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We study the cosmology of a generalized Galileon field� with five covariant Lagrangians in which� is

replaced by general scalar functions fið�Þ (i ¼ 1; . . . ; 5). For these theories, the equations of motion

remain at second order in time derivatives. We constrain the forms of the functions fið�Þ from the

requirement to possess de Sitter solutions responsible for dark energy. There are two possible choices for

power-law functions fið�Þ, depending on whether the coupling Fð�Þ with the Ricci scalar R is

independent of � or depends on �. The former corresponds to the covariant Galileon theory that respects

the Galilean symmetry in the Minkowski space-time. For generalized Galileon theories we derive the

conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar and tensor

perturbations as well as the condition for the stability of de Sitter solutions. We also carry out a detailed

analytic and numerical study for the cosmological dynamics in those theories.
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I. INTRODUCTION

The �-cold-dark-matter (�CDM) model has been con-
sistent with observational data, but the energy scale of dark
energy is too low to be compatible with the cosmological
constant originating from the vacuum energy in quantum
field theory [1]. Since the observations allow the variation
of the dark energy equation of state [2], many models have
been proposed to explain the present accelerated expansion
of the Universe [3]. For example, a light scalar field with a
slowly varying potential, called quintessence, was intro-
duced as an alternative to the cosmological constant [4]. In
general, however, it is not easy to construct viable particle
physics models of quintessence because of the extremely
light mass required for cosmic acceleration today [5].

Another approach for addressing the dark energy
problem is to modify the law of gravity from general
relativity at large distances [6]. In this approach there
have been two main streams. The first consists of introduc-
ing a Lagrangian for gravity built up out of the Ricci,
Riemann, and metric tensors, which generally leads to
fourth-order differential equations. The fðRÞ gravity [7]
and the Gauss-Bonnet gravity [8] belong to this class. The
second consists of higher dimensional models that realize
cosmic acceleration through the gravitational leakage to
extra dimensions. The Dvali-Gabadadze-Porrati (DGP)
braneworld model [9] belongs to this class (see Refs. [10]).

In general, modified gravity models of dark energy need
to be constructed to recover the general relativistic behav-
ior in regions of high density for consistency with local
gravity experiments. In fðRÞ gravity, there have been a
number of viable models in which a scalar-field degree of
freedom (‘‘scalaron’’ [11]) has a large mass in the region
where the Ricci scalar R is much larger than its cosmo-
logical value R0 today [12]. Provided that the chameleon
mechanism [13] is at work in the local regime, the gravi-
tational coupling with nonrelativistic matter can be

suppressed to be compatible with solar system experiments
[14]. There is also another mechanism called the
Vainshtein screen effect [15] in which nonlinear effects
can effectively decouple the scalar field from gravity.
Originally, the Vainshtein mechanism was applied to theo-
ries of massive gravity like Fierz-Pauli gravity [16] (see
also Refs. [17]), but the nonlinearities imply the presence
of a ghost state in such theories [18].
In the DGP model nonlinear field self-interacting

Lagrangians such as h�ð@��@��Þ arise from a brane-

bending mode (i.e. a longitudinal graviton) [19]. This
allows the decoupling of � from gravitational dynamics
in the local region. Unfortunately, the self-accelerating
solution in the DGP model contains a ghost mode [20]
even in the absence of nonlinear terms. Moreover, the
model is disfavored from the combined data analysis of
supernovae Ia and baryon acoustic oscillations [21].
Mostly inspired by the DGP model, Nicolis et al. [22]

derived the five Lagrangians that lead to the field equations
invariant under Galilean symmetry @�� ! @��þ b�
in the Minkowski space-time [including the term
h�ð@��@��Þ]. The scalar field that respects the

Galilean symmetry is dubbed ‘‘Galileon.’’ Each of the
five terms only leads to second-order differential equa-
tions, keeping the theory free from unstable spin-2 ghost
degrees of freedom. If we extend the analysis in Ref. [22]
to the curved space-time, the Lagrangians need to be
promoted to the covariant forms. Deffayet et al. [23,24]
derived the covariant Lagrangians Li (i ¼ 1; . . . ; 5) that
keep the field equations up to second order. We caution
that, in the curved space-time, the Galilean symmetry is, in
general, broken for nonlinear field self-interacting terms,
but in the Minkowski space-time it is preserved for the
covariant Lagrangians Li (i ¼ 1; . . . ; 5).
The (modified) Galileon gravity has been extensively

applied to cosmology recently [25–41]. One application is
to introduce the nonlinear field self-interaction of the form
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�ð�Þh�ð@��@��Þ in the action of (generalized) Brans-

Dicke theories [26–28,31,32], where � is a function of �.
Although such a term breaks the Galilean symmetry, the
field equations remain at second order. Moreover, for
suitable choices of the function �ð�Þ, there exist de Sitter
(dS) solutions responsible for dark energy even in the
absence of the field potential. The presence of the non-
linear term also allows the decoupling of the field from
gravity in the regions of high density under the Vainshtein
mechanism.

Another application of Galileon gravity to cosmology is
to study the expansion history of the Universe in the
presence of the covariant Lagrangians Li (i ¼ 1; . . . ; 5)
mentioned above. The cosmology up to the term L4 has
been discussed in Ref. [30], which showed the existence of
stable dS solutions. Recently, the full cosmological dynam-
ics including the term L5 have been studied in Ref. [34].
The viable model parameter space has been found by
studying the conditions for the avoidance of ghosts and
Laplacian instabilities. Interestingly, there exists a tracker
solution that finally approaches a stable dS solution. The
equation of state of dark energy exhibits a peculiar phan-
tomlike behavior along the tracker.

In this paper we shall study general Galileon theories
in which the field � in the covariant Lagrangians Li (i ¼
1; . . . ; 5) is replaced by general functions fið�Þ. Since
fið�Þ are scalar functions, the resulting field equations
also remain at second order. We demand the functions
fið�Þ to allow for dS solutions. This constraint gives rise
to the Galileon theory with fið�Þ / � as a specific case.
For general functions fið�Þ we also derive the conditions
for the avoidance of ghosts and Laplacian instabilities.
This is useful to constrain the viable parameter space of
those theories. We shall perform a detailed analytic and
numerical study for the cosmological dynamics of gener-
alized Galileon theory with several different choices of
fið�Þ.

II. GENERALIZED GALILEON THEORIES

In the curved space-time the Galilean symmetry is bro-
ken even for the Lagrangian L2 ¼ ðr�Þ2 � @��@��.

Then this symmetry is not restrictive when we study the
covariant generalization of the Galileon field. On the other
hand, the covariant Galileon formalism leads to second-
order field equations. We study a Lagrangian that gives
second-order equations of motion, such that the theories
recover the covariant Lagrangian in Refs. [23,24] as a
specific case. We will consider two generalizations of the
covariant Galileon theory: (i) scalar couplings with both
the Ricci scalar R and the Gauss-Bonnet (GB) term G are
introduced, and (ii) the covariant Galileon terms are ex-
tended to more general functions.

As for the first point, this step is compatible with the
approach of field theory, because such scalar couplings
generally exist and they are consistent with general

covariance (and even with the Galileon symmetry, as in
the Minkowski background their contributions to the equa-
tions of motion of the field identically vanish). Moreover,
the scalar couplings with R and G give only second-order
contributions. It is true that the GB term can change the
ultraviolet behavior for the modes, but this property also
holds for all the remaining terms coming from the extended
Galileon action.
As for the second point, we can replace the scalar field�

in each Lagrangian term with a function of the field itself.
The Lagrangian L2, for example, can be modified to
ðrf2ð�ÞÞ2 � @�f2ð�Þ@�f2ð�Þ. The equations still remain

at second order because f2 is a scalar quantity itself. We
will consider this generalization for all the Galileon terms,
introducing different functions fið�Þ (i ¼ 1; 2; . . . ) for
each of them.
According to the above prescription, we introduce the

following Lagrangians as the generalization of those intro-
duced by Deffayet et al. [23]:

L 1 ¼ f1ð�Þ; (1)

L 2 ¼ ðrf2ð�ÞÞ2; (2)

L 3 ¼ ðhf3ð�ÞÞðrf3ð�ÞÞ2; (3)

L 4 ¼ ðrf4ð�ÞÞ2½2ðhf4ð�ÞÞ2 � 2f4ð�Þ;��f4ð�Þ;��

� ðR=2Þðrf4ð�ÞÞ2�; (4)

L5¼ðrf5ð�ÞÞ2½ðhf5ð�ÞÞ3�3ðhf5ð�ÞÞf5ð�Þ;��f5ð�Þ;��

þ2f5ð�Þ;��f5ð�Þ;��f5ð�Þ;��
�6f5ð�Þ;�f5ð�Þ;��f5ð�Þ;�G���; (5)

where R is the Ricci scalar and G�� is the Einstein tensor.

One can also introduce the following terms:

L 6 ¼ Fð�ÞR; (6)

L 7 ¼ �ð�ÞG; (7)

which vanish in the Minkowski space-time. Here G ¼
R2 � 4R��R

�� þ R���	R
���	 represents the GB combi-

nation, where R�� is the Ricci tensor and R���	 is the

Riemann tensor.
The covariant action we shall discuss is given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Lþ
Z

d4xLM; (8)

where g is a determinant of the space-time metric g��,LM

is a matter Lagrangian, and

L ¼ Fð�ÞRþ �ð�ÞG þL1 þ 
2L2 þL3 þ 
4L4 þL5:

(9)
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In order to control the signs ofL2;4, we have introduced the

factors 
2;4, which are eitherþ1 or�1. For the termsL1;3;5

we get the opposite signs by replacing fið�Þ with �fið�Þ.
For the matter Lagrangian LM we consider the contribu-

tion of two perfect fluids LðiÞ
M (i ¼ 1, 2), described by the

barotropic equations of state of the form wi ¼ Pi=�i (i ¼
1, 2). Note that Pi and �i are the pressure and the energy
density of fluids, with the energy-momentum tensor

TðiÞ
�� ¼ �ð2= ffiffiffiffiffiffiffi�g

p Þ	LðiÞ
M=	g��.

III. BACKGROUND COSMOLOGY

Consider the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) space-time with the line element

ds2 ¼ g��dx
�dx� ¼ �dt2 þ a2ðtÞdx2; (10)

where aðtÞ is the scale factor with cosmic time t. Varying
the action (8) with respect to g��, we obtain the following

equations of motion:

3FH2 þ 3H _Fþ f1=2þ 
2 _f22=2� 3H _f33

þ 45
4H
2 _f44=2� 21H3 _f55 þ 12H3 _� ¼ �1 þ �2; (11)

3FH2 þ €Fþ 2H _Fþ 2F _H þ f1=2� 
2 _f22=2� _f23
€f3

þ 3
4 _f34ð8H €f4 þ 3H2 _f4 þ 2 _H _f4Þ=2
� 3H _f45ð5H €f5 þ 2 _H _f5 þ 2H2 _f5Þ
þ 4H½H €�þ 2ðH2 þ _HÞ _��

¼ �ðw1�1 þ w2�2Þ; (12)

where a dot represents a derivative with respect to t. The
matter fluids obey the continuity equations

_� i þ 3Hð1þ wiÞ�i ¼ 0; ði ¼ 1; 2Þ: (13)

Differentiating Eq. (11) in terms of t and eliminating the
terms w1�1 þ w2�2 from Eq. (12), we get the generalized
Klein-Gordon equation for the scalar field. For the perfect
fluids we consider radiation (w1 ¼ 1=3, �1 ¼ �r) and non-
relativistic matter (w2 ¼ 0, �2 ¼ �m).

Let us restrict the functional forms of fið�Þ, Fð�Þ, and
�ð�Þ by demanding the existence of dS solutions respon-
sible for dark energy. We shall focus on the theories in
which the late-time cosmic acceleration can be realized by
the field kinetic terms rather than the field potential, so that
we set

f1ð�Þ ¼ 0: (14)

The absence of this term and, more in general, of a poten-
tial for the field can be implemented by invoking an addi-
tional shift symmetry � ! �þ c for the Galileon
Lagrangian. The condition (14) is also important for an-
other reason. In the Minkowski space-time (H ¼ 0) the
only solution to the equations of motion without matter

corresponds to _� ¼ 0, provided that f2;� � 0. Moreover,

the field perturbations would propagate with the speed of
light in the Minkowski background.
The Friedmann equation (11) can be written in the form

�r þ�m þ�DE ¼ 1; (15)

where �r � �r=ð3FH2Þ, �m � �m=ð3FH2Þ, and

�DE�� _F

HF
�
2

_f22
6FH2

þ
_f33

HF
�
4

15 _f44
2F

þ7H _f55
F

�4H _�

F
:

(16)

In order to realize the late-time dS solutions, we take the
power-law functions for Fð�Þ, fið�Þ, and �ð�Þ in terms of
�. We can classify the theories into two classes: (i) F is
constant, and (ii) F depends on the field �.

A. Constant F

At the dS point (H ¼ HdS ¼ constant) we require that
each term in Eq. (16) does not vary in time. For constant F,
the functions fi and � need to have field dependence
proportional to �. Then the dS solutions can be realized

for constant _�. In order to have dimensionless couplings di
of the order of unity, we write the functions F, fi, and � in
the forms

F ¼ M2
pl; f2 ¼ d2�; f3 ¼ d3

�

M
;

f4 ¼ d4
�

M3=2
; f5 ¼ d5

�

M9=5
; � ¼ d�

�

M�

; (17)

where Mpl ¼ 2:43� 1018 GeV is the reduced Planck

mass. Together with the dimensionless constants di (i ¼
2; . . . ; 5Þ and d�, we have introduced the mass scales

M �
�
Mpl

HdS

�
1=3

HdS � 10�40Mpl; (18)

M� � H2
dS

Mpl

� 10�120Mpl; (19)

where we have used HdS � 10�60Mpl.

Defining the mass scales M and M� as given above, we

can express the density parameter �DE in the form

�DE ¼ � 1

6

2d

2
2x

2 þ d33xy�
15

2

4d

4
4y

2 þ 7d55
y3

x
� 4d�

y

x
;

(20)

where

x �
_�

HMpl

; y � x2
H2

H2
dS

: (21)

We shall consider the case in which the dimensional var-
iables x and y are not much different from the orders of
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unity today. In the asymptotic past we require that x � 1,
y � 1, and y � x2 to recover the general relativistic
behavior. If the coefficients di and d� are of the order of

unity, the dominant contribution in Eq. (20) comes from
the last term. In such a case, however, by now the GB term
has been dominant during the whole cosmological evolu-
tion. In order to avoid this behavior, we set

d� ¼ 0; (22)

when we discuss the cosmological dynamics.
Using Eqs. (11) and (12), we obtain the following rela-

tions:


2ðd2xdSÞ2 ¼ 6þ 9�� 12�; (23)

ðd3xdSÞ3 ¼ 2þ 9�� 9�; (24)

where xdS is the value of x at the dS point, and

� � 
4ðd4xdSÞ4; � � ðd5xdSÞ5: (25)

We note that the theory with the functions (17) corresponds
to the covariant Galileon theory discussed in Refs. [23,31].

B. Nonconstant F

Let us consider theories in which F depends on the field
�. If we take the power-law function of the form F / �p

with constant p, it follows from Eq. (16) that the function
_�=ðH�Þ is required to be constant at the dS point. From
this demand we can restrict the functions F, fi, � in the
forms

F ¼ M2�p
pl �p; f2 ¼ d2M

1�p=2
2 �p=2;

f3 ¼ d3M
�p=3
3 �p=3; f4 ¼ d4M

�1=2�p=4
4 �p=4;

f5 ¼ d5M
�4=5�p=5
5 �p=5; � ¼ d�M

�p
� �p; (26)

where di (i ¼ 2; . . . ; 5) and d� are dimensionless constants,

and Mi (i ¼ 2; . . . ; 5) and M� are mass scales defined by

M2 � Mpl; M3 �
�
Mpl

HdS

�ðp�2Þ=p
HdS;

M4 �
�
Mpl

HdS

�ðp�2Þ=ðpþ2Þ
HdS;

M5 �
�
Mpl

HdS

�ðp�2Þ=ðpþ4Þ
HdS; M� � M3: (27)

We note that there are other possibilities to obtain dS
solutions, depending on the forms of Fð�Þ. If we choose
the function Fð�Þ / e��, where � is a constant, then it is

possible to realize the dS solution for the choices f2 /
e��=2, f3 / e��=3, f4 / e��=4, and f5 / e��=5. In the

sense that _� ¼ constant along the dS solution, this theory
is related to the constant F theory given in (17). Since we
want to consider the case in which the dS solution is
realized in a different way, we shall study the cosmological

dynamics for the theories with (26) in which _�=� ¼
constant at the de Sitter solution.
For the theories described by the functions (26), the

Galileon symmetry is explicitly broken. However, even
for the Galileon action (17), the Galileon symmetry is
restored only on the Minkowski background. Therefore,
the Galileon symmetry does not restrict the form of the
Lagrangian on curved backgrounds. Nonetheless, these
theories may represent an effective action for some more
fundamental theory, e.g., extra-dimensional models. In
fact, the covariant Galileon is the generalization of the
decoupling limit of the DGP braneworld model. The ex-
istence of dS solutions in this theory opens up the possi-
bility of studying these generalizations of the original
Galileon field. Moreover, the model is not plagued by the
Ostrogradski instability because the field equations remain
at second order. The situation here is not very different
from other dark energy models, such as fðRÞ gravity, where
the Lagrangian is constructed by hand to realize the late-
time cosmic acceleration, but it is supposed to originate
from some fundamental theory. Along the same lines, other
papers appeared which tried to generalize the Galileon
Lagrangian without imposing the original Galileon sym-
metry [26–28,31,37], as it is violated, by construction, on
curved backgrounds.
The density parameter �DE can be expressed as

�DE ¼�p~x� 1

24

2d

2
2p

2~x2þ 1

27
d33p

3~x~y2� 15

512

4d

4
4p

4~y4

þ 7

3125
d55p

5 ~y
6

~x
�4d�p

~y2

~x
; (28)

where

~x �
_�

H�
; ~y � ~x

H

HdS

: (29)

For p and di (i ¼ 2; . . . ; 5) of the order of unity, we require
that ~x � 1, ~y � 1, and ~y � ~x in the asymptotic past.
Again, we shall set d� ¼ 0 in order to avoid that the last

term in Eq. (28) always dominates the cosmological
dynamics.
At the dS point we have the following relations:


2ðd2p~xdSÞ2 ¼ 24ð2p2~x2dS þ 5p~xdS þ 9Þ
p~xdS þ 9

þ 9

64
~�� 48

3125
~�;

(30)

ðd3p~xdSÞ3 ¼ 81ðp~xdS þ 2Þðp~xdS þ 3Þ
p~xdS þ 9

þ 243

256
~�� 243

3125
~�;

(31)

where

~� � 
4ðd4p~xdSÞ4; ~� � ðd5p~xdSÞ5: (32)
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In the above two theories we wish to study (1) whether
different Galileon-like actions have some common feature,
and (2) how they differ.

IV. CONDITIONS FOR THE AVOIDANCE OF
GHOSTS AND LAPLACIAN INSTABILITIES

In order to discuss the stability of theories described by
the Lagrangian (9) in the cosmological context, it is neces-
sary to study linear perturbation theory on the flat FLRW
background. Let us consider the perturbed metric

ds2 ¼ �½1þ 2�ðt; xÞ�dt2 þ @i�ðt; xÞdtdxi
þ a2ðtÞ½1þ 2�ðt; xÞ�dx2; (33)

where �, �, and � are scalar metric perturbations. We
have chosen the gauge 	� ¼ 0 without a nondiagonal
scalar perturbation in the spatial part of the metric, i.e.
@ij� ¼ 0 (see Refs. [42] for the details of gauge-invariant

cosmological perturbation theory). Taking into account
two perfect fluids with the equations of state wi ¼ Pi=�i

(i ¼ 1, 2), there are three propagating scalar degrees
of freedom. The velocity potentials vi (i ¼ 1, 2) are

related to the energy-momentum tensor T0ðiÞ
j , as T0ðiÞ

j ¼
�ð�i þ PiÞ@jvi (i ¼ 1, 2).

Expanding the action (8) at second order in perturba-
tions, we find that the field� can be integrated out together

with �. Introducing the vector ~Q ¼ ðv1; v2;�Þ, we obtain
the following second-order action for scalar perturbations
(see Refs. [32,43] for the details of such an analysis):

	Sð2ÞS ¼ 1

2

Z
dtd3xa3

�
_~Q
t
A

_~Q� 1

a2
r ~Qt

Cr ~Q

� _~Q
t
B ~Q� ~Qt

D ~Q
�
; (34)

where A, C, and D are 3� 3 symmetric matrices and B is
an antisymmetric matrix (we do not write explicit forms for
them).

Let us consider tensor perturbations with 	gij ¼ a2hij,

where hij is traceless (hii ¼ 0) and divergence-free

(hij;j ¼ 0). We also expand the action (8) at second order

in terms of the two polarization modes, hij ¼ h�
�ij þ
h	
	ij, where 
�ij and 
	ij are the polarization tensors. For

the polarization mode h�, the perturbed action is given by

	Sð2ÞT ¼ 1

2

Z
dtd3xa3QT

�
_h2� � c2T

a2
ðrh�Þ2

�
; (35)

where we will show the explicit forms of QT and c2T later.
The conditions for the avoidance of ghosts and Laplacian
instabilities of tensor perturbations correspond to QT > 0

and c2T > 0, respectively. Note that the same expression
also holds for h	.
In Secs. IVA and IVB we study the general theories

described by the Lagrangian (9) without imposing that f1
and � be zero. In Sec. IVC we shall apply our formula to
specific theories with f1 ¼ 0 and � ¼ 0.

A. No-ghost conditions

In order to avoid a ghost mode appearing for scalar
perturbations, the matrix A needs to be positive definite.
This leads to the following three no-ghost conditions:

1þ w1

w1

�1 > 0; (36)

1þ w2

w2

�2 > 0; (37)

QS � �1

9

4ð�1 þ �2 þ �2Þ�1 � 9�2
3

�2
3

> 0; (38)

where

�1 � �6F� 9
4 _f44 þ 18H _f55 � 24H _�; (39)

�2 � �9FH2 � 9H _F� f1=2� 3
2 _f22=2þ 15H _f33

� 315
4H
2 _f44=2þ 189H3 _f55 � 60H3 _�; (40)

�3 ��4FH� 2 _Fþ 2 _f33� 30
4H _f44þ 42H2 _f55� 24H2 _�:

(41)

For radiation (w1 ¼ 1=3) and nonrelativistic matter
(w2 ’ þ0) the conditions (36) and (37) are automatically
satisfied. Hence we only need to consider the condi-
tion (38) to avoid the appearance of ghosts for scalar
perturbations.
The no-ghost condition for tensor perturbations is

given by

QT ¼ 1
2Fþ 3

4
4
_f44 � 3

2H
_f55 þ 2H _� > 0: (42)

B. Conditions for the avoidance
of Laplacian instabilities

The propagation speed cS of three scalar degrees of
freedom is found by solving the equation

detðc2SA� CÞ ¼ 0: (43)

The standard velocities for two perfect fluids correspond to
c2S ¼ w1 and c2S ¼ w2, which are positive for both radia-

tion and nonrelativistic matter. The stability condition
coming from the third solution is given by

c2S ¼
2�2

1½ _�3 � 2ð1þ w1Þ�1 � 2ð1þ w2Þ�2 � �3H� � 4 _�1�1�3 þ �2
3�4

�1½4ð�1 þ �2 þ �2Þ�1 � 9�2
3�

> 0; (44)
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where

�4 � �18Fþ 9
4 _f44 þ 54 _f45
€f5 � 72 €�: (45)

Under the no-ghost condition (38), this translates to

2�2
1½ _�3 � 2ð1þ w1Þ�1 � 2ð1þ w2Þ�2 � �3H�
� 4 _�1�1�3 þ �2

3�4 > 0: (46)

The Laplacian instability of tensor perturbations is absent,
provided that the propagation speed squared is positive:

c2T ¼ 2F� 
4 _f44 � 6 _f45
€f5 þ 8 €�

2Fþ 3
4 _f44 � 6H _f55 þ 8H _�
> 0: (47)

C. de Sitter stability

On the dS background there are no matter fields, so that
only one scalar mode propagates. The second-order action
for scalar perturbations at the dS fixed point is

	Sð2ÞS ¼ 1

2

Z
dtd3xa3QS

�
_�2 � c2S

a2
ðr�Þ2

�
; (48)

whereQS and c
2
S correspond to those given in Eqs. (38) and

(44) with the limits H ! HdS and �1;2 ! 0. Let us discuss
the conditions for the avoidance of ghosts and instabilities
on the dS solutions given in Sec. III. We shall consider two
theories described by the functions (17) and (26), with
f1 ¼ 0 and � ¼ 0.

1. Constant F

For the theory we discussed in Sec. III A, the conditions
(38), (44), (42), and (47) reduce to

QS

M2
pl

¼ 4� 9ð�� 2�Þ2
3ð�� 2�Þ2 > 0; (49)

c2S ¼
ð�� 2�Þð4þ 15�2 � 48��þ 36�2Þ

2½4� 9ð�� 2�Þ2� > 0; (50)

QT

M2
pl

¼ 1

4
ð2þ 3�� 6�Þ> 0; (51)

c2T ¼ 2� �

2þ 3�� 6�
> 0: (52)

In Sec. V we will show the allowed parameter space in the
(�, �) plane after deriving other conditions.

From the action (48) we obtain the equation for � in
Fourier space:

1

a3QS

d

dt
ða3QS

_�Þ þ c2S
k2

a2
� ¼ 0; (53)

where k is a comoving wave number. The solution for the
homogeneous perturbation (k ¼ 0) is

� ¼ c1 þ c2
Z 1

a3QS

dt; (54)

where c1 and c2 are integration constants. Since QS is
constant on the dS solution, the second term on the right-
hand side of Eq. (54) decays with time by noting that the
scale factor evolves as a / eHdSt. For the same reason, the
tensor perturbation always remains stable in the limit
k ! 0. This means that the dS fixed point is always clas-
sically stable against homogeneous perturbations.

2. Nonconstant F

For the theory we discussed in Sec. III B, the conditions
(42) and (47) reduce to

QT

M2
pl

¼
�
�

Mpl

�
p
�
1

2
þ 3

1024
~�� 3

6250
~�

�
> 0; (55)

c2T ¼ 1� 4½15 625~�þ 384 ~�ðp~xdS � 5Þ�
15 625ð3~�þ 512Þ � 7680 ~�

> 0: (56)

The expressions forQS and c
2
S are more involved, butQS is

proportional to �p as in the case of QT . Integrating the

relation _�=ðH�Þ ¼ ~xdS ¼ constant, it follows that � /
a~xdS . Since a3Qs / eð3þp~xdSÞHdSt, we find from Eq. (54)
that the homogeneous perturbation � evolves as

� ¼ ~c1 þ ~c2e
�ð3þp~xdSÞHdSt; (57)

where ~c1 and ~c2 are constants. Hence the dS point is
classically stable for

3þ p~xdS > 0: (58)

The stability condition (58) is satisfied for jp~xdSj � 1. In
this regime the conditions (38) and (44) for the scalar
perturbation reduce to

QS

M2
pl

¼
�
�

Mpl

�
p
�

243

ðp~xdSÞ2
þOð~x�1

dS Þ
�
> 0; (59)

c2S ¼ �p~xdS
27

þOð~x2dSÞ> 0: (60)

For positive � the no-ghost condition (59) is satisfied. If
p~xdS < 0, the Laplacian instability of the scalar mode can
be avoided.

V. COSMOLOGY BASED ON THE
COVARIANT GALILEON THEORY

First we study cosmological dynamics for the covariant
Galileon theory described by the functions (17) with
d� ¼ 0. This was partially discussed in [34], but in this

paper we shall thoroughly study the cosmology in such a
theory with detailed numerical simulations.
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In the presence of radiation (�1 ¼ �r, w1 ¼ 1=3) and
nonrelativistic matter (�2 ¼ �m, w2 ’ þ0), we obtain the
background equations from Eqs. (11) and (12):

3M2
plH

2 ¼ �DE þ �r þ �m; (61)

3M2
plH

2 þ 2M2
pl

_H ¼ �PDE � �r=3; (62)

where
�DE ¼ �
2d

2
2
_�2=2þ 3d33H

_�3=M3

� 45
4d
4
4H

2 _�4=ð2M6Þ þ 21d55H
3 _�5=M9; (63)

PDE ¼ �
2d
2
2
_�2=2� d33

_�2 €�=M3

þ 3
4d
4
4
_�3½8H €�þ ð3H2 þ 2 _HÞ _��=ð2M6Þ

� 3d55H
_�4½5H €�þ 2ðH2 þ _HÞ _��=M9: (64)

The continuity equations for radiation and nonrelativistic
matter are given, respectively, by

_� r þ 4H�r ¼ 0; _�m þ 3H�m ¼ 0: (65)

From Eqs. (61), (62), and (65) the dark component also
obeys the continuity equation

_� DE þ 3Hð�DE þ PDEÞ ¼ 0: (66)

We define the dark energy equation of state wDE and the
effective equation of state weff as

wDE � PDE

�DE

; weff � �1� 2 _H

3H2
; (67)

where the latter is known by the background expansion
history of the Universe. Using Eq. (66) together with the
relation �DE ¼ 3M2

plH
2�DE, it follows that

wDE ¼ weff � �0
DE

3�DE

; (68)

where a prime represents a derivative with respect to
N ¼ lna.

Each term in Eq. (20) has the difference of the order of
x=y. The highest-order term in �DE comes from the term
L5, i.e., of the order of y3=x. For the dynamical analysis
given below, it is convenient to introduce the following
quantities:

r1�xxdS
y

¼xdS
x

�
HdS

H

�
2
; r2� y3

xx5dS
¼
�
x

xdS

�
2 1

r31
: (69)

At the dS fixed point one has r1 ¼ 1 and r2 ¼ 1. In terms
of r1 and r2 the density parameter (16) can be written as

�DE ¼ � 1

2
ð3�� 4�þ 2Þr31r2 þ ð9�� 9�þ 2Þr21r2

� 15

2
�r1r2 þ 7�r2; (70)

where � and � are defined in Eq. (25). Here we have
employed the relations (23) and (24) to eliminate the terms

2d

2
2 and d33.
It is convenient to use the variables � and � for several

reasons. First, each coefficient in the equations can be
expressed in terms of � and �. Second, the equations of
motion, together with linear perturbation theory, are not
subject to change under the following change of parame-
ters, xdS ! �xdS and di ! di=� (with i ¼ 2, 3, 4, 5),
where � is a real number. In this case, depending on the
parameter �, there are infinite choices for the Lagrangian
coefficients di that lead to the identical physics for the
same� and�. Therefore, constraining the parameter space
in terms of � and� allows us to remove the arbitrariness of
the � rescaling. This also shows that one can set xdS ¼ 1
without losing generalities.
If r1 � 1 at early times, the highest-order termL5 gives

the dominant contribution to the dark energy density pa-
rameter �DE. In this case it is expected that the cosmo-
logical Vainshtein mechanism can be at work to recover the
general relativistic behavior. If r1 � 1 initially, the domi-
nant contribution to �DE comes from the term L2. In this
case the field energy density decreases rapidly as in the
standard massless scalar field and hence the solutions do
not approach the dS fixed point at late times.
The conditions (38), (42), (44), and (47), for the avoid-

ance of ghosts and instabilities of scalar and tensor pertur-
bations, reduce to

QS

M2
pl

¼ � 6ð1þ�1Þð�1 þ�2 þ�1�2 � 2�3 ��2
3Þ

ð1þ�3Þ2
> 0;

(71)

QT

M2
pl

¼ 1

2
þ 3

4
�r1r2 � 3

2
�r2 > 0; (72)

c2S ¼
ð1þ�1Þ2½2�0

3 � ð1þ�3Þð5þ 3weffÞ þ 4�r þ 3�m� � 4�0
1ð1þ�1Þð1þ�2Þ þ 2ð1þ�3Þ2ð1þ�4Þ

6ð1þ�1Þð�1 þ�2 þ�1�2 � 2�3 ��2
3Þ

> 0; (73)

c2T ¼ 2r1ð2� �r1r2Þ � 3�ðr2r01 þ r1r
0
2Þ

2r1ð2þ 3�r1r2 � 6�r2Þ > 0; (74)
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where

�1 � 3�r1r2=2� 3�r2; (75)

�2 � ð3�� 4�þ 2Þr31r2=2� 2ð9�� 9�þ 2Þr21r2
þ 45�r1r2=2� 28�r2; (76)

�3 � �ð9�� 9�þ 2Þr21r2=2þ 15�r1r2=2� 21�r2=2;

(77)

�4 � ��r1r2=2� 3�r2ðr01=r1 þ r02=r2Þ=4: (78)

From Eqs. (11)–(13) we obtain the following differential
equations for the variables r1, r2, and �r:

r01 ¼
1

�
ðr1 � 1Þr1½r1ðr1ð�3�þ 4�� 2Þ þ 6�� 5�Þ � 5��½2ð�r þ 9Þ þ 3r2ðr31ð�3�þ 4�� 2Þ

þ 2r21ð9�� 9�þ 2Þ � 15r1�þ 14�Þ�; (79)

r02 ¼ � 1

�
½r2ð6r21ðr2ð45�2 � 4ð9�þ 2Þ�þ 36�2Þ � ð�r � 7Þð9�� 9�þ 2ÞÞ þ r31ð�2ð�r þ 33Þð3�� 4�þ 2Þ

� 3r2ð�2ð201�þ 89Þ�þ 15�ð9�þ 2Þ þ 356�2ÞÞ � 3r1�ð�28�r þ 123r2�þ 36Þ
þ 10�ð�11�r þ 21r2�� 3Þ þ 3r41r2ð9�2 � 30�ð4�þ 1Þ þ 2ð2� 9�Þ2Þ þ 3r61r2ð3�� 4�þ 2Þ2
þ 3r51r2ð9�� 9�þ 2Þð3�� 4�þ 2ÞÞ�; (80)

�0
r ¼ 2

�
�r½r21ð4ð�r � 1Þð9�� 9�þ 2Þ þ 6r2ð�15�2 þ 36��þ 4ð2� 9�Þ�ÞÞ � 2r31ðð�r � 1Þð3�� 4�þ 2Þ

þ 9r2ð18ð�þ 1Þ�þ �ð9�þ 2Þ � 36�2ÞÞ þ 12r1�ð�3�r þ 22r2�þ 3Þ � 10�ð�4�r þ 21r2�þ 4Þ
þ r41r2ð549�2 þ �ð330� 840�Þ þ 2ð2� 9�Þ2Þ þ 3r61r2ð3�� 4�þ 2Þ2
� 12r51r2ð9�� 9�þ 2Þð3�� 4�þ 2Þ�; (81)

where

� � 2r41r2½72�2 þ 30�ð1� 5�Þ þ ð2� 9�Þ2� þ 4r21½9r2ð5�2 þ 9��þ ð2� 9�Þ�Þ þ 2ð9�� 9�þ 2Þ�
þ 4r31½�3r2ð�2ð15�þ 1Þ�þ 3�ð9�þ 2Þ þ 4�2Þ � 3�þ 4�� 2�
� 24r1�ð16r2�þ 3Þ þ 10�ð21r2�þ 8Þ: (82)

The Hubble parameter obeys the following equation:

H0

H
¼ � 5r01

4r1
� r02

4r2
; (83)

where r01=r1 and r02=r2 are known from Eqs. (79) and (80).

A. Tracker solutions (r1 ¼ 1)

From Eq. (79) we find that there is an equilibrium point
characterized by

r1 ¼ 1; (84)

at which the density parameter (70) reduces to

�DE ¼ r2: (85)

From Eq. (69) we find that xH2 ¼ constant along the
solution (84). Hence the field velocity evolves as

_� / H�1; (86)

which has the dependence _� / t during the radiation and
matter eras. Since the field is effectively frozen at early

times, this shows the implementation of the cosmological
Vainshtein mechanism.
Along the solution (84), the other two equations can be

written as follows:

r02 ¼
2r2ð3� 3r2 þ�rÞ

1þ r2
; (87)

�0
r ¼ �rð�r � 1� 7r2Þ

1þ r2
; (88)

which do not depend on � and �. We then have the
following three fixed points:

ðAÞ ðr1; r2;�rÞ ¼ ð1; 0; 1Þ;
ðBÞ ðr1; r2;�rÞ ¼ ð1; 0; 0Þ;
ðCÞ ðr1; r2;�rÞ ¼ ð1; 1; 0Þ:

(89)

Points (A) and (B) can be realized during the radiation and
matter eras, respectively, whereas point (C) corresponds to
the dS solution.
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The stabilities of these fixed points can be analyzed by
considering linear perturbations 	r1, 	r2, and 	�r about
them. For example, the perturbation 	r1 satisfies

	r01 ¼ � 9þ�r þ 3r2
2ð1þ r2Þ 	r1: (90)

This shows that, in the regime 0 
 r2 
 1 and�r � 0, the
solution is stable in the direction of r1. Defining the vector
	rðtÞ ¼ ð	r1; 	r2; 	r3Þ, one can write the perturbation
equations in the form

	r0 ¼ M	r; (91)

where M is the 3� 3 matrix. The eigenvalues of the
matrix M for points (A), (B), (C) are given by

ðAÞ ð8;1;�5Þ; ðBÞ ð6;�1;�9=2Þ; ðCÞ ð�3;�3;�4Þ:
(92)

This shows that (A) and (B) are saddle points, while (C) is
stable. Hence the solutions finally approach the stable dS
point (C). This dS stability is consistent with the analysis in
Sec. IVC 1 based on homogeneous perturbations. The
solution (84) can be regarded as a tracker that attracts
solutions with different initial conditions to a common
trajectory.

Along the tracker we have �DE ¼ 3M6=H2, PDE ¼
�3M6ð2þ weffÞ=H2, and

wDE ¼ �2� weff ¼ � �r þ 6

3ðr2 þ 1Þ ; weff ¼ �r � 6r2
3ðr2 þ 1Þ :

(93)

During the cosmological sequence of radiation, matter,
and dS eras, the dark energy equation of state evolves as
wDE ¼ �7=3 ! �2 ! �1, whereas the evolution of the
effective equation of state is weff ¼ 1=3 ! 0 ! �1. This
peculiar evolution of wDE can be useful to constrain the
covariant Galileon theory from observations.

Equations (87) and (88) are simple enough to be solved
analytically. In fact, combining Eqs. (87) and (88), it
follows that

r02
r2

¼ 8þ 2
�0

r

�r

; (94)

which has the solution

r2 ¼ c1a
8�2

r ; (95)

where c1 is a constant of integration. Substituting this
solution into Eq. (88), we find two branches that differ
from each other in the early cosmological limit. The viable
branch of solutions is given by

�r ¼
c2a� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c2aþ c22a

2 þ 4c1a
8

q
2c1a

8
; (96)

where c2 is another constant. Since �r ’ 1þ c2a at early
times (a � 1), we require that c2 < 0 (provided�DE > 0).

The coefficients c1 and c2 can be found by using the
present density parameters of radiation and nonrelativistic

matter, i.e. �rða ¼ 1Þ ¼ �ð0Þ
r and �mða ¼ 1Þ ¼ �ð0Þ

m .
Using the relation (85) as well, we find

c1 ¼ 1��ð0Þ
m ��ð0Þ

r

ð�ð0Þ
r Þ2 ; c2 ¼ ��ð0Þ

m

�ð0Þ
r

: (97)

The density parameter of dark energy evolves as

�DE ¼ c1a
8�2

r : (98)

Hence the density parameters �DE, �r, and �m as well as
wDE and weff are analytically known in terms of the func-
tion of a (or the redshift z ¼ 1=a� 1).
At the dS point (C) the conditions for the avoidance of

ghosts and instabilities have already been estimated in
Eqs. (49)–(52). Let us consider points (A) and (B), which
are characterized by r1 ¼ 1 and r2 � 1. In this case
Eqs. (71)–(74) are simplified to give

QS=M
2
pl ’ 3ð2� 3�þ 6�Þr2 > 0; (99)

QT=M
2
pl ¼ 1=2þ 3ð�� 2�Þr2=4> 0; (100)

c2S ’
8þ 10�� 9�þ�rð2þ 3�� 3�Þ

3ð2� 3�þ 6�Þ > 0; (101)

c2T ’ 1� ð4�þ 3�þ 3��rÞr2=2> 0: (102)

Since r2 � 1 the conditions (100) and (102) are automati-
cally satisfied. From Eq. (99) the sign change of r2 means
the appearance of the scalar ghost. If we choose the initial
conditions with r2 > 0, then Eq. (99) requires that

2� 3�þ 6�> 0: (103)

Let us consider the intermediate regime between r2 � 1
and r2 ¼ 1. As long as the conditionsQS > 0,QT > 0, and
c2S > 0 are satisfied both in the regimes r2 � 1 and r2 ¼ 1,
the violation of these conditions does not occur in the
intermediate epoch. However, the tensor propagation speed
squared can be negative even if the conditions (52) and
(102) are satisfied. Along the tracker Eq. (74) gives

c2T ¼ 2þ ð2� �� 9�� 3��rÞr2 þ ð9�� �Þr22
ð1þ r2Þ½2þ 3ð�� 2�Þr2� :

(104)

The transition to the dS solution (r2 ¼ 1) occurred only
recently, so that the term�r can be neglected in Eq. (104).
Then c2T has an extremum at

r2¼4��15��3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð30��8�þ12�2�15���18�2Þp

15��4�þ27���54�2
:

(105)

If � ¼ 1:9 and � ¼ 0:8, for example, the physical solution
corresponds to the plus sign in Eq. (105), i.e. r2 ¼ 0:636, at
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which c2T has a minimum. As � approaches 1, the mini-
mum values of c2T get smaller. For � around 1, c2T can be
negative for the plus sign of Eq. (105). This leads to the
following condition for �> 0:

2�< �< 12
ffiffiffiffi
�

p � 9�� 2: (106)

If �< 0, then c2T remains positive. Hence we do not have
any additional constraint in the regime �< 0.

In Fig. 1 we plot the parameter space constrained by
the conditions (49)–(52), (101), (103), and (106). For the
solutions that start from initial conditions with r1 ’ 1,
r2 � 1 and then approach the dS attractor with r1 ¼ 1
and r2 ¼ 1, the parameters � and � need to be inside the
purple region in Fig. 1. There is another case in which both
r1 and r2 are initially much smaller than 1. We shall
address this case in the next subsection.

B. Solutions driven by the term L5 (r1 � 1, r2 � 1)

From Eq. (79), it is clear that another equilibrium
point exists, namely, r1 ¼ 0. Let us now discuss this equi-
librium point in more detail. In this case Eqs. (80) and (81)
reduce to

r02 ¼ � r2ð21r2�� 11�r � 3Þ
21r2�þ 8

; (107)

�0
r ¼ � 2�rð21r2�� 4�r þ 4Þ

21r2�þ 8
; (108)

which depend on �. The dominant contribution to the field
energy density comes from the term L5, i.e. �DE ¼ 7�r2.

We have the following fixed points:

ðA0Þ ðr1; r2;�rÞ ¼ ð0; 0; 1Þ;
ðB0Þ ðr1; r2;�rÞ ¼ ð0; 0; 0Þ;
ðC0Þ ðr1; r2;�rÞ ¼ ð0; 1=ð7�Þ; 0Þ;

(109)

which represent radiation, matter, and dark energy domi-
nated points, respectively. Perturbing Eq. (79) on the
r1 ¼ 0 solution leads to

	r01 ¼
21r2�þ�r þ 9

21r2�þ 8
	r1; (110)

which implies that none of the fixed points ðA0Þ-ðC0Þ can be
stable. In particular, the eigenvalues of the matrix M,
where 	r0 ¼ M	r and 	r¼tð	r1; 	r2; 	r3Þ, are given by

ðA0Þ ð5=4; 7=4; 1Þ;
ðB0Þ ð9=8; 3=8;�1Þ;
ðC0Þ ð12=11;�3=11;�14=11Þ:

(111)

This shows that the point (A0) is unstable, whereas the
other two are saddle points. Recalling that the dS fixed
point (C) discussed in the previous subsection is stable
against homogeneous perturbations, the solutions finally
approach (C) instead of (C0). Unless r1 is initially very
small such that the solutions reach r1 ¼ 1 only at late
times, the system approaches the stable r1 ¼ 1 direction
much before the dS epoch.
In the regime r1 � 1 and r2 � 1 it is possible to derive

analytic solutions for r1 and r2 as well as for wDE and weff .
In fact, Eqs. (79)–(81) can be simplified as

r01 ’ 1
8ð�r þ 9Þr1; (112)

r02 ’ 1
8ð11�r þ 3Þr2; (113)

�0
r ’ ��rð1��rÞ; (114)

where we have assumed that j�j is not very much smaller
than unity. During the radiation domination (�r ¼ 1),
integration of Eqs. (112) and (113) gives

r1 / a5=4; r2 / a7=4; (115)

whereas during the matter era, one has

r1 / a9=8; r2 / a3=8: (116)

Eventually, the solutions approach the tracker r1 ¼ 1.
In the regime r1 � 1, r2 � 1 one has

wDE ’ �ð1þ�rÞ=8; weff ’ �r=3: (117)

This gives wDE ’ �1=4 and weff ’ 1=3 during the radia-
tion era, whereas wDE ’ �1=8 and weff ’ 0 during the
matter era.
The condition (71) reduces to

QS=M
2
pl ’ 60�r2 > 0: (118)

The sign change of r2 implies the appearance of ghosts. For
the initial conditions with r2 > 0, we require that

�> 0: (119)

1.0 0.5 0.0 0.5

2

1

0

1

FIG. 1 (color online). The viable parameter space in the ð�;�Þ
plane determined by the conditions (49)–(52), (101), (103), and
(106) along the tracker solution r1 ¼ 1 [34].
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If the solutions start from the regime r1 � 1, r2 � 1 and
subsequently enter the regime r1 ¼ 1, the allowed parame-
ter space in Fig. 1 is restricted be �> 0. Since QT=M

2
pl ’

1=2, the no-ghost condition for the tensor mode is auto-
matically satisfied.

The propagation speeds of scalar and tensor perturba-
tions are given, respectively, by

c2S ’ ð1þ�rÞ=40; (120)

c2T ’ 1þ 3�r2ð5� 3�rÞ=8; (121)

which are both positive for 0 
 �r 
 1. The scalar mode
remains subluminal during the radiation era (c2S ¼ 1=20)
and the matter era (c2S ¼ 1=40). Under the no-ghost con-

dition (118) the tensor mode becomes superluminal
(although c2T is very close to 1).

C. Numerical simulations for
the cosmological dynamics

Numerically we integrate Eqs. (79)–(81) to confirm the
analytic estimation in the previous subsections.

Let us consider the case in which the variables r1 and r2
are much smaller than 1 at the initial stage of cosmological
evolution. Our numerical simulations show that r1 and r2
evolve as Eq. (115) during the radiation era, whereas their
evolution during the matter era is given by Eq. (116).
Depending on the initial conditions of r1 and r2, the epoch
at which the solutions approach the tracker (r1 ¼ 1) is
different. As we increase the initial ratio r1=r2, this epoch
tends to occur earlier. After the solutions reach the tracker,
the evolution of r2,�r, and�DE is given by Eqs. (95), (96),
and (98), respectively.

In Fig. 2 we plot one example for the evolution of
density parameters �DE, �m, and �r as well as the effec-
tive equation of state weff . In this case the transition to the
regime r1 ’ 1 occurred only recently, e.g., r1 ¼ 0:99
around z ¼ 0:07 with r2 ’ 0:6. After passing the present
epoch, the solutions are attracted by the dS solution char-
acterized by ðr1; r2Þ ¼ ð1; 1Þ. Figure 2 shows that the se-
quence of radiation (�r ¼ 1, weff ¼ 1=3), matter
(�m ¼ 1,weff ¼ 0), and dS (�DE ¼ 1,weff ¼ �1) epochs
is in fact realized. Unlike dark energy models based on
fðRÞ theories, the Galileon model is not plagued by the
presence of a rapidly oscillating mode associated with a
heavy field mass in the early Universe.

Figure 3 illustrates the variation of wDE for several
different initial conditions and model parameters.
Cases (a)–(d) correspond to � ¼ 0:3, � ¼ 0:14, 
2 ¼ 1,

4 ¼ 1, and xdS ¼ 1 with different initial conditions sat-
isfying r1 � 1 and r2 � 1, whereas case (e) shows the
tracker solution starting from the initial condition r1 ¼ 1
and r2 � 1 with the model parameters � ¼ �1:5, � ¼
�0:9, 
2 ¼ 1, 
4 ¼ �1, and xdS ¼ 1. Clearly the solutions
with different initial conditions converge to the tracker,
depending on the epoch at which the variable r1 grows to

the order of 1. In cases (a)–(d) the dark energy equation of
state evolves as Eq. (117) in the regime r1 � 1 and r2 � 1
(wDE ’ �1=4 and wDE ’ �1=8 during the radiation and
matter eras, respectively), which is followed by the evolu-
tion given in Eq. (93) after the solutions reach the tracker at
r1 ¼ 1. As long as the tracking behavior has occurred by
now, the dark energy equation of state crosses the cosmo-
logical constant boundary (wDE ¼ �1).
Numerically, we find that for the initial conditions with

r1 & 2, the solutions are typically attracted by the tracker.
On the other hand, if r1 * 2, the system tends to approach
the matter-dominated epoch with the growth of r1. In the
latter case the dominant contribution to �DE comes from
the term L2, so that �DE decreases as in quintessence
without a potential.
In Fig. 4 we plot the evolution of c2S for the same model

parameters and initial conditions as those presented in
Fig. 3. In the regime r1 � 1 and r2 � 1, our numerical
simulations in cases (a)–(d) agree with the analytic esti-
mation of the scalar propagation speed given in Eq. (120),
i.e. c2S ’ 1=20 and c2S ’ 1=40 during the radiation and

matter eras, respectively. As the solutions reach the regime
r1 ’ 1 with r2 � 1, c2S approaches the value estimated by

Eq. (101). When � ¼ 0:3 and � ¼ 0:14 the analytic esti-
mation gives c2S ’ 1:67 during the matter dominance,

which agrees with the value at the plateau in case (d) of
Fig. 4. Finally, the solutions reach the dS fixed point, at
which c2S shifts to the value given in Eq. (50), e.g., c2S ¼
1:01� 10�2 for � ¼ 0:3 and � ¼ 0:14.
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0.0

0.50

1.0

0 2 4 6 8

log 10 (1+z)

m r

D E

weff

FIG. 2. Evolution of�DE,�m,�r, and weff versus the redshift
z ¼ 1=a� 1 for �¼0:3, �¼0:14, 
2¼1, 
4 ¼ 1, and xdS ¼ 1.
We choose the initial conditions r1 ¼ 1:500� 10�10, r2 ¼
2:667� 10�12, and �r ¼ 0:999 992 at z ¼ 3:63� 108.
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For positive � one can show that under the conditions
(49), (50), and (99) the scalar propagation speed estimated
by Eq. (101) becomes superluminal. However, the scalar
mode can remain subluminal provided the solutions reach

the regime r1 ¼ 1 in the recent past. Cases (a) and (b) in
Fig. 4 correspond to such examples in which the peak value
of c2S is smaller than 1.

If �< 0 there is a parameter space in which the scalar
propagation speed (101) is subluminal, while satisfying the
conditions (49), (50), and (99). In this case the initial
conditions of r1 need to be close to 1. If r1 is smaller
than the order of unity, the scalar ghost appears for negative
�. Instead, if r1 * 2, the solutions do not finally approach
the dS fixed point. Case (e) in Fig. 4 corresponds to an
example of the subluminal evolution of c2S for negative �
with the initial condition r1 ¼ 1. Since the solution stays
on the tracker, the scalar propagation speed is given by
Eq. (101) during the radiation and matter eras and by
Eq. (50) at the dS point.
For the initial conditions with r1 � 1 and r2 � 1 the

tensor propagation speed starts to evolve from the value
estimated by Eq. (121), which is slightly superluminal
under the no-ghost condition �> 0 for the scalar mode.
After the solutions reach the regime r1 ’ 1 and r2 � 1, c2T
is still close to 1 because it is described by Eq. (102).
The tensor propagation speed finally approaches the value
(52) at the dS point. During the transition from the regime
r2 � 1 to the regime r2 ’ 1, there is an epoch at which c2T
can have either the maximum or the minimum. In case (a)
of Fig. 5, the analytic formulas in Eqs. (104) and (105)
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FIG. 3. Variation of wDE versus z for �¼0:3, �¼0:14, 
2¼1,

4 ¼ 1, and xdS ¼ 1 [cases (a)–(d)]. We choose four different
initial conditions: (a) r1 ¼ 5:000� 10�11, r2 ¼ 8:000� 10�12,
and�r ¼ 0:999 995 at z ¼ 5:89� 108, (b) r1 ¼ 1:500� 10�10,
r2 ¼ 2:667� 10�12, and �r ¼ 0:999 992 at z ¼ 3:63� 108,
(c) r1¼5:000�10�9, r2 ¼ 8:000� 10�14, and �r ¼ 0:999 95
at z ¼ 6:72� 107, (d) r1 ¼ 5:000� 10�6, r2 ¼ 8:000� 10�17,
and�r ¼ 0:9986 at z ¼ 2:04� 106. Case (e) corresponds to� ¼
�1:5,� ¼ �0:9, 
2 ¼ 1, 
4 ¼ �1, and xdS ¼ 1with initial con-
ditions r1 ¼ 1, r2¼10�60, and�r¼0:99999 at z ¼ 3:12� 108.
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FIG. 4. Evolution of c2S versus z for the same model parameters
and initial conditions as given in Fig. 3.
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FIG. 5. Evolution of c2T versus z for three cases: (a) � ¼ 0:3,
� ¼ 0:14, 
2 ¼ 1, 
4 ¼ 1, and xdS ¼ 1 with initial conditions
r1 ¼ 1:500� 10�10, r2 ¼ 2:667� 10�12, and �r ¼ 0:999 992
at z ¼ 3:63� 108, (b) � ¼ �1:5, � ¼ �0:9, 
2 ¼ 1, 
4 ¼ �1,
and xdS ¼ 1 with initial conditions r1 ¼ 1, r2 ¼ 10�60, and
�r ¼ 0:999 99 at z ¼ 3:12� 108, and (c) � ¼ 1:9, � ¼ 0:8,

2 ¼ 1, 
4 ¼ 1, and xdS ¼ 1 with initial conditions r1 ¼ 10�5,
r2 ¼ 10�35, and �r ¼ 0:999 99 at z ¼ 3:12� 108.
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show that c2T has a minimum value 0.799 at r2 ¼ 0:662
[plus sign of Eq. (105)], whereas in case (b) c2T possesses
a maximum value 1.690 at r2 ¼ 0:412 [minus sign of
Eq. (105)]. This estimation agrees well with the numerical
results shown in Fig. 5. In case (c) of Fig. 5 the condition
(106) is violated, so that c2T has a negative minimum. In the
region where � and � are positive, the condition (106)
needs to be satisfied to avoid the temporal Laplacian
instability of the tensor mode.

If the solutions start from the regime r1 ’ 1 and r2 � 1,
then the tensor propagation speed (102) can be subluminal
under the condition 4�þ 3�þ 3��r > 0 for the branch
r2 > 0. In this case, however, c2T exceeds 1 at the dS point,
as long as the conditions (49)–(51) and (99)–(101) are
satisfied. Since c2T >1 in the regime r1�1 and r2�1 as
well, it is not possible to avoid the appearance of the super-
luminal mode for tensor perturbations. However, the

superluminal propagation does not necessarily imply the
inconsistency of Galileon theory because of the possibility
for the absence of the closed causal curve [30].

VI. COSMOLOGY BASEDON THEMODELSWITH
NONCONSTANT FUNCTIONS Fð�Þ

We shall proceed to the cosmology for the theories
with nonconstant F in which the functions F and fi (i ¼
1; 2; . . . ; 5) are given in Eq. (26) with d� ¼ 0. We take into

account radiation (�1 ¼ �r, w1 ¼ 1=3) and nonrelativistic
matter (�2 ¼ �m, w2 ¼ 0), which satisfy the continuity
equations (65). Taking the time derivative of Eq. (11) and
combining it with Eq. (12), we obtain the equations of

motion for €� and _H. Then the dimensionless variables ~x, ~y
defined in Eq. (29) and the radiation density parameter
�r ¼ �r=ð3FH2Þ obey the following equations:

~x0 ¼ ~x½29160000000000~x3ð�8�rð12þd22
2p~xÞþ ð4þð�4þd22
2Þp~xÞð24þpxð24þd22
2p~xÞÞÞ
� 1440000000000d33p

2~x3ð�216� 216�rþp~xð24þp~xð�192þd22
2ð45þp~xÞÞÞÞ~y2
� 625000000p3~x2ð2048d63p2~x2ð�9þp~xÞþ 6561d44
4ð144þ 80�rþp~xð20�p~xð�76þd22
2ð19þp~xÞÞÞÞÞ~y4
þ 583200000p4~xð3125d33d44
4p2~x2ð�11þp~xÞþ 192d55ð600þ 280�rþp~xð88þp~xð272�d22
2ð73þ 5p~xÞÞÞÞÞ~y6
� 84375p7~x2ð11390625d84
24ð�6þp~xÞþ 524288d33d

5
5ð�45þ 2p~xÞÞ~y8þ 15746400000d44d

5
5
4p

8~xð�59þ 9p~xÞ~y10
� 6019743744d105 p9ð�5þp~xÞ~y12�=ð60�Þ; (122)

~y0 ¼ ~x ~y½116640000000000~x2ð24� 24�r þp~xð�48� 24p~xþ d22
2ð12þ 5p~xÞÞ
� 4320000000000d33p

2~x2ð72� 24�r þp~xð�16þ ð�32þ 3d22
2Þp~xÞÞ~y2
� 625000000p3~xð2048d63p3~x3 þ 2187d44
4ð96�r þp~xð108�p~xð�120þ d22
2ð18þp~xÞÞÞÞÞ~y4
þ 64800000p4ð3125d33d44
4p2~x2ð�9þ 10p~xÞ þ 1728d55ð120þ 120�r þp~xð128þp~xð144� d22
2ð27þ 2p~xÞÞÞÞÞ~y6
� 253125p7~xð3796875d84
24p~xþ 524288d33d

5
5ð�3þp~xÞÞ~y8 þ 5248800000d44d

5
5
4p

8ð�9þ 28p~xÞ~y10
� 6019743744d105 p10~y12�=ð60�Þ; (123)

�0
r¼p�r½972000000000~x4ð�48p~xþd22
2ð8�8�rþp~xð16þð�4þd22
2Þp~xÞÞÞ

�48000000000d33p~x
3ð144�144�rþp~xð�72þp~xð�168þd22
2ð36þp~xÞÞÞÞ~y2

þ62500000p2~x2ð�1024d63p
2~x2ð�2þp~xÞþ729d44
4ð144�144�rþp~xð�192þp~xð�204þd22
2ð43þ3p~xÞÞÞÞÞ~y4

þ2160000p3~xð3125d33d44
4p2~x2ð�18þ17p~xÞþ1728d55ð�160þ160�rþp~xð280þp~xð248�d22
2ð54þ5p~xÞÞÞÞÞ~y6
�5625p6~x2ð11390625d84
24ð1þp~xÞþ65536d33d

5
5ð�36þ23p~xÞÞ~y8þ174960000d44d

5
5
4p

7~xð88þ63p~xÞ~y10
�501645312d105 p8ð2þp~xÞ~y12�=�; (124)

where

�� p½501645312d105 p8~y12 � 3732480000d55p
3~x~y6ð�160þ 3d44
4p

4~y4Þ � 62500000~x4ð�1024ð�27þ d33p
2~y2Þ2

þ 243d22
2ð512þ 3d44
4p
4~y4ÞÞ þ 151875p2~x2~y4ð65536d55p2~y2ð�45þ d33p

2~y2Þ
þ 84375d44
4ð�512þ 5d44
4p

4~y4ÞÞ þ 4320000p~x3~y2ð108p2~y2ð9375d44
4 þ 16d22d
5
5
2p

2~y2Þ
� 3125d33ð�512þ 9d44
4p

4~y4ÞÞ�: (125)
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The dS fixed point with ~x ¼ ~xdS ¼ ~y and �r ¼ 0 exists
under the conditions (30) and (31). Since the theory has a
nonminimal coupling Fð�ÞR, it is possible to place con-
straints on today’s values of x from the variation of the
effective gravitational coupling, Geff ¼½8�Fð�Þ��1. The
Lunar Laser Ranging experiments give the bound
j _Geff=Geffj< 1:3� 10�12 yr�1 [44], or in terms of the pre-
sent Hubble parameter H0, j _Geff=Geffj< 0:02H0 [45]. In
our theory j _Geff=Geff j ¼ jp~xjH, which gives the constraint
jp~xj< 0:02 today. Since the value of ~xdS is not much
different from ~x today, we employ the following criterion:

jp~xdSj<Oð0:01Þ: (126)

Under this bound the condition (58) is always satisfied,
which means that the dS solution is classically stable. From
Eq. (60) the Laplacian instability of scalar perturbations at
the dS point can be avoided for p~xdS < 0. The no-ghost
condition (59) is satisfied provided that ð�=MplÞp > 0.

A. Initial conditions with ~y2 � j ~xj
If ~y2 � j~xj in the early cosmological epoch, then the

term L5 dominates over the terms L2;3;4, i.e. �DE ’
�p~xþ ð7=3125Þd55p5~y6=~x. In order to avoid the domi-

nance of dark energy during the radiation and matter eras
we require that jp~xj � 1 and jd55p5~y6j � j~xj. In this re-

gime the quantities QS and QT defined in Eqs. (38) and
(42) are approximately given by

QS

M2
pl

’ 12

625

d55p
5~y6

~x

�
�

Mpl

�
p
;

QT

M2
pl

’ 1

2

�
�

Mpl

�
p
�
1� 3

3125

d55p
5~y6

~x

�
:

(127)

The tensor ghost is absent for ð�=MplÞp > 0. Since the

evolution of the field is given by � ¼ �i expð
R
N
Ni
~xd ~NÞ,

where �i is the initial field value at N ¼ Ni, the condition
ð�=MplÞp > 0 is satisfied for �i > 0. For the avoidance of

the scalar ghost we require that

d5p~x > 0: (128)

In the regime ~y2 � j~xj and jd55p5~y6j � j~xj the scalar and

tensor propagation speeds defined in Eqs. (44) and (47) can
be estimated as

c2S ’
1

40
ð1þ�rÞ þ 375

8
ð1��rÞ ~x2

d55p
4~y6

;

c2T ’ 1þ 3

25 000
ð4� 3�rÞd

5
5p

5~y6

~x
:

(129)

Since c2T is close to 1, the tensor instability can be avoided.
If d5 > 0, then there is no instability for the scalar pertur-
bation (c2S > 0). In the regime ~x2 � jd55p4~y6jwe have c2S ’
ð1þ�rÞ=40> 0. If ~x2 * jd55p4~y6j, it can happen that the

scalar perturbation is subject to the Laplacian instability
for negative d5.
In the regime ~y2 � j~xj and jd55p5~y6j � j~xj the autono-

mous equations (122)–(124) are simplified as

~x 0 ’ 1

8
~x

�
15þ 7�r þ 625ð1��rÞ ~x2

d55p
4~y6

�
; (130)

~y 0 ’ 3

8
~y

�
1þ�r þ 625

3
ð1��rÞ ~x2

d55p
4~y6

�
; (131)

�0
r ’ ��rð1��rÞ: (132)

From Eq. (132) there are two fixed points characterized
by �r ¼ 1 and �r ¼ 0. As long as the condition ~x2 �
jd55p4~y6j is satisfied, the evolution of the variables ~x and ~y
during the radiation era (�r ¼ 1) is given by

~x / a11=4; ~y / a3=4; (133)

whereas during the matter era (�r ¼ 0) one has

~x / a15=8; ~y / a3=8: (134)

In both cases ~x grows faster than ~y. If the quantity
~x2=ðd55p4~y6Þ becomes larger than the order of unity, the

evolution of ~x and ~y is subject to change.
For the solutions starting from the regime j~y2j � j~xj

the condition (128) needs to be satisfied initially. Then
there are two possible cases: (i) p~x > 0 and d5 > 0, and
(ii) p~x < 0 and d5 < 0. The avoidance of the scalar
Laplacian instability at the future dS fixed point requires
that p~xdS < 0. However, if we demand the viable cosmol-
ogy by today (the redshift z � 0), the condition p~xdS < 0
is not necessarily mandatory. In general, if the variable ~x
changes its sign during the cosmic expansion history, this
signals the violation of the conditions for no ghosts and no
Laplacian instabilities. For example, this can be seen in the
expression of QS and c

2
S in Eqs. (127) and (129) in the past

asymptotic regime. In fact, we have numerically confirmed
the violation of at least one of those conditions. In the
following we shall study the cosmological dynamics in
which the sign of p~x at the early epoch is the same as
that of p~xdS. In case (i) the condition p~xdS < 0 is violated,
but it is possible to realize cosmological trajectories in
which all the required conditions are satisfied by today.
In case (ii) the condition p~xdS < 0 is met, but we need to
check whether there are any violations of the no-ghost and
stability conditions in the cosmic expansion history.
Let us first discuss the cosmological dynamics in case (i)

with p~xdS > 0. In Fig. 6 we plot the variation of �DE,�m,
�r, and weff for the model with p ¼ 1, 
2 ¼ 1, 
4 ¼ �1,
d4 ¼ 1, d5 ¼ 1, d� ¼ 0, and ~xdS ¼ 0:007 [in which case

the condition (126) is satisfied]. The constants d2 and
d3 are known from Eqs. (30) and (31). We choose the
initial conditions ~x ¼ 1:0� 10�18, ~y ¼ 1:5� 10�5, and
�r¼0:99992 at the redshift z¼3:9�107, in which case
j~y2j � j~xj and jd55p5~y6j � j~xj initially. The background
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evolution in Fig. 6 shows that the sequence of radiation,
matter, and dS eras is realized in this case.

Figure 7 illustrates the evolution of the variables ~x and ~y
as well as �r. We find that the solution approaches the dS
attractor with ~xdS ¼ 0:007 without changing its sign. In the
regime ~x2 � jd55p4~y6j the evolution of ~x and ~y is well

described by the analytic estimation (133) during the ra-
diation era. However, around z & 105, the last terms in
Eqs. (130) and (131) start to give rise to the contribution to
the evolution of ~x and ~y. As we see in Fig. 7, ~x and ~y evolve
differently from the analytic estimation (133) and (134) for
z & 105.

In Figs. 8 and 9 we plot the variation of the quantities
~QS ¼ 2QS=ðM2�p

pl �pÞ, ~QT ¼ 2QT=ðM2�p
pl �pÞ, c2S, and c2T

for the same model parameters and initial conditions as

those given in Fig. 6. We find that ~QS grows rapidly,

whereas ~QT is always close to 1. Since both ~QS and ~QT

are positive, the appearance of the scalar and tensor ghosts
is avoided in this case.

Figure 9 shows that c2S starts to evolve from the value

around 0.05, as estimated analytically in Eq. (129). For
z & 105 the contribution of the second term in the expres-
sion of c2S in Eq. (129) becomes important, which leads to

the increase of c2S. For the model parameters given in Fig. 6

the scalar propagation speed slightly exceeds 1 during the
transition from the matter era to the dS epoch. In Fig. 9
we find that c2S remained positive up to now (z � 0).

However, since the sign of ~x is always positive, c2S is

negative at the dS point, i.e. c2S ’ �p~xdS=27 ¼
�2:6� 10�4. The crossing of c2S at 0 occurs in the future

around the redshift z � �0:87. The tensor propagation

FIG. 6. Evolution of�DE,�m,�r, and weff versus the redshift
z for the model with p ¼ 1, 
2 ¼ 1, 
4 ¼ �1, d4 ¼ 1, d5 ¼ 1,
d� ¼ 0, and ~xdS ¼ 0:007. The initial conditions are chosen to

be ~x ¼ 1:0� 10�18, ~y ¼ 1:5� 10�5, and �r ¼ 0:999 92 at
z ¼ 3:9� 107.

FIG. 7. Variation of ~x, ~y, and �r versus z for the same model
parameters and initial conditions as those given in Fig. 6. The
solution finally approaches the de Sitter attractor with ~x ¼ ~xdS ¼
0:007.

FIG. 8. Evolution of the dimensionless variables ~QS �
2QS=ðM2�p

pl �pÞ and ~QT � 2QT=ðM2�p
pl �pÞ versus z for the

same model parameters and initial conditions as those given in
Fig. 6. The signs of QS and QT remain positive.
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speed squared is always close to 1 (slightly larger than 1),
which means that the Laplacian instability of the tensor
perturbation can be avoided.

Let us next discuss case (ii), i.e. p~x < 0 and d5 < 0
initially. In Fig. 10 we plot one example for the evolution
of c2S with p ¼ 1, d5 ¼ �1, and ~xdS ¼ �0:007. In this case
the density parameters as well as the effective equation of
state evolve similarly to those in Fig. 6. However, even if the
variable ~x starts fromnegative values, ~x crosses 0many times
before reaching the dS solution with ~xdS ¼ �0:007. As
we see in Fig. 10, this leads to the violation of the condition
c2S > 0 by today. In addition, the quantity QS also becomes

negative during some periods. We have run our numerical
code formany other cases inwhich the conditionp~xdS < 0 is
satisfied and found that in case (ii) it is difficult to find a
viable cosmological trajectory along which all of the no-
ghost and stability conditions are satisfied.

In summary, we have shown that the cosmological so-
lutions along which p~x > 0 and d5 > 0 initially and
p~xdS > 0 at the de Sitter attractor can evade the ghost
and instability problems for z � 0. In this case, although
the scalar Laplacian instability is present at the de Sitter
fixed point, the crossing of c2S at 0 occurs at some time in

the future. We have also run the numerical code for the
initial conditions with j~y2j * j~xj and found properties of
solutions similar to those discussed in this section.

B. Initial conditions with ~y2 � j ~xj
Finally, we shall study the case in which j~y2j � j~xj in

the early cosmological epoch. In this regime the term L2

is the dominant contribution to �DE relative to L3;4;5,

i.e. �DE ’ �p~x� 
2d
2
2p

2~x2=24. The quantities QS and
QT are approximately given by

QS

M2
pl
’p2~x2ð6�
2d

2
2Þ

ð2þp~xÞ2
�
�

Mpl

�
p
;

QT

M2
pl

’1

2

�
�

Mpl

�
p
; (135)

whereas both c2S and c
2
T are close to 1. The tensor ghost can

be avoided for ð�=MplÞp > 0. Under this condition the

scalar ghost is absent for 
2 ¼ �1. If 
2 ¼ þ1, the ab-
sence of the scalar ghost requires that

d22 < 6: (136)

For d4 and d5 of the order of unity we find from Eq. (30)
that 
2ðd2p~xdSÞ2 ’ 24, where we used the condition (126).
Hence the dS solution exists only for 
2 ¼ þ1, in which
case d22 ’ 24=ðp~xdSÞ2 � 1. This is incompatible with the
condition (136).
These results show that, if the solutions start from the

regime j~y2j � j~xj with 
2 ¼ þ1 (i.e. negative kinetic en-
ergy), the requirement for the avoidance of ghosts at the
initial stage is not compatible with the existence of the dS
solution at late times.

VII. CONCLUSIONS

In this paper we have studied the cosmology of gener-
alized Galileon theories based on the Lagrangian (9).
For each Lagrangian Li (i ¼ 1; . . . ; 5) the scalar field �
is replaced by general scalar functions fið�Þ. The co-
variant Galileon theory satisfies the Galilean symmetry

FIG. 9. (Left panel) Evolution of c2S and c2T versus z for the same model parameters and initial conditions as those given in Fig. 6.
(Right panel) The enlarged version for the evolution of c2S in the regime �1:5< log10ð1þ zÞ< 0. The field propagation speed

becomes negative in the future (around z � �0:87).
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@�� ! @��þ b� in the Minkowski space-time. The ex-

tension to scalar functions fið�Þ generally breaks this
symmetry, but the equations of motion remain at second
order. This is a nice feature to avoid the propagation of the
extra ghost degree of freedom. We have also taken into
account two terms L6 ¼ Fð�ÞR and L7 ¼ �ð�ÞG that
give rise to second-order equations and vanish in the
Minkowski space-time.

In the flat FLRW cosmological background we have
derived the equations of motion (11)–(13) for the general
Lagrangian (9). If we demand the existence of dS solu-
tions, the functions Fð�Þ, fið�Þ, and �ð�Þ can be restricted
to be either in the form (17) or (26). The former corre-
sponds to the covariant Galileon theory with constant F,
respecting the Galilean symmetry in the Minkowski space-
time. The latter can be regarded as a kind of scalar-tensor
theory in which F is field dependent.

In the presence of two perfect fluids we have also
derived conditions for the avoidance of ghosts and
Laplacian instabilities associated with scalar and tensor
perturbations. The no-ghost conditions (36) and (37) are
automatically satisfied for the perfect fluids of radiation
and nonrelativistic matter. Then the no-ghost condition of
the scalar mode is given by Eq. (38), whereas the ghost is
absent for the tensor mode under the condition (42). The
stability conditions for scalar and tensor perturbations are
given, respectively, by Eqs. (44) and (47). We have applied
these results to two theories having dS solutions. For the

theory with constant F the dS solutions are always classi-
cally stable against homogeneous perturbations, whereas
for the theory with nonconstant F they are stable under the
condition (58).
We have carried out a detailed analysis for the cosmo-

logical dynamics of the covariant Galileon theory with
constant F. Introducing the dimensionless variables r1,
r2, and �r together with the constants � and �, it is
possible to express autonomous equations as well as physi-
cal quantities (both background and perturbations) in terms
of those variables in a convenient form. In particular, we
showed the existence of an interesting tracker solution

r1 ¼ 1, along which the field velocity evolves as _� /
1=H. On the tracker solution all the nonlinear field
Lagrangians contribute to the field energy density with a
similar order, such that none of these terms can be ne-
glected. Moreover, the cosmological dynamics along r1 ¼
1 does not depend on the parameters� and�; see Eqs. (87)
and (88). The solutions with different initial conditions
converge to a common trajectory, depending on the epoch
at which they reach the regime r1 ’ 1.
Along the tracker solution the dark energy equation of

state is given by Eq. (93), which exhibits a peculiar evolu-
tion: wDE ¼ �7=3 (radiation era), wDE ¼ �2 (matter era),
and wDE ¼ �1 (dS era). Since we have derived analytic
formulas for wDE as well as r2 and�r in terms of the scale
factor a, it will be convenient to confront the Galileon
theory with supernovae observations.
Although the background dynamics on the tracker does

not depend on the parameters� and�, the conditions for the
avoidance of ghosts and Laplacian instabilities do. In Fig. 1
we showed the viable parameter space in the ð�;�Þ plane
constrained by the no-ghost and stability conditions along
r1 ¼ 1. If the solutions start from the regime r1 � 1, we
also require the condition �> 0 to avoid the scalar ghost.
In this case the tensor mode becomes slightly superluminal.
In the Minkowski space-time the only solution to the field
equation in Galileon theory with d2 � 0 corresponds to
_� ¼ 0, so that the superluminal propagation is absent.
We have also studied the cosmology based on the theo-

ries with nonconstant Fð�Þ having de Sitter solutions at
late times. For the initial conditions with ~y2 � ~x we re-
quire that d5p~x > 0 in the early cosmological epoch. If
p~x > 0, there are some viable cosmological trajectories
along which the solutions fulfill all the required conditions
by today. Such an example is given in Figs. 6–9, along
which the quantity p~x remains positive. In this case the
scalar perturbation is subject to the Laplacian instability at
the de Sitter fixed point in the future (c2s ¼ �p~xdS=27<
0). If p~x < 0 initially, we find that the violations of the
conditions c2S > 0 or QS > 0 typically occur by today. For

the initial conditions with ~y2 � ~x the condition for the
avoidance of ghosts in the early cosmological epoch is not
compatible with the existence of the late-time de Sitter
solutions.

FIG. 10. Evolution of c2S versus z for the model with p ¼ 1,

2 ¼ 1, 
4 ¼ �1, d4 ¼ 1, d5 ¼ �1, d� ¼ 0, and ~xdS ¼ �0:007.

The initial conditions are chosen to be ~x ¼ �4:5� 10�15, ~y ¼
�7:0� 10�5, and �r ¼ 0:996 at z ¼ 1:56� 106. In this case,
the scalar perturbation has been subjected to the Laplacian
instability many times by now.
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The field-derivative couplings with the Ricci scalar R
and the Einstein tensor G�� appearing in the terms L4 and

L5 can lead to imprints on the dynamics of matter density
perturbations through the change of the effective gravita-
tional coupling. It will be of interest to study the evolution
of perturbations in detail in order to discriminate between
the generalized Galileon model and other dark energy
models.
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