transformations (14)
are, similarly,

Ak ¼ �@�

�
�S

�!k
�

�
þ �S

�bi�
"ijkb

j
�

þ �S

�!i
�

"ijk!
j
� ¼ 0 (18a)

Bk ¼ �@�

�
�S

�bk�

�
þ �S

�bi�
"ijk!

j
� ¼ 0 (18b)

and are also 3þ 3 ¼ 6 in number. We would like to
emphasize at this point that these identities are to be dealt
with off shell, without imposition of equations of motion,
i.e. without setting the Euler derivatives to be zero. The

TABLE I. Constraints of the EC theory.

First class Second class

Primary �i
0, �i

0 �i
�, �i

�

Secondary �H i,
�Ki
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identities in fact become tautological 0 ¼ 0 statements on
shell as they are comprised of the Euler derivatives.

Now the question that we want to address is whether the
sets of identities (17) and (18) are independent, or can they
be shown to be actually the same. A comparison shows that
among the two sets, (17a) and (18a) are already identical,
i.e. Pk � Ak. We want to check the possibility of express-
ing R� as some linear combination of Pk and Rk. Com-

paring the structure of the free indices and the derivative
terms among (17a) and (18a) we see that the combination
�bk�Bk �!k

�Ak gives us

�bk�Bk�!k
�Ak¼�R�þ �S

�bi�

�
1

2a
ij����

�
�S

�!j
�

þ �S

�!i
�

�
1

2a
ij����

�
�S

�bj�
¼0: (19)

The last two terms in the above equation, proportional to
square of Euler derivatives, cancel out due to antisymmetry
of their coefficientswithout requiring the particular form of
the Euler derivatives (11). The net identity obtained in the
process is just the second Noether identity corresponding to
the Poincaré symmetries. Thus we show that there exists
only one set of true, independent Noether identities in the
system and the total number of these are 3þ 3 ¼ 6, i.e. eq-
ual to the total number of gauge symmetries in the system.

The Noether identities are obtained, as shown in (4) and
(5), from collecting coefficients of the independent gauge
parameters from a variation of the action through func-
tional Taylor expansion

�S ¼
Z
ð�kPk þ ��R�Þ ¼ 0 Poincar�e symmetries.

(20)

�S ¼
Z
ð"kAk þ 	kBkÞ ¼ 0 Hamiltonian symmetries:

(21)

The combinations R� ¼ �bk�Bk �!k
�Ak and Pk ¼

�Ak, when substituted in (20), givesZ
½ð��k � ��!k

�ÞAk þ ð�bk��
�ÞBk� ¼ 0:

Comparing this with (21) gives us the required map (15)
between the two sets of gauge parameters. So the Noether
identities help us to generate the required map between
different sets of gauge parameters.

It is desirable to point out that, in the above analysis, we
have not used any connection between the Noether identi-
ties and equations of motion. A literal application of the
dependence of Euler-Lagrange equations due to Noether
identities, mentioned below (5), may lead to incorrect
results.5 Here we have compared the Noether identities

arising from the PGT and Hamiltonian approaches to mo-
tivate the map (15). Also, all the Noether identities were
explicitly verified.
The structure of the antisymmetric terms obtained in

(19), when compared with those that arise in the case
of trivial gauge symmetries as outlined in (6), hints at
the presence of trivial gauge symmetries within the
Hamiltonian formalism. The general form of trivial gauge
transformations in this model would read

�bi� ¼ �ðbi�;bj�Þ
�S

�bj�
þ�ðbi�;!j

�Þ
�S

�!j
�

�!i
� ¼ �ð!i

�;b
j
�Þ

�S

�bj�
þ�ð!i

�;!
j
�Þ

�S

�!j
�

;

(22)

where � is antisymmetric [see (2)]. Here � � �G � �PGT

is the apparently extra symmetry present within the
Hamiltonian symmetries. Comparing this with (16) we
find the�matrix defining the trivial gauge symmetry to be

�ðbi�;bj�Þ ¼ 0; �ðbi�;!j
�Þ ¼

1

2a
ij������;

�ð!i
�;b

j
�Þ ¼

1

2a
ij������; �ð!i

�;!
j
�Þ ¼ 0:

(23)

The antisymmetry of � in the diagonal (b� b or !�!)
entries is obvious. For the off-diagonal entry,

�ðbi�;!j
�Þ ¼

1

2a
ij������ ¼ � 1

2a
ji������

¼ ��ð!j
�;b

i
�Þ: (24)

Thus the � matrix is antisymmetric in its field indices and
this renders the action off-shell invariant. We have thus
shown that the difference between the Hamiltonian and
Poincaré symmetries is just a trivial gauge transformation.
The total number of true physical symmetries remain 3þ
3 ¼ 6 as both �G and �PGT are now physically equivalent.

IV. 3D COSMOLOGICAL GRAVITY
WITH TORSION

In this section, we study a 3D gravity model based on the
MB action [19,20] added with a cosmological term. This is
formulated with triad and spin-connection variables, in the
PGT formalism. The canonical analysis of this model done
in [4] shows the same feature of Hamiltonian and Poincaré
gauge symmetries being related, modulo on-shell vanish-
ing terms.
The action describing this topological 3D gravity model

with torsion and a cosmological term is

5This point was brought to our notice by the referee who also
suggested, in this context, the original classic works of Hilbert
on general relativity.
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S ¼
Z

d3x ����

�
abi�Ri�� ��

3
�ijkb

i
�b

j
�b

k
�

þ �3

�
!i

�@�!i� þ 1

3
�ijk!

i
�!

j
�!

k
�

�

þ �4

2
bi�Ti��

�
: (25)

Basic variables here are bi� and !i
� and corresponding

momenta are denoted �i
� and �i

� respectively. The
equations of motion are obtained by setting to zero the
various Euler derivatives,

�S

�bi�
¼����½aRi��þ�4Ti�����ijkb

j
�b

k
��¼0

�S

�!i
�

¼����½�3Ri��þaTi��þ�4�ijkb
j
�b

k
��¼0:

(26)

All the momenta turn out to be primary constraints in this
first order theory. The consistency process ends at the
secondary level itself and the constraints can be classified
[7] as given in Table II. The relevant quantities used are
defined below:

�i
� ¼ �i

� � �4�
0�
bi
�

�
�

�i
� ¼ �i

� � �0�
ð2abi
 þ �3!i
Þ��
�

�H i ¼ �½�0�
ðaRi�
 þ �4Ti�
 ���ijkb
j
�b

k

Þ�

� r��i
� þ �ijkb

j
�ðp�k� þ q�k�Þ

�Ki ¼ �½�0�
ðaTi�
 þ �3Ri�
 þ �4�ijkb
j
�b

k

Þ�

� r��i
� � �ijkb

j
��

k�

p ¼ �3�þ �4a

�3�4 � a2
; q ¼ � �2

4 þ a�

�3�4 � a2

(27)

Here the terms within square brackets in the definitions of

the constraints �H i and
�Ki, are themselves secondary in

nature. The classified constraints in Table II are suitable
combinations of the primary and secondary constraints.

Using these constraints and an explicitly off-shell
method [17,18], the Hamiltonian generator of gauge sym-
metries can be constructed [5]. There are two (indexed)
gauge parameters "i and 	i and they are (again) different
from the Poincaré gauge parameters �� and �k. The gen-
erator ‘‘G’’ can be written as a sum of two parts—G" and
G	, as shown below

G ¼
Z

d2x ½G"ðxÞ þG	ðxÞ�

G" ¼ _"i�i
0 þ "i½ �H i � "ijkð!j

0 � pbj0Þ�k0

þ q"ijkb
j
0�

k0�
G	 ¼ _	i�i

0 þ 	i½ �Ki � "ijkðbj0�k0 þ!j
0�

k0Þ� (28)

Symmetries of the basic fields can be computed from this
generator through the second definition among (1)

�bi� ¼ r�"
i � p�ijkb

j
�"

k þ �ijkb
j
�	

k;

�!i
� ¼ r�	

i � q�ijkb
j
�"

k:
(29)

The Hamiltonian symmetries contain the coupling con-
stants �, �3 and �4 through the parameters p&q defined
earlier. These, they inherit from the action through the
structure of the constraints. To compare with Poincaré
symmetries, we take recourse to the map (15) relating the
Hamiltonian gauge parameters to the Poincaré gauge pa-
rameters. After some rearrangements and remembering the
Euler derivatives from (26), we arrive at

�Gb
i
� ¼ �PGTb

i
� þ �3

2ð�3�4 � a2Þ
ij������

�S

�bj�

� a

2ð�3�4 � a2Þ
ij������

�S

�!j
�

�G!
i
� ¼ �PGT!

i
� � a

2ð�3�4 � a2Þ
ij������

�S

�bj�

þ �4

2ð�3�4 � a2Þ
ij������

�S

�!j
�

(30)

It is again clear that the Hamiltonian and Poincaré symme-
tries become identical only on shell.
Let us now investigate the Noether identities in this

model. The identities corresponding to the PGT symme-
tries remain the same as (17), since the form of the
Poincaré symmetries do not depend upon the form of the
Lagrangian, as long as the Lagrangian is diffeomorphism
invariant in nature (and contains the same fields in con-
struction of the action). The Hamiltonian gauge symme-
tries (29) give rise to the following identities [5]

A0
k ¼ �@�

�
�S

�!k
�

�
þ �S

�bi�
"ijkb

j
�

þ �S

�!i
�

"ijk!
j
� ¼ 0 (31a)

B0
k ¼ �@�

�
�S

�bk�

�
þ �S

�bi�
"ijk!

j
�

� p
�S

�bi�
�ijkb

j
� � q

�S

�!i
�

�ijkb
j
� ¼ 0: (31b)

Once again we see that one of the identities among the
Hamiltonian gauge (31) and Poincaré ones (17), Ak and Pk,
match each other. And the combination �!k

�A
0
k þ

�bk�B
0
k leads to

TABLE II. Constraints of the MB type 3D gravity theory.

First Class Second class

Primary �i
0, �i

0 �i
�, �i

�

Secondary �H i,
�Ki
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� R� þ �S

�bi�

�
�3

2ð�3�4 � a2Þ
ij����

�
�S

�bj�

þ �S

�bi�

� �a

2ð�3�4 � a2Þ
ij����

�
�S

�!j
�

þ �S

�!i
�

� �a

2ð�3�4 � a2Þ
ij����

�
�S

�bj�

þ �S

�!i
�

�
�4

2ð�3�4 � a2Þ
ij����

�
�S

�bj�
¼ 0: (32)

The last four terms, proportional to square of Euler deriva-
tives, cancel each other due to antisymmetry of their
coefficients. The part surviving is just the missing
Poincaré identity R� ¼ 0 (17b). Thus there exist only

one set of independent Noether identities.
The antisymmetric terms in the Noether identities (32)

again point toward presence of trivial gauge symmetries.
To check explicitly, we first write down the general trivial
gauge symmetry structure appropriate for the MB model

�bi� ¼ �ðbi�;bj�Þ
�S

�bj�
þ�ðbi�;!j

�Þ
�S

�!j
�

;

�!i
� ¼ �ð!i

�;b
j
�Þ

�S

�bj�
þ�ð!i

�;!
j
�Þ

�S

�!j
�

:

(33)

Comparing this with (30), we write can down the � matrix
below

�ðbi�;bj�Þ ¼
�3

2ð�3�4 � a2Þ
ij������;

�ðbi�;!j
�Þ ¼

�a

2ð�3�4 � a2Þ
ij������;

�ð!i
�;b

j
�Þ ¼

�a

2ð�3�4 � a2Þ
ij������;

�ð!i
�;!

j
�Þ ¼

�4

2ð�3�4 � a2Þ
ij������:

(34)

The antisymmetry of this structure is easy to verify. We
will just demonstrate one component

�ðbi�;bj�Þ ¼
�3

2ð�3�4 � a2Þ
ij������

¼ � �3

2ð�3�4 � a2Þ
ji������ ¼ ��ðbj�;bi�Þ:

(35)

So the two symmetries �G and �PGT differ only by a trivial
gauge symmetry which is of no physical importance. The
Poincaré transformations are indeed recovered by the
Hamiltonian mechanism. An important point to be noted
from the analysis of this model is that the Hamiltonian
symmetries (29) of this model were different from those of
the Einstein-Cartan theory (14). However we could never-
theless recover the Poincaré symmetries from both of
these. The particular difference in details between the
models (various terms in the action along with their cou-
pling constants) got manifested only through trivial gauge
symmetries.

V. DISCUSSIONS

We have shown in this paper that the Dirac Hamiltonian
construction indeed reproduces the Poincaré symmetries in
different models of gravity. We have analyzed the Einstein-
Cartan action and a more generalized form of a Mielke-
Baekler type action with a cosmological term, both in three
dimensions. The Noether identities corresponding to the
two sets of symmetries, Hamiltonian gauge and Poincaré,
were shown to be the same, modulo antisymmetric cancel-
ling terms proportional to square of Euler derivatives.
Using these Noether identities, we derived a map between
the two sets of gauge parameters. After using the map, we
demonstrated that the difference in the Hamiltonian gauge
symmetries and the Poincaré symmetries was just trivial
gauge transformations, characterized by coefficients anti-
symmetric under exchange of fields. We have explicitly
found out the coefficient matrices for both Einstein-Cartan
and its Mielke-Baekler type generalization.
Since trivial gauge symmetries are of no physical im-

portance, the Poincaré symmetries are indeed recovered
through the canonical procedure. This feature should per-
sist in all the different diffeomorphism invariant theories of
interest and shows the importance of understanding and
handling trivial gauge symmetries.
We have shown how the Lagrangian and Hamiltonian

formulations complement each other and how their unified
application is of great importance. Analysis of the Noether
identities arising in the Lagrangian formulation helps us to
construct the map between gauge parameters present in the
Hamiltonian and Poincaré gauge transformations. This
map, at the Hamiltonian level, can only be guessed through
an (in general case, a rather difficult) exercise of inspection
and trial. In the Lagrangian procedure, however, the pro-
cess is much more straightforward and systematic. It is
noteworthy that the map is model independent, i.e. it is the
same in both examples studied here. This universal nature
reveals a unifying feature among the Hamiltonian gauge
symmetries, a fact that is not otherwise transparent. Indeed,
contrary to Poincaré gauge transformations, the structure
of Hamiltonian gauge transformations are distinct for dis-
tinct models.
Finally, let us recall the role of trivial gauge transforma-

tions at the quantum level. This is relevant since gauge
symmetries are important in the process of quantization.
The classical gauge symmetries of the action are now
replaced by the quantum (Becchi-Rouet-Stora-Tyutin or
BRST) symmetries of the quantum effective action ð�Þ.
For general gauge theories it was shown [24] that the set of
local symmetries of � comprise of the quantum gauge
transformations, trivial gauge transformations and trans-
formations induced by background fields. Taking a linear
combination of all three symmetries, it is possible to find a
simple or a standard form. Indeed, adopting this approach
the classical gauge transformations for Yang Mills theory
were reproduced in [24].
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