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Primordial black holes (PBHs) that form from the collapse of density perturbations are more clustered

than the underlying density field. In a previous paper, we showed the constraints that this has on the

prospects of PBH dark matter. In this paper we examine another consequence of this clustering: the

formation of bound systems of PBHs in the early universe. These would hypothetically be the earliest

gravitationally collapsed structures, forming when the universe is still radiation dominated. Depending

upon the size and occupation of the clusters, PBH merging occurs before they would have otherwise

evaporated due to Hawking evaporation.
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I. INTRODUCTION

Primordial black holes (PBHs) are a unique probe of
cosmology, general relativity, and quantum gravity. PBHs
form from the gravitational collapse of density perturba-
tions that are of order unity on the scale of the cosmologi-
cal horizon [1,2]. Measurements of the cosmic microwave
background (CMB) anisotropy [3] imply that density per-
turbations at the time of decoupling are much smaller
(�H � 10�5). As such, PBH formation will be cosmolog-
ically negligible during and beyond this era. Less con-
strained are the conditions in the early universe before
decoupling, and we cannot preclude the existence of
much larger density contrasts which could have formed
PBHs.

PBHs would be the first gravitationally collapsed objects
in the universe. As clustering is ubiquitous in other, ob-
served gravitationally collapsed systems (galaxies, clusters
of galaxies, superclusters, etc.), it will be no different for
PBHs. In a previous paper [4], we derived the basic prop-
erties of PBH clustering and what consequences it had on
the viability of PBHs as dark matter (DM). As PBHs are
created with an isocurvature component, this constrained
the mass and abundance of PBHs if they are to serve as DM.

The aim of this work is to continue the analysis of PBH
clustering, particularly to investigate the creation and be-
havior of bound systems, or clusters, of PBHs. In Secs. II
and III we describe general properties of PBHs and their
clustering, respectively, that will be used throughout the
paper. The main results of the paper are presented in
Sec. IV and conclude in Sec. V. We use units throughout
such that c ¼ 1.

II. PBH BASICS

A black hole of mass M has a Schwarzschild radius
RS ¼ 2GM ¼ 2M

M2
P

. Throughout we assume that any PBHs

have negligible angular momentum and electric charge,
unless otherwise noted. It is assumed that PBHs are formed
at a fraction f of the horizon mass

MPBH ¼ fMH; (1)

MHðtÞ ¼ MP

�
t

tP

�
¼ ð2� 105M�Þ

�
t

1 s

�
(2)

in the radiation-dominated era. An important parameter in
the clustering and abundance of PBHs is

� ¼ �c=�radðrHÞ (3)

which measures the height of the density peak at the
threshold for PBH formation in units of the variance of
the radiation density perturbation �rad smoothed over the
horizon radius rH when that perturbation enters the hori-
zon. We will examine the consequences of clustering for a
range of values of �, f and MH, as there is considerable
variation in their respective values. The horizon fraction f
depends upon details of the radiation perturbation profile
and equation of state (see a discussion in [4]). The horizon
mass MH and � are determined primarily by the power
spectrum peak location and value, respectively, the details
of which will depend upon the exact PBH formation model
invoked. Possibilities include: models where PBHs are
produced at a particular scale in pre/reheating during/after
multifield (hybrid) inflation [5–9]; models with a peak at a
specific mass/length scale due to a drop in pressure during
a phase transition (see [10,11] for examples relating to the
QCD phase transition); generic inflationary models with
blue spectra [12,13]. In all of these models, the PBH mass
function is strongly peaked, and so for simplicity we take a
monochromatic mass function.
The fluctuation of a density field (either for radiation or

PBHs) is defined in terms of the mean density,

� ¼ �� ��

��
: (4)
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PBH production is exponentially suppressed

(e�ðð�2Þ=ð2ÞÞ); exact expressions for the initial density de-
pend upon � and assumptions as to how the overdense
region is defined. Assuming the peaks are Gaussian, the
probability of a given point in the smoothed (over the
horizon scale) density field falling above the PBH forma-
tion threshold is

� ¼
Z 1

�c

ð2��2
radðrHÞÞ�1=2 exp

�
� �2

2�2
radðrHÞ

�
d�; (5)

which will roughly be equal to the PBH number density at
formation across many horizon-sized regions. In the limit
that � � 1, we obtain an approximate expression by taking
the upper limit to infinity,

� ¼ erfc

�
�ffiffiffi
2

p
�
�

0
@ ffiffiffiffi

2

�

s
��1

1
Ae��2=2: (6)

More precise calculations (assuming, e.g., that the given
point is not just above threshold but also is a maximum) for
a power law (of slope n) radiation spectrum [14,15] give
different prefactors for the above exponential. We define
the function N�ð�Þ by

� ¼ N�ð�Þe��2=2; (7)

with values for different models being

N�ð�Þ ¼
8><
>:

ffiffiffi
2
�

q
��1 erfc approximation

1ffiffiffiffiffi
2�

p
�
nþ3
6

�
3=2ð�2 � 1Þ BBKS

:

(8)

The initial PBH density is then

nPBH ¼ �

VH

¼ N�ð�Þe��2=2

VH

(9)

in terms of the Hubble volume at formation

VH ¼ ð2�Þ3=2R3
H: (10)

Because of quantum effects [16], a BH of mass M will
emit particles as a blackbody with temperature Th given by

ThðMÞ ¼ 1

8�GM
¼ M2

P

8�M
� 1022

�
M

1 g

��1
eV: (11)

As the temperature is inversely proportional to the mass,
this is unobservable for a one solar mass BH (ThðM�Þ �
62 nK), but cannot be neglected in the mass range of
PBHs. This emission also corresponds to a mass loss for
the PBH,

_M ¼ �Lh ¼ ���
SBT

4
hð4�R2

sÞ ¼ ��ðMÞ
M2

; (12)

where ��
SB is the effective Stefan-Boltzmann constant

and is proportional to the effective number of relativistic

degrees of freedom in the emitted particles. PBHs therefore
have a finite lifetime, after which they would have emitted
their entire rest mass, given by

� ¼ M3
0

3�ðM0Þ ¼ ð10�26 sÞ
�
M

1 g

�
3
: (13)

As the lifetime scales with M3, there is a threshold mass
above which holes will not have evaporated by the present
day (t0). This threshold mass M� is given by

M� � ð4� 1014 gÞ
��

�ðM�Þ
6:94� 1025 g3=s

�

�
�

t0
4:4� 107 s

��
1=3

: (14)

Given the uncertainties in � and t0, a threshold mass of
M� � 1015 g is typically quoted in the literature.
A large enough abundance of PBHs with M � M� will

produce a number of observable effects through their
evaporation in the current day. They would contribute to
cosmic rays [17], the 	-ray background [18,19], 511 keV
emission due to positron annihilation in the galactic center
[20] or be the cause of short duration gamma ray bursts
[21,22]. Observations (or the lack thereof) of PBHs evap-
orating today depend critically upon not only the number
density of PBHs present today nPBHðt0Þ, but also upon how
clustered they are within the galaxy. Assuming an isother-
mal halo model, the effective number density is 
nPBHðt0Þ
where 
 is the local density enhancement factor [17–19]
and ranges from 105–107.
PBHs with M<M� would have evaporated by the

present day. The main mechanism for ‘‘observing’’ PBHs
in cosmology is through their Hawking radiation. In the
absence of a direct detection, the main utility of PBHs is to
set limits of PBH abundance at various times given a
nondetection. Though, PBHs have also been invoked to
explain baryogenesis [23], reionization [24] and as a solu-
tion to the magnetic monopole problem [25].
Evaporating PBHs have their most dramatic effect dur-

ing the era of BBN, where Hawking radiation can alter the
entropy per baryon and light element abundances [26–28].
Therefore, the success of BBN implies an upper limit to the
number of PBHs evaporating at that time.
Combining Eqs. (2), (1), and (13), gives the relation

�ðtÞ ¼ f3M3
P

3�

�
t

tP

�
3
; (15)

the lifetime � of a PBH created at a time t. What this allows
one to do is use information from a ‘‘late epoch’’ (time �)
to examine conditions at an ‘‘early epoch’’ (time t � �). In
the above example, �� tBBN, and the limits on initial PBH
abundance from BBN imply �< 10�16 forMPBH between
109 g and 1015 g.
This relation depends critically upon the PBH only

losing mass through evaporation, and not gaining mass in
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any way (accretion or merging). Should this not be the
case, the lifetime � is no longer given by the initial PBH
mass, and the link between late epoch and early epoch is
broken. Instead, the energy in PBHs that would have
evaporated away can now linger for longer periods of
time. Since � / M3, the merging of two equal mass BHs
will result in a BH with a lifetime 8 times as long. If this
merging can continue, then there is a greater chance of
PBHs produced in the early universe still existing today.

III. PBH CLUSTERING

Here we briefly summarize the results of [4]. Defining
the radiation and PBH two-point correlation functions �ðrÞ
and power spectra PðkÞ under the assumption of spherical
symmetry:

�radðrÞ ¼ h�radðxÞ�radðxþ rÞi (16)

�PBHðrÞ ¼ h�PBHðxÞ�PBHðxþ rÞi: (17)

Using a Gaussian window functionWkðkrHÞ, we will work
with smoothed versions of the correlation functions over
the horizon size rH:

�radðrÞ ¼ V

2�2

Z
dkk2PradðkÞ sinðkrÞkr

jWkðkrHÞj2 (18)

�PBHðrÞ ¼ V

2�2

Z
dkk2PPBHðkÞ sinðkrÞkr

jWkðkrHÞj2: (19)

It is useful to redefine the radiation field correlation func-
tion in a normalized fashion

wðrÞ ¼ �radðrÞ
�radð0Þ ¼

�radðrÞ
�2

radðrHÞ
(20)

so that wð0Þ ¼ 1.
As PBHs form at the peaks of the radiation density field

(where a radiation perturbation � > �C), the PBH correla-
tion function is itself a function of the radiation correlation
function. In general, for Gaussian perturbations, the peaks
of a density field are more clustered than the density field
itself; this was first illustrated by Kaiser [29] comparing
rich clusters of galaxies (Abell clusters) to just galaxies.
This will be the case for PBHs too; PBHs will be more
clustered than the underlying radiation field (�PBH �
�rad).

As originally shown in [30,31], the two-point correlation
function in the limit of large � becomes [4]

1þ �PBHðrÞ ¼ expð�2wðrÞÞ: (21)

Note that the radiation density field must possess large
(order unity) fluctuations at the horizon scale at which
PBHs are formed; this implies that the PBH ‘‘fluctuations’’
must be even larger (exponentially so). Their evolution is
thus intrinsically nonlinear. As the universe expands
and nearby PBHs enter the same Hubble volume, they

immediately detach from the general expansion and col-
lapse to form bound clusters. Their dynamics will be
determined by the size of the cluster and typical separation
within the cluster. As PBHs form in (initially) separate
horizon volumes, the horizon distance is the smallest pos-
sible distance scale over which PBHs could be correlated.
As we will show later, the closest pairs of PBHs will form
within a few horizon distances from each other.
The exact details of the PBH clustering depend upon the

underlying density field, represented here by the exact
form of wðrÞ. Given �PBHðrÞ we can transform to find the
PBH power spectrum PPBHðkÞ. Because PBHs are discrete
objects, the limit of the power spectrum as k ! 0 is a
constant and related to the number density of PBHs. The
power spectrum for a group of N uniformly randomly
distributed objects over a volume V � VH is 1=N ¼
ðnPBHVÞ�1 ¼ ��1. Our PPBHð0Þ � ��1, indicating that
the PBHs are distributed as clusters of objects with mean
occupation number Nc ¼ PPBHð0Þ�. Because of the expo-
nential enhancement of the correlation function, Nc scales
exponentially with � as well. The exact relation will de-
pend upon the assumed form ofwðrÞ, and thus the assumed
power spectrum PradðkÞ. In [4], we assumed a Gaussian

spike and obtained Nc � N�ð�Þe�2=4.

IV. PBH CLUSTER EVOLUTION

A. Literature

PBH clusters were first explored in Freese et al. [32],
where PBHs in the mass range M 2 ½1015 g; 1033 g	 form
clusters after matter-radiation equality. The collapse of
baryons onto these clusters creates explosions that act as
the seeds of large scale structure in the Ostriker-Cowie [33]
model.
As shown in the previous section, PBH perturbations

enter the horizon with a very large amplitude (�PBH �
e�

2=2). It is therefore no longer valid to treat their evolution
using linear perturbation theory, as one is able to do for
other forms of CDM. Instead, we examine the subhorizon
evolution of the PBH population as anN-body problem. As
noted earlier, using numerical simulations to examine PBH
formation is difficult given the small numbers of them that
form. This is more so true should one want to examine their
subsequent nonlinear evolution after creation.
We instead appeal to previous work done in the context

of DM halo formation and N-body simulations to examine
the PBH population behavior. Being nonrelativistic, PBHs
will cluster hierarchically (just as CDM); creating bound
systems that get incorporated into larger ones. The internal
dynamics of these systems are determined solely by gravi-
tational clustering, analogous to other gravitationally
bound systems such as star clusters and galaxies. For
this, we are aided by the work done in the context
of studying more massive black holes in globular clusters
[34] and galaxies [35]. In those cases, gravitational
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interactions tend to either produce bound pairs or ejections,
rather than BH coalescence [36]. What occurs in the case
of PBHs depends upon how many (N) form in a ‘‘PBH
cluster’’ and what their initial separations D are.

We shall discuss the clustering in a hierarchical manner
as well, first discussing the small scale dynamics (PBH
binary formation and evolution), then the larger scale
(cluster relaxation, ejection, and evaporation).

B. PBH binaries

PBHs will form at rest with respect to the background
expansion. A PBH perturbation entering the horizon im-
plies that PBHs are able move appreciably in response to
the gravity of other PBHs. The cluster as a whole begins
with no kinetic energy and, properly defined, negative
potential energy, for negative total energy. Starting at rest
also implies no net angular momentum (either orbital or in
BH spin) for the cluster, and further no net angular mo-
mentum for any subset of the cluster. The first physical
process to consider is direct PBHmerging due to a head-on
collision between two PBHs in a cluster (to create a PBH
with sum of the two initial PBHs’ masses). For the simplest
case of N ¼ 2, this type of merging is automatic, as there
are no significant tidal forces to keep the PBHs from
colliding.1 For any larger cluster (N > 2), the situation
becomes more complicated. In this case, any pair (or
subset) of PBHs will have nonvanishing orbital angular
momentum with respect to any other member of the clus-
ter, and tidal forces suppress the head-on merging of PBHs.
Rather, close encounters between PBHs are more prone
instead to create PBH binary systems through a dissipative
process via emission of gravitational waves. We will ad-
dress more carefully the conditions for binary formation in
Sec. IVG.

Thus, we expect binary PBH formation to be common
within the cluster, and we examine the evolution of PBH
binaries. That PBHs would form binaries in the RD era was
studied in the context of MACHO PBHs of around a solar
mass [37–40] due to the expected gravitational wave emis-
sion. There are a number of other physical processes other
than gravity that may affect the PBH binaries. To estimate
the magnitude of each effect, we first assume that two
PBHs of identical mass M are in a circular orbit of radius
D (a separation of 2D). In the initial limit that the PBHs are
well separated compared to their Schwarzschild radii
(RS ¼ 2GM � D) and also moving nonrelativistically
(v � 1), the Newtonian force is

Fgrav ¼ GM2

4D2
¼ M2

p

16

�
RS

D

�
2
: (22)

The orbital time scale (‘‘period’’) is therefore

torbit ¼ 4�D

�
D

GM

�
1=2 ¼ 4

ffiffiffi
2

p
�D

�
RS

D

��1=2
: (23)

We next examine three mechanisms that affect the orbi-
tal motion of a PBH binary: background radiation drag,
Hawking radiation pressure, and gravitational wave
emission.

C. Background radiation drag

PBHs moving through the background will accrete ra-
diation, and this will have a compensating effective drag
force on the PBHs. Considering the radiation to be a

perfect fluid with sound speed cs ¼ c=
ffiffiffi
3

p
, the accretion

rate for an individual PBH will be

_M bondi ¼ �r�Racc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ c2s

q
; (24)

where v is the PBH physical (not comoving) velocity with
respect to the rest frame of the radiation and Racc is the
accretion radius, defined as

Racc ¼ 2GM

v2 þ c2s
: (25)

Because of the radiation sound-speed being so high, the
accretion radius can be approximated by its nonrelativistic
limit of Racc ¼ 3RS.
Thus, the drag force Fdrag � _Mbondiv�Ma, or

Fdrag ¼ 36�ffiffiffi
3

p M2

�
�r

M4
p

�
(26)

giving the time scale for drag

tdrag ¼ v

a
¼ M

_MBondi

¼ 1

33=4 � 4�

�
�r

M4
P

��1
M�1

¼
ffiffiffi
3

p
18

�
M2

p

�r

�
1

RS

: (27)

Note that this is also the mass-doubling time for the PBH
due to accretion. In the radiation-dominated era we can
rewrite this as

tdrag ¼
ffiffiffi
3

p
18

�
8�

3
ð4tÞ2

�
1

RS

¼ 16ffiffiffi
3

p
�
t

RS

�
t: (28)

Since RS < tH ¼ 2t at creation, tdrag > t and therefore

radiation drag is negligible [41].

D. Hawking radiation pressure

PBHs will emit Hawking radiation with a temperature
Th. This leads to a finite PBH lifetime, as previously
discussed. Further, the Hawking radiation pressure

ph ¼ ��
SBT

4
h (29)

1Insignificant tidal forces would arise from density perturba-
tions in the background radiation field. While a ‘‘nearby’’
perturbation might be just below threshold for PBH creation, it
will decay upon horizon entry.
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where ��
SB is the (dimensionless) modified Stefan-

Boltzmann constant for Hawking radiation. This leads to
a radiation force of

F ¼ ph

�
RS

2D

�
2
�r2acc ¼

�
9��

SB

220�3

�
M2

p

�
MP

M

�
2
�
RS

D

�
2
: (30)

And a time scale for orbital disruption of

thawk ¼
�
231=2�3

9��
SB

�
M2

pR
3
S

�
D

RS

�
3=2

; (31)

note this is different from the PBH lifetime �;

� ¼
�
25�3

3��
SB

�
M2

pR
3
S: (32)

So that

thawk
�

¼ 221=2

3

�
D

RS

�
3=2 � 1: (33)

The conclusion being that the PBH will completely evapo-
rate well before the evaporated radiation pressure can
disrupt the binary.

E. Gravitational radiation

Finally, for close binaries of PBHs, the loss of energy
due to gravitational radiation may become important. We
estimate the size of this effect as follows. Consider two
identical mass PBHs separated from their center of mass by
a distance D in a circular orbit. The emitted power due to
gravitational waves is

P ¼ 2

5

G4M5

R5
: (34)

Given a gravitational binding energy U ¼ GM2=ð2DÞ, the
time scale for inspiraling due to gravitational wave losses
is

tspiral ¼ U

P
¼ 5

4
D

�
D

GM

�
3
: (35)

This can roughly be modeled as an additional drag force;

Fwave ¼ P

v
¼ M2

P

5� 25=2

�
RS

D

�
9=2

: (36)

Gravitational wave emission will cause the binary orbit
to decay, and accelerate the PBH merging process.
Comparing to the orbital time scale,

twave
torbit

¼ 5
ffiffiffi
2

p
4�

�
D

RS

�
5=2

: (37)

For D> RS, twave � torbit and, as expected, many orbits
occur before inspiraling.

F. Conditions for binary merger

Therefore, the only mechanism that will affect the PBH
binaries will be gravitational wave emission. The concern
now is whether the PBHs can evaporate before the inspiral
is complete. Comparing the relevant time scales,

tspiral
�

¼ 15��
SB

24�3

GD4

R6
S

� ð0:166Þ
�
MP

M

�
2
�
D

RS

�
4
: (38)

If tspiral=� < 1, then the PBH binary will merge before

evaporation takes place. This limit can be turned into a
maximum value of the initial separation D for which
merging will occur. To gauge what importance this effect
will have, we need to know more about the distribution of
initial separations.
First, define two quantities. From the definition of �ð ~xÞ

(Eq. (4)), �ð ~xÞ ¼ ��ð1þ �ð ~xÞÞ. Consider the quantity
h�ð ~xÞ�ð ~xþ ~rÞi ¼ ��2ð1þ �ð~rÞÞ; (39)

which can be shown by direct substitution and noting that
h�ð ~xÞi ¼ h�ð ~xþ ~rÞi ¼ 0. Assuming isotropy and a mono-
chromatic mass function, �PBH ¼ nPBHM, and

hnPBHð ~xÞnPBHð ~xþ ~rÞi ¼ �n2ð1þ �ðrÞÞ: (40)

The mean initial separation we define as �D ¼ �n�1=3
PBH .

This, being the first moment of the density distribution,

tells us nothing about clustering. Define instead ~D ¼
hn2PBHð0Þi�1=6, which has the dimensions of length. Using
Eq. (21) in the limit that � � 1 and r � 0 (as we are
interested in the clustering at short distances), we find

hn2PBHð0Þi ¼ �n2PBHe
�2 : (41)

Using Eq. (6) and the definition of nPBH,

�D ¼ ffiffiffiffiffiffiffi
2�

p ½N�ð�Þ	�1=3e�
2=6RH (42)

so that

~D ¼ hn2PBHð0Þi�1=6 ¼ �De��2=6 ¼ ffiffiffiffiffiffiffi
2�

p ½N�ð�Þ	�1=3RH:

(43)

While the number density is exponentially suppressed
with �, there is a cancellation computing this clustering
length so that it is roughly constant with �. As expected
from the peak-background split model, the scale that sets
the clustering is the horizon size at PBH formation.

Taking D ¼ ~D in Eq. (38) for f ¼ 1 and N�ð�Þ ¼ffiffiffi
2
�

q
��1, we obtain

tspiral
�

¼ 2:66�4=3

�
MP

MH

�
2
; (44)

meaning, provided MH >MP and with only slight � de-
pendence, inspiral typically occurs well before Hawking
evaporation completes. In Fig. 1 we plot the conditions for

CLUSTERING OF . . . . II. EVOLUTION OF . . . PHYSICAL REVIEW D 84, 124031 (2011)

124031-5



merging before evaporation for the range of hole masses
expected to evaporate by the current day. We see that,
assuming binary formation occurs, the PBH clustering
implies certain merging over most of this range, even
relaxing the assumption on f.

Let us talk a bit more about this result. For PBHs with
M< 1015 g, this implies that if the formation of PBH
binaries is efficient, the lifetime of the PBH population
as a whole is increased, as � / M3. Given hierarchical
clustering, where a new generation of PBH binaries is
formed from the first generation, this process can theoreti-
cally proceed until all smaller PBHs are bound up into
larger ones.

This would have a profound impact upon cosmology—
as PBHs that should have evaporated by now would still be
present in the universe. There are two caveats in this
scenario. First, if PBH binary formation is inefficient,
then most PBHs will still evaporate ‘‘when they should’’
and the merged ones have little impact. Second, it assumes
that the PBH binaries are not disrupted by other means;
such as other PBHs. We address this point next.

G. PBH cluster occupation

Having shown that gravitational wave emission can
cause PBHs to merge before they evaporate, the creation
and destruction of PBH binaries in a PBH cluster will
determine whether merging is common enough even to
impact the PBH mass function as a whole.

We define a PBH cluster as a group of PBHs that are
within causal contact (subhorizon) and are gravitationally
bound. We showed in [4] that, under the assumption that
� * 4, PBHs are distributed at large distances as clusters of
objects with mean occupation number

Nc � N�ð�Þe�2=4: (45)

The question then remains: what range of parameters
ðM0; �Þ are physically interesting, given the absence of
evidence for PBHS in our current universe? In [4], we
constrained these according to the criteria that (a) PBHs
do not induce an early matter-dominated phase of the
universe, and (b) PBHs, as dark matter, do not produce a
too large isocurvature perturbation. These give a parameter
space where the allowed � decreases as M0 increases.
We can then look at two different categories of PBHs,

distinguished by mass: those that would and would not
have evaporated by the current day, with the boundary at
M0 � 1015 g. The subsequent evolution of this first cate-
gory (the lightest PBHs) is interesting in that the evapora-
tion lifetime � / M3—if merging occurs, this will increase
the PBH lifetime, perhaps above the ‘‘evaporation’’ bound-
ary. For MH < 1015 g, this gives a range of � * 7–10 for
f ¼ 10�3:5 and � * 8–11 for f ¼ 1. For MH > 1015 g
there is no worry of Hawking evaporation, but these have
a smaller lower bound on � and thus would form (on
average) smaller clusters.
The evolution of bound PBH clusters will depend upon

their internal density profile. The average cluster profile is
just h�PBHðrÞi ¼ �PBHð1þ h�PBHðrÞi. Since a randomly
chosen point is likely to be located at a peak, it can be
shown that [42]:

h�PBHðrÞi ¼ �PBHð0Þ
�PBHð0Þ �PBHðrÞ / �PBHðrÞ: (46)

The cluster is highly peaked, due to the enhancement of the
PBH correlation function. The exact details of the shape of
the cluster will depend upon choice of initial radiation
power spectrum PradðkÞ, window function WkðkrÞ and
higher order statistics (we are only considering the 2-point
function). Nonetheless, while PBHs can form no closer
than a horizon distance apart, their typical separation
within the cluster ~D cannot be too much larger than this
distance due to the exponential enhancement of the corre-
lation function for small r. Because of the high central
density (below we compute the concentration parameter c),
this results in the PBHs being approximately ‘‘close-
packed’’ inside the core. Outside the core, the density falls
off faster than the underlying radiation perturbation, as
�PBHðrÞ ¼ expð�2wðrÞÞ � 1. Far from the core, the cluster
profile falls off no slower than the underlying radiation
perturbation profile: as r ! 1, �PBHðrÞ � �2wðrÞ.
The steepest profile comes from assuming Prad /
�Diracðk� k�Þ (a delta function a given scale k�, which
we can take to be the horizon scale at formation); there

wðrÞ ¼ sinðk�rÞ
k�r

and asymptotically wðrÞ / r�1 as r ! 1. In

this extreme limit, normalizing the cluster profile h�PBHðrÞi
to the mean objects in a cluster Nc puts virtually all PBHs
within k�1� —this would be unphysical given this is roughly
the event horizon size, but motivates our later assumption

FIG. 1. Conditions for binary merger before evaporation. Dbar

is the mean separation assuming a uniform (nonclustered)
PBH distribution. Dtwid ¼ ð�2Þ2=3�1=3f�1RS is the ‘‘clustering

length’’ scale. Solid curves are for f ¼ 1, dashed curves are
for f ¼ 10�3:5.
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of putting all of the PBHs within the core. A more realistic
power spectrum flattens this profile; taking Prad / kn gives

wðrÞ / r�ðnþ3Þ asymptotically [42].
The quasiequilibrium state of an N-body system of

gravitating point masses can be broken down into two
major components: a high density central core and a low-
density encompassing halo [36]. Because of the enhanced
clustering, the PBH clusters considered here already begin
with a similar, centrally concentrated profile. It is conve-
nient to discuss separately activity within the core (small
radius, or r ! 0) and in the halo (large radius, or r ! 1)
of the cluster. The core concentration c is then

c ¼ �core

�halo

¼ 1þ �PBHð0Þ
�PBHð0Þ �PBHð0Þ

1þ �PBHð0Þ
�PBHð0Þ �PBHð1Þ �

�PBHð0Þ
1

¼ �PBH

� e�
2=2: (47)

This alone is a clue that our cluster is destined for collapse;
an isothermal sphere with c > 708:61 is unstable to col-
lapse (known as the gravothermal catastrophe) [43]. This
happens for � > 3:62, which is in the parameter space we
were considering anyway. Further, as the core begins to
contract and PBHs begin to approach relativistic speeds,
the relativistic instability [44] accelerates this collapse. To
confirm this, we examine in more detail the processes
involved in this collapse process.

As our clusters begin ‘‘precollapsed’’ in a sense, there is
expected to be a great difference between core radius and
halo radius when it comes to estimating the extent of the
clusters. Because of its high density, it is within the core
that most interactions take place [45,46], and so it is within
the core we are more interested anyway. We can make
some estimates of size using our expressions for Nc and ~D,
assuming the majority of PBHs form within the core. As

Nc / Vcore / R3
core, the cluster radius Rcore / N1=3

c . In the
core, where the PBHs are most concentrated, each PBH is
separated by a typical distance of ~D, then

Rcore � N1=3
c ~D ¼ ðN�ð�Þe�2=4Þ1=3 �

ffiffiffiffiffiffiffi
2�

p ðN�ð�ÞÞ�1=3RH

¼ ffiffiffiffiffiffiffi
2�

p
e�

2=12RH: (48)

Thus, the core size is independent of our choice of
N�ð�Þ, but increases with increasing �, as expected.
Taking a range of 2< �< 10, this gives a range of
3:5RH < Rcore < 104RH. As the higher values of � are
only allowed for PBHs that form earlier, these large
cores will consist of smaller mass PBHs (and a smaller
horizon size), while smaller cores will have larger mass
PBHs.

We can similarly make an estimate for the initial size of
the surrounding halo. Recall that the mean separation of

PBHs is �D ¼ �n�1=3
PBH . As we are now grouping PBHs into

clusters of size Nc, the density of clusters of PBHs is
smaller an the density of PBHs themselves, thus the

mean separation between clusters Dc must be greater
than the mean separation between PBHs themselves:

Dc ¼ ðnPBH=NcÞ�1=3

¼ N1=3
c �D� ðN�ð�Þe�2=4Þ1=3

� ffiffiffiffiffiffiffi
2�

p ðN�ð�ÞÞ�1=3e�
2=6RH

¼ ffiffiffiffiffiffiffi
2�

p
e�

2=4RH: (49)

This sets an upper limit on the halo radius, imagining the
PBH clusters close-packing in space. As the evolution of
the cluster is driven primarily by core activity, we will
focus on that from here on out.
Take a PBH cluster of N initial PBHs of mass M with

scale radius Rc ¼ sRS, where RS ¼ 2GM is the initial
Schwarzschild radius. The dynamical time scale (roughly
the cluster crossing time) is

tc �
ffiffiffiffiffiffiffiffiffiffiffi
R3
c

GMc

s
¼

ffiffiffiffi
2

N

s
s3=2RS: (50)

As a reference, the binary period and inspiral time scales
are

torbit ¼ 4�
ffiffiffi
2

p
d3=2RS; (51)

tspiral ¼ 10D

�
D

RS

�
3 ¼ 10d4RS; (52)

where d ¼ D=RS.
The first process we need to consider for large N-body

systems is that of relaxation. This is the process by which a
cluster achieves equilibrium (virialization) through the
combined effect of two-body scatterings. The relaxation
time scale is given by [47,48]

trel �
�
0:14N

lnð0:4NÞ
�
tc: (53)

Gravitational wave emission during 2-body scatterings will
accelerate cluster relaxation (so that the expression for trel
is an upper limit), in addition allowing for binary mergers.
Under the assumption of violent relaxation, however, the
cluster virializes in only a few dynamical times. After
virialization, the PBHs will have a velocity dispersion

hv2i �GMc

Rc

¼ N

2s
: (54)

The simplest mechanism for PBH mergings is direct
collisions; the time scale being

tcoll � 0:8 lnð0:4NÞ
�

�2

1þ�

�
trel (55)

where � ¼ ð4v2Þ�1. This process is initially negligible
compared to the relaxation time for small (N & 100)
clusters.
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Successive scatterings can give a single object enough
energy so that it can escape from the cluster entirely (v >

vescape), while the cluster shrinks in size. This mass loss

gradually leaves to the ‘‘evaporation’’ of the cluster; where
most of the bodies are ejected to infinity, leaving behind
only a hard binary system (in the absence of gravitational
wave emission) or a central black hole (where gravitational
wave emission has induced orbital decay and merging of
the hard binary). The time scale for this evaporation is

tevap � 300trel: (56)

The cluster shrinking is accompanied by core collapse
where the innermost portions of the cluster accrete more
and more of the mass of the cluster, which could result in
runaway growth unless halted by some mechanisms.
Numerical simulations [49,50] show that this process be-
gins within 10–20 relaxation times—much smaller than the
cluster evaporation time scale.

H. Binary formation

We now turn to binary formation in a cluster. This is a
critical point, because a population of binaries in the core
could eject other PBHs from the core while themselves
contracting in their orbit (binary hardening). This, effec-
tively, cools the core, and could possibly halt core collapse
(see [48] for a discussion). This is the case when PBHs are
moving nonrelativistically (in the Newtonian regime).
Once relativistic effects are considered, in particular, gravi-
tational wave emission, we see that this is not the case, and
binaries are not enough to arrest core collapse.

Since the PBHs form at rest with respect to the cosmic
expansion, there are no binaries present at the ‘‘birth’’ of
the cluster.2 In the Newtonian regime (cluster members
moving nonrelativistically), the only avenue for binary
formation is through 3-body exchange interactions only,
with a formation time scale of

t3 � 10N2 lnNtrel: (57)

As cluster ‘‘evaporation’’ occurs in a few hundred relaxa-
tion times, binary formation through 3-body interactions is
negligible for large N systems (N * 100).

Binaries are only formed through 2-body interactions
when there is some energy dissipation involved during
(what would have been) a scattering event. For stars, this
is through dissipation in the stellar atmospheres. For black
holes, this happens due to gravitational wave emission
during the scattering, which heretofore we have not con-
sidered. This has been studied in detail for compact clus-
ters of black holes by a number of authors: in [51,52],
analytic estimates and Fokker-Planck simulations are pre-
sented, while N-body simulations are presented in [49,50].

While their simulations were for stellar-mass black holes,
the results are mass independent. There, 2-body formation
is dominant over 3-body formation, with the ratio of time
scales (from [51]):

t2
t3

¼ 300

N
v15=14: (58)

At the outset of cluster contraction, v � 1 and 2-body
binary formation is dominant for N > 300 clusters. Only
as the core evolves can v ! 1 (i.e., becomes relativistic)
and N shrink enough for 3-body formation to become
important. Despite the enhanced formation in the core,
the inspiral time tspiral < trel is smaller than the cluster

relaxation time, so that these binaries are not effective at
heating the core and halting collapse (noted in [51]).
Just what mass fraction fcore of the initial cluster ends up

in a central black hole is not well known. Numerical
calculations by [49,50] find fcore � 0:06–0:1, though the
simulation begins to break down at that point, meaning this
is a lower limit. Of those PBHs not captured in the core
(either ejected from the cluster or remaining in the halo),
they will either Hawking evaporate (if they are light
enough) or remain until the universe becomes matter-
dominated and they are bound up within galaxies. The
possibility remains that some residual number of PBHs
from this process might survive until the current day,
providing an observational test of this scenario.

V. CONCLUSIONS

A consequence of the PBH clustering, developed in the
previous section, is the merging of PBHs into more mas-
sive, longer-lived PBHs during the radiation-dominated
era. This implies that PBHs are strong candidates to be
the ‘‘seed’’ BHs that form SMBHs. This is distinct from
other models in the literature [53–55] where PBHs serve as
SMBH ‘‘seeds,’’ which are of two types. First [53,55],
PBHs formed from a blue spectrum of perturbations
undergo hierarchical merging along with DM halos in the
MD regime. It was found, however, that it is still difficult to
account for the observed BH mass without invoking some
additional accretion source; in this case the accretion of a
cosmological quintessence field. Quintessence fields are
types of scalar fields that arise in theories of dark energy,
and unlike a cosmological constant, BHs are able to accrete
energy from a time-dependent scalar field [56]. The second
type of PBH seed theory [54] assumes that the �1000M�
seed BHs are PBHs formed at just that right mass scale.
This requires a deviation from scale-invariance in the
power spectrum very close to the era of BBN, which is
highly constrained.
The advantage of our model is that PBH formation

occurs much earlier than in [54], so that the power spec-
trum is not as constrained. Further, PBH merging takes
place in the RD epoch, so there is more time for PBHs

2Known as primordial binaries, where primordial is being used
in a similar context.
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to merge, and possibly no need to invoke an additional
accretion mechanism as in [53,55]. A more detailed study
of this model is planned to determine whether this is the
case.

PBH merging in clusters dramatically changes the limits
on initial PBH abundance �. The rate of merging is sensi-
tive to the initial conditions of the cluster. We have con-
sidered an idealized scenario, with PBH formation
happening at a single mass scale and at a single time.
Physically, one would need to account for PBH creation
across a span of times, and include in the cluster dynamics

the effects of a spectrum of masses. N-body simulations
would need to be carried out to examine this further.
In addition to providing the seeds of SMBHs, this PBH

merging scenario we have discussed has other predictions.
One prediction is more gravitational wave emission than
originally assumed for a uniform PBH population. This is
due to the increased probability of PBH binary formation
and emission from N > 2 bound states, specifically in the
core of a PBH cluster. This would alter recent predictions
of gravitational wave spectra from direct graviton emission
from PBHs [57,58].
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