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Einstein-matter theories in which hairy black-hole configurations have been found are studied. We

prove that the nontrivial behavior of the hair must extend beyond the null circular orbit (the photonsphere)

of the corresponding spacetime. We further conjecture that the region above the photonsphere contains at

least 50% of the total hair’s mass. We support this conjecture with analytical and numerical results.
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The influential ‘‘no-hair conjecture’’ of Wheeler [1] has
played a key role in the development of black-hole physics
[2,3]. This conjecture suggests that black holes are funda-
mental objects in general relativity, Einstein’s theory of
gravity—they should be described by only a few parame-
ters, very much like atoms in quantum mechanics.

The no-hair conjecture was motivated by earlier unique-
ness theorems on black-hole solutions of the Einstein
vacuum theory and the Einstein-Maxwell theory [4–8].
According to these uniqueness theorems, all stationary
solutions of the Einstein-Maxwell equations are uniquely
described by only three conserved parameters which are
associated with a Gauss-like law: mass, charge, and angu-
lar momentum.

The belief in the no-hair conjecture was based on a
simple physical picture according to which all matter fields
left in the exterior of a newly born black hole would
eventually be radiated away to infinity or be swallowed
by the black hole itself (except when those fields were
associated with conserved charges). In accord with this
logic, early no-hair theorems indeed excluded scalar [9],
massive vector [10], and spinor [11] fields from the exterior
of stationary black holes.

However, the interplay between particle physics and
general relativity in the following years has led to the
somewhat surprising discovery of various types of ‘‘hairy’’
black holes, the first of which were the ‘‘colored black
holes’’ [12]. These are black-hole solutions of the Einstein-
Yang-Mills (EYM) theory that require for their complete
specification not only the value of the mass but also an
additional integer n, which counts the number of nodes of
the Yang-Mills field outside the horizon. Remarkably, this
integer is not associated with any conserved charge.

Soon after this discovery, a variety of hairy black-hole
solutions equipped with different types of exterior fields
have been discovered [13–24]. These include the Einstein-
Skyrme, Einstein-non-Abelian-Proca, Einstein-Yang-
Mills-Higgs, and Einstein-Yang-Mills-Dilaton hairy black
holes.

It has become clear [3] that the nonlinear character of
the matter fields mentioned above plays a key role in the
construction of these hairy black-hole configurations.

Núñez et. al. [3] have presented a nice heuristic picture
according to which it is the self-interaction between the
part of the field in a region near the black-hole horizon
(a loosely defined region from which the hair tends to be
swallowed by the black hole) and the part of the field in a
region relatively far from the black hole (a region from
which the hair tends to be radiated away to infinity) which
is responsible, together with gravity, for the existence of
stationary black-hole solutions with exterior matter fields
(hair). The nonlinear (self-interaction) character of the
fields thus plays an essential role in binding together the
hair in these two regions in such a way that the ‘‘near-
horizon’’ hair does not collapse into the black hole while
the ‘‘far-region’’ hair does not escape to infinity.
Thus, according to the heuristic picture of [3], the non-

trivial (nonlinear) behavior of the matter fields which con-
stitute the hair is expected to extend into some loosely
defined far-region well above the black-hole horizon. But
is it possible to provide a more explicit characterization of
the hair’s length?
Here we turn our attention to another important charac-

teristic of black-hole spacetimes: null geodesics. Geodesic
motions provide important information on the structure
of the spacetime geometry. Among the different kinds of
geodesic motion, circular geodesics are especially impor-
tant [25,26]. In particular, the null circular orbit (also
known as the ‘‘photon orbit’’ or photonsphere) is the
boundary between two qualitatively different regions in
the exterior of a black hole: No stationary spherically
symmetric configurations made of test particles (with no
self-interactions) can exists below this orbit [27]. Gravity is
simply too strong there. Relating this property of the null
circular geodesic to our former discussion on hairy black
holes, we conjecture that the ‘‘near region’’ (the region
from which the hair tends to be sucked into the black hole)
extends at least up to the height of the photon orbit.
The aim of this paper is to prove a theorem which

supports this conjecture. We shall show that the nontrivial
behavior of the hair indeed extends into the region above
the photonsphere. More explicitly, we shall show that the
asymptotic behavior of the exterior fields cannot start
before the null circular orbit is crossed.
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The first clue for the important role played by the
photonsphere in determining the effective length of the
hair could have been elicited from the nice theorem proved
in [3]. There it was shown that the nontrivial behavior of
some suitably defined pressure function EðrÞ � e��r4p
(see details below) must extend beyond 3=2 the horizon
radius. But what is so special in the location r ¼ 3

2 rH?

Here we point out that the null circular orbit of the (bare)
Schwarzschild spacetime is actually located exactly at 32 rH.

This location is not expected to change much for hairy
black holes with ‘‘thin’’ hair (these are characterized by
mhair � M, where M is the total Arnowitt-Deser-Misner
(ADM) mass of the spacetime and mhair � M� 1

2 rH is the

mass of the hair which resides outside the horizon). This
suggests that, for black holes with thin hair, the nontrivial
(nonasymptotic) behavior of the fields extends beyond the
photonsphere. Here we shall show that this is actually a
generic property of hairy black-hole configurations, re-
gardless of the amount of hair.

We consider static spherically symmetric asymptotically
flat spacetimes. The line element may take the following
form in Schwarzschild coordinates [3,28]:

ds2 ¼ �e�2��dt2 þ��1dr2 þ r2ðd�2 þ sin2�d�2Þ;
(1)

where the metric functions �ðrÞ and �ðrÞ � 1� 2mðrÞ=r
depend only on the Schwarzschild areal coordinate r.
Asymptotic flatness requires that as r ! 1,

�ðrÞ ! 1 and �ðrÞ ! 0; (2)

and a regular event horizon at r ¼ rH requires [3]

�ðrHÞ ¼ 0 and �ðrHÞ<1: (3)

Taking Tt
t ¼ ��, Tr

r ¼ p, and T�
� ¼ T�

� ¼ pT , where �,

p, and pT are identified as the energy density, radial
pressure, and tangential pressure, respectively, [29], the
Einstein equations G

�
� ¼ 8�T

�
� read

�0 ¼ �8�r�þ ð1��Þ=r; (4)

and

�0 ¼ �4�rð�þ pÞ=�; (5)

where the prime stands for differentiation with respect to r.
(We use natural units in which G ¼ c ¼ 1.)

The mass mðrÞ contained within a sphere of radius r is
given by

mðrÞ ¼ 1

2
rH þ

Z r

rH

4�r02�ðr0Þdr0; (6)

where mðrHÞ ¼ rH=2 is the horizon mass.
The conservation equation, T�

�;� ¼ 0, has only one non-

trivial component [3],

T�
r;� ¼ 0: (7)

Substituting Eqs. (4) and (5) in Eq. (7), one finds for the
pressure gradient,

p0ðrÞ ¼ 1

2�r
½ð3�� 1� 8�r2pÞð�þ pÞ þ 2�T � 8�p�;

(8)

where T ¼ ��þ pþ 2pT is the trace of the energy-
momentum tensor. Below we shall analyze the behavior
of the function PðrÞ � r4pðrÞ, whose derivative is given by

P0ðrÞ ¼ r3

2�
½ð3�� 1� 8�r2pÞð�þ pÞ þ 2�T�: (9)

When analyzing the coupled Einstein-matter system,
one usually imposes some energy conditions on the matter
fields. We shall assume that the hair outside the horizon
satisfies the following conditions:
(1) The weak energy condition. This means that the

energy density � is positive semidefinite and that
it bounds the pressures. In particular, jpj � �. This
implies the inequality,

�þ p � 0: (10)

(2) The trace of the energy-momentum tensor plays a
central role in determining the spacetime geometry
of static configurations [29]. It is usually assumed to
satisfy the relation pþ 2pT � � (see [29] and refer-
ences therein), which implies

T � 0: (11)

(3) The energy density � goes to zero faster than r�4.
This requirement is the natural way to impose the
condition that there are no extra conserved charges
(besides the ADM mass) defined at asymptotic in-
finity associated with the matter fields [3]. (We
recall that the charges defined at spatial infinity,
like the electric charge of the Reissner-Nordström
solution in Einstein-Maxwell theory, are associated
with the �� r�4 asymptotic behavior.) We there-
fore have the boundary condition,

Pðr ! 1Þ ! 0: (12)

It should be emphasized that in all Einstein-matter
theories in which hair has been found, these con-
ditions are indeed satisfied (see details in [3]).

We shall next examine the behavior of the function PðrÞ
in the vicinity of the black-hole horizon. Regularity of the
horizon imposes the requirement (see [3,30] for details):

� pðrHÞ ¼ �ðrHÞ< ð8�r2HÞ�1; (13)

the last inequality being valid for nonextremal black holes.
Substituting Eqs. (3), (10), (11), and (13) into Eq. (9), one
finds
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Pðr ! rHÞ � 0 and P0ðr ! rHÞ< 0; (14)

in the vicinity of the black-hole horizon.
We shall now prove that the asymptotic behavior of the

pressure function PðrÞ, as characterized by Eq. (12),
can start only above the photonsphere. We shall follow
the analyses of [25,26] in order to compute the location
r ¼ r� of the null circular geodesic for a black-hole space-

time described by the line element (1). The Lagrangian
describing the geodesics in the spacetime (1) is given by

2L ¼ �e�2�� _t2 þ��1 _r2 þ r2 _�2; (15)

where a dot denotes a derivative with respect to proper
time. The generalized momenta derived from this
Lagrangian are given by [25,26]

pt ¼ �e�2�� _t � �E ¼ const; (16)

p� ¼ r2 _� � L ¼ const; (17)

and

pr ¼ ��1 _r: (18)

The Lagrangian is independent of both t and �. This
implies that E and L are constants of the motion.

The Hamiltonian of the system is given by [25,26] H ¼
pt _tþ pr _rþ p�

_��L, which implies

2H ¼ �E _tþ L _�þ��1 _r2 ¼ 	 ¼ const; (19)

where 	 ¼ 0 for null geodesics and 	 ¼ 1 for timelike
geodesics. Substituting Eqs. (16) and (17) into (19), one
finds

_r 2 ¼ �

�
E2

e�2��
� L2

r2
� 	

�
: (20)

Circular geodesics are characterized by _r2 ¼ ð _r2Þ0 ¼ 0
[25,26]. This implies the relations

E2 ¼ 2e�4��2

2e�2��� rðe�2��Þ0 ;

L2 ¼ r3ðe�2��Þ0
2e�2��� rðe�2��Þ0 ;

(21)

for timelike geodesics. The requirement that the energy E
be real enforces the inequality,

2e�2��� rðe�2��Þ0 > 0: (22)

From (20) one finds that the radius r ¼ r� of the null

circular geodesic satisfies the relation,

r� ¼ 2e�2��

ðe�2��Þ0 : (23)

Substituting the Einstein equations (4) and (5) into
Eqs. (22) and (23), one finds

3�� 1� 8�r2p � 0 (24)

in the spacetime region where circular geodesics are al-
lowed to exist. The equality sign corresponds to the limit-
ing case of the null circular geodesic. In case there are
several such zeroes, the photonsphere corresponds to the
innermost one [31].
Finally, substituting Eq. (24) into (9), one finds the

surprisingly simple relation,

P0ðr�Þ ¼ r3�T � 0; (25)

where the last inequality follows from (11). The spacetime
region between the horizon and the photonsphere in which
circular geodesics are excluded (we refer to this region as
the ‘‘no-circling zone’’) is characterized by 3�� 1�
8�r2p < 0. This implies

P0ðr < r�Þ � 0: (26)

Thus, Eqs. (14) and (26) imply that PðrÞ is a nonpositive
and decreasing function at least up to the point where the
photonsphere is crossed. If we define r ¼ rhair to be the
point at which jPðrÞj has a local maximum [Eqs. (12) and
(14) together imply that such a point must exist and that it
must be crossed before the trivial asymptotic behavior (12)
dominates], then our analysis reveals the lower bound,

rhair � r�: (27)

Thus, the nontrivial (nonasymptotic) behavior of the hair
must extend beyond the photonsphere [32]. Note that our
pressure function PðrÞ � r4p is different from the function
EðrÞ � e��r4p considered in [3]. Thus, the definitions of
the length of the hair adopted in these papers are different
from each other.
An interesting quantity which characterizes the spatial

distribution of the hair is given by the dimensionless ratio
mþ

hair=m
�
hair, where

mþ
hair � M�mðr�Þ (28)

is the mass of the hair which resides above the photon-
sphere, and

m�
hair � mðr�Þ �mðrHÞ (29)

is the mass of the hair which is contained between the
horizon and the photonsphere. (Here M is the total ADM
mass of the spacetime.) The result (27) suggests (but
obviously does not prove) that a considerable fraction of
the hair’s mass resides above the photonsphere. This raises
the following question: Is there some fundamental lower
bound on the ratio mþ

hair=m
�
hair for hairy black holes?

To answer this interesting question, we shall first exam-
ine the limiting case of the linear Maxwell field outside the
Reissner-Nordström (RN) black-hole solution. Of course,
this is not a case where a genuine hair is present since an
additional conserved charge is needed in order to complete
the specification of the solution. Nevertheless, for this
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black-hole solution (like in any real hairy solution) the
region exterior to the horizon is characterized by a nonzero
energy density. For the Maxwell field, one has �pðrÞ ¼
�ðrÞ ¼ Q2=8�r4 [30], which yields mðrÞ ¼ M�Q2=2r

for the mass function and r� ¼ 1
2 ½3Mþ ð9M2 � 8Q2Þ1=2�

for the location of the photonsphere; see Eqs. (6) and (24),
respectively. Here M and Q are the total mass and elec-
tric charge of the spacetime, respectively. Substituting

these relations into Eqs. (28) and (29) with rH ¼
Mþ ðM2 �Q2Þ1=2, one finds the ratio,

mþ
RN=m

�
RN ¼ 1

r�=rH � 1
� 1: (30)

(The case mþ
RN=m

�
RN ¼ 1 corresponds to the extremal

black-hole solution with Q ¼ M.)
The result (30) for the marginal case of a linear hair

leads us to conjecture that genuine hairy black holes al-
ways satisfy the lower bound,

mþ
hair=m

�
hair � 1: (31)

In other words, the region above the photonsphere always
contains at least 50% of the total hair’s mass.

There is one family of hairy black-hole configurations
for which the suggested bound (31) can be tested analyti-
cally: the Einstein-Yang-Mills hairy black-hole solutions.
The EYM equations can be solved analytically in the limit
of large black holes (for which mhair � rH); see [19] for
details. The hair of the n ¼ 1 solution is then described by

Eq. (4.8) of [19], which yields the ratio mþ
hair=m

�
hair ¼ 2:08.

Thus, large EYM black holes indeed respect the conjec-
tured bound (31).
We have also performed some numerical studies in order

to put the conjectured bound (31) into test. The models we
have considered include the Einstein-Yang-Mills, Einstein-
Skyrme, Einstein-non-Abelian-Proca, Einstein-Yang-
Mills-Higgs, and Einstein-Yang-Mills-Dilaton systems.We
have found that all these hairy black-hole solutions indeed
conform to the suggested bound (31). These studies will be
reported elsewhere [33].
In summary, in this paper we have analyzed the non-

trivial spatial behavior of the matter fields outside hairy
black holes. In particular, we have proved a theorem
which reveals the important role played by the null circular
geodesic (the photonsphere) in the context of hairy black-
hole configurations. According to this theorem, the
nontrivial structure of the hair must extend above the
photonsphere of the corresponding spacetime.
Furthermore, motivated by this theorem, we have put

forward a conjecture according to which the region above
the null circular geodesic contains at least 50% of the total
hair’s mass. This conjecture is supported by numerical
computations for a variety of hairy black-hole configura-
tions [33].
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