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A surprising exact result for the Einstein field equations is that if pressure-free matter is moving in

a shear-free way, then it must be either expansion-free or rotation-free. It has been suggested this result is

also true for any barotropic perfect fluid, but a proof has remained elusive. We consider the case of

barotropic perfect-fluid solutions linearized about a Robertson-Walker geometry, and prove that the result

remains true except for the case of a specific highly nonlinear equation of state. We argue that this

equation of state is nonphysical, and hence the result is true in the linearized case for all physically

realistic barotropic perfect fluids. This result, which is not true in Newtonian cosmology, demonstrates

that the linearized solutions, believed to result in standard local Newtonian theory, do not always give the

usual behavior of Newtonian solutions.
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I. INTRODUCTION

This paper deals with a number of interesting properties
of shear-free perfect-fluid solutions of General Relativity
(GR). The motivation for this work stems from the desire to
probe the relationship between relativistic and Newtonian
cosmology and their implications for the study of the
growth of large-scale structure in the Universe. Of particu-
lar importance is understanding the differential properties
of timelike geodesics which describe the fluid flow in
cosmology. The kinematics of such fluid flows are described
by the expansion �, shear (or distortion) �ab, rotation !c,
and acceleration Aa of the four-velocity field ua tangent to
the fluid flow lines. Their governing equations are obtained
by contracting the Ricci identities (applied to ua) along and
orthogonal to ua, which determine how they couple to
gravity via the Einstein field equations [1].

Of particular interest is what role the shear plays in the
relationship between Newtonian and relativistic cosmolo-
gies. For example it has been known for some time that
quasi-Newtonian descriptions of cosmology, the so-called
Silent models, may be constructed for observers which
move along geodesics which are both shear-free and irro-
tational [2]. The intricate relationship between the kine-
matic quantities in Newtonian and relativistic cosmologies
is most strikingly seen in a remarkable result first obtained
by one of us in 1967 [3]. In this paper it was found that if
the four-velocity vector field of a barotropic perfect fluid
with vanishing pressure is shear-free, then either the ex-
pansion or the rotation of the fluid vanishes. This is a
purely local result to which no corresponding Newtonian
equivalent appears to hold, as counter-examples can be
explicitly constructed [4]. Given that this theorem and its

extensions appear to hold for arbitrarily weak fields and for
fluids of arbitrarily low density, one needs to understand
why the Newtonian approximation fails.
The result has be extended to general barotropic fluids

for number of special cases by Senovilla [5], but has yet to
be proved in general. As a first step towards this goal, we
examine whatever result holds in situations where the
hydrodynamic and gravitational equations have been line-
arized. Of course there are many ways of doing this, but
one way that is cosmologically relevant is to linearize the
equations about a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) background [6–10]. These almost-FLRW models
can be thought of as lying somewhere between the full
nonlinear GR situation and Newtonian theory, at least in
the cosmological context, and therefore an analysis of
theorem in this context could shed some light on the
generality of the result. We show that it remains true for
such linearized barotropic perfect-fluid solutions, unless
the fluid obeys a highly nonlinear equation of state (see
(55) below) which we argue is nonphysical. Hence the
result remains true for physically realistic equations of
state in an almost-FLRW geometry.
This result will be useful in obtaining and studying new

perfect-fluid solutions of Einstein field equations with a
shear-free velocity vector field, and in examining how
linearized GR solutions relate to the Newtonian case,
which is the foundation of astrophysical studies in
cosmology.

II. LINEARISED FIELD EQUATIONS ABOUT
FLRW BACKGROUND

To perturb the FLRW spacetime we use the standard
1þ 3 covariant approach [1], where we must first define
a timelike congruence with a unit tangent vector ua. The
natural choice of this vector is tangent to the the matter
flow lines. Then the spacetime is split locally in the form
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R � V where R denotes the worldline along ua and V is the
3-space perpendicular to ua. Then any vector Xa can be
projected on the 3-space by the projection tensor hab ¼
gab þ uaub. At this point, two derivatives are defined: the

vector ua is used to define the covariant time derivative
along the observers’ worldlines (denoted by a dot) for any
tensor Ta...b

c...d, given by

_T a...b
c...d ¼ uereT

a...b
c...d (1)

and the tensor hab is used to define the fully orthogonally
projected covariant derivative D for any tensor Ta...b

c...d:

DeT
a...b

c...d ¼ hafh
p
c . . . h

b
gh

q
dh

r
errT

f...g
p...q; (2)

with total projection on all the free indices. Angle brackets
denote orthogonal projections of vectors, and the orthogo-
nally projected symmetric trace-free (PSTF) part of ten-
sors:

Vhai ¼ habV
b; Thabi ¼

�
hðachbÞd �

1

3
habhcd

�
Tcd: (3)

This splitting of spacetime also naturally defines the
3-volume element

�abc ¼ �
ffiffiffiffiffiffi
jgj

q
�0
½a�

1
b�

2
c�

3
d�u

d; (4)

with the following identities

�abc�
def ¼ 3!hd½ah

e
bh

f
c�; �abc�

dec ¼ 2!hd½ah
e
b�: (5)

The covariant derivative of the timelike vector ua can
now be decomposed into the irreducible parts as

raub ¼ �Aaub þ 1

3
hab�þ �ab þ �abc!

c; (6)

where Aa ¼ _ua is the acceleration, � ¼ Dau
a is the ex-

pansion, �ab ¼ Dhaubi is the shear tensor and wa ¼
�abcDbuc is the vorticity vector. Similarly the Weyl curva-
ture tensor can be decomposed irreducibly into the
Gravito-Electric and Gravito-Magnetic parts as

Eab ¼ Cabcdu
cud ¼ Ehabi;

Hab ¼ 1

2
�acdC

cd
beu

e ¼ Hhabi;
(7)

which allows a covariant description of tidal forces and
gravitational radiation.

In the 1þ 3 covariant perturbation theory [6–13], we
consider the background to be FLRW where the Hubble
scale sets the scale for the perturbations. The quantities that
vanish in the background spacetime are considered to be
first order and are automatically gauge-invariant by virtue
of the Stewart and Walker lemma [14]. In the perturbed
spacetime the matter is considered to be a perfect fluid with
the Energy Momentum tensor

Tab ¼ ð�þ pÞuaub þ pgab; (8)

so the vector field ua is uniquely defined as the timelike
eigenvector of Tab as long as �þ p � 0 (the heat flux qa

and the anisotropic stress �ab vanish in the perturbed
spacetime). Furthermore, we assume the matter to have a
barotropic equation of state p ¼ pð�Þ satisfying the Weak
and Dominant energy conditions. We exclude the vacuum
case, therefore the energy conditions will be

�> 0; �þ p > 0; � � jpj (9)

for both the background spacetime and the perturbed so-
lution (and the Minkowski and De Sitter backgrounds will
not occur). The local isentropic sound speed is

c2s � dp

d�
; 0 � c2s � 1: (10)

The bound on the local sound speed is required for local
stability of matter (lower bound) and causality (upper
bound), respectively.
Now we consider shear-free perturbations and hence the

shear tensor (�ab) vanishes identically. With the conditions
above, the linearized field equations are then as follows:

A. Propagation equations

_� ¼ DaA
a � 1

3
�2 � 1

2
ð�þ 3pÞ; (11)

_! hai ¼ 1

2
�abcDbAc � 2

3
�!a; (12)

_H habi ¼ ��cdhaDcE
ib
d ��Hab; (13)

_E habi ¼ �cdhaDcH
ib
d ��Eab; (14)

_� ¼ ��ð�þ pÞ; (15)

B. Constraint equations

ðC0Þab :¼ Eab �DhaAbi ¼ 0; (16)

ðC1Þa :¼ Da�� 3

2
�abcDb!c ¼ 0; (17)

ðC2Þ :¼ Da!a ¼ 0; (18)

ðC3Þab :¼ Hab þDha!bi ¼ 0: (19)

ðC4Þa :¼ Dapþ ð�þ pÞAa ¼ 0; (20)

ðC5Þa :¼ DbE
ab � 1

3
Da� ¼ 0; (21)

ðC6Þa :¼ DbH
ab þ ð�þ pÞ!a ¼ 0: (22)
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We note that the constraints ðC1Þa, ðC2Þ, ðC3Þab, ðC5Þa and
ðC6Þa are the constraints of the Einstein field equations for
general matter motion specialized to the shear-free case
and are known to be consistently time propagated along ua

locally. However the conditions �ab ¼ 0 and qa ¼ 0 give
the two new constraints ðC0Þab and ðC4Þa respectively.

We also use the following linearized commutation rela-
tions for shear-free congruences: For any scalar ‘f’

½DaDb �DbDa�f ¼ 2�abc!
c _f;

�abcDbDcf ¼ 2!a _f:
(23)

If the gradient of the scalar is of the first order, we then
have

½DaDbDa �DbD
2�f ¼ 2

3

�
�� 1

3
�2

�
Dbf; (24)

½D2Db �DbD
2�f ¼ 2

3

�
�� 1

3
�2

�
Dbfþ 2�dbcD

dð!c _fÞ:
(25)

Also for any first order 3-vector Va ¼ Vhai, we have

½DaDb �DbD
a�Va ¼ 2

3

�
�� 1

3
�2

�
ha½aVb�; (26)

hach
d
bðDdV

cÞ_¼ Db
_Vhai � 1

3
�DbV

a (27)

hacðD2VcÞ_¼ DbðDhbVaiÞ_� 1

3
�D2Va: (28)

Using the field equations and identities of this section
we will now investigate the compatibility of the new con-
straints with the existing ones in terms of the consistency
up to the linear order of their spatial and temporal
propagation.

III. CONSISTENCY OF THE NEW CONSTRAINTS

The conditions of shear-free perturbations and the mat-
ter being a perfect fluid in the perturbed spacetime give the
new constraints ðC0Þab and ðC4Þa respectively. To check
their compatibility with the linearized existing constraints
of Einstein field equations (henceforth all the equations are
up to the linear order), we plug ðC0Þbd in ðC5Þb to get

DdDhbAdi � 1

3
Db� ¼ 0: (29)

Now from the constraint ðC4Þb we have

Ab ¼ � c2s
�þ p

Db� (30)

Using Eq. (30) in (29) we get the constraint

ðC7Þb :¼ c2s
�þ p

DdDhbDdi�þ 1

3
Db� ¼ 0: (31)

For the new constraints ðC0Þab and ðC4Þa to be compatible
with the existing ones, the constraint ðC7Þb must be
satisfied.
To check the spatial consistency of ðC7Þb on any initial

hypersurface we take the curl of (31) to get

c2s
�þ p

�acbDcD
dDhbDdi�þ 1

3
�acbDcDb� ¼ 0; (32)

which using (23) gives

c2s
�þ p

�acbDcD
dDhbDdi�þ 2

3
!a _� ¼ 0: (33)

Breaking the PSTF part according to Eq. (3) and using the
commutators (24) and (25) we have

c2s
�þ p

�acb
�
2

3
DcDbD

2�þ 2

3

�
�� 1

3
�2

�
DcDb�

þ _��dbkDcD
d!k

�
þ 2

3
!a _� ¼ 0: (34)

Again using (23) and (5) in the above equation we get

c2s
�þ p

�
4

3

�
�� 1

3
�2

�
!a _�� _�DkD

a!k þ _�D2!a

�

þ 2

3
!a _� ¼ 0: (35)

Now from the relation (25) and using (18) we know

DkD
a!k ¼ 2

3

�
�� 1

3
�2

�
!a; (36)

Plugging (36) and (15) in (35) and simplifying we finally
get

ðC8Þa :¼ �

�
2

3
!aY þ c2sD

2!a

�
¼ 0; (37)

where

Y ¼ �þ pþ c2s

�
�� 1

3
�2

�
: (38)

From ðC8Þa we can immediately see that for matter with
constant pressure (p ¼ constant ) c2s ¼ 0), shear-free
perturbations are consistent iff �!a ¼ 0 (as according to
the second condition of (9), �þ p > 0). That is, if the
geodesics of the matter congruence in the perturbed space-
time are shear-free then they should be either expansion-
free or vorticity-free (or both). This shows that the results
of [3,5] for pressure-free matter are true for the linearized
theory.
However for a general equation of state, all we can say

from the Eq. (37) is, either the matter congruence is
expansion-free (� ¼ 0), or the vorticity vector must satisfy

ðC9Þa :¼ 2

3
!aY þ c2sD

2!a ¼ 0; (39)
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for the new constraints to be spatially consistent on any
initial hypersurface.

Now let us check the temporal consistency of the con-
straint (39). Propagating it along ua we get

ðc2sD2!aÞ_þ 2

3
ð!aYÞ_¼ 0: (40)

We can easily see that

_cs
2 ¼ ��ð�þ pÞ d

2p

d�2
: (41)

Now from (28)we have

c2sðD2!aÞ_¼ c2s

�
DbðDhb!aiÞ_� 1

3
�D2!a

�
: (42)

We know from the constraint (18) that

DbðDhb!aiÞ_¼ 1

2
Db½ðDb!aÞ_þ ðDa!bÞ_�: (43)

Using (27) the Eq. (43) becomes

DbðDhb!aiÞ_¼ 1

2
Db

�
Db _!hai � 1

3
�Db!a þDa _!hbi

� 1

3
�Da!b

�
: (44)

Simplifying the above equation using (12), (20), and (23),
we get

DbðDhb!aiÞ_¼ � 1

2
�ð1� c2sÞðD2!a þDbD

a!bÞ: (45)

Putting Eq. (45) in (42), we have

c2sðD2!aÞ_¼ ���c2sD
2!a ���DbD

a!b; (46)

where

� ¼ � c2s
2
þ 5

6
; � ¼ c2s

2
ð1� c2sÞ: (47)

Using (39), (36), and (46) becomes

c2sðD2!aÞ_¼ 2

3
!a�

�
�Y � �

�
�� 1

3
�2

��
: (48)

Combining (41) and (48) and using (39) we get

ðc2sD2!aÞ_¼ 2

3
!a�

�
Y

c2s
ð�þ pÞ d

2p

d�2
þ �Y

� �

�
�� 1

3
�2

��
: (49)

Also from (11), (15), and (41) we have

_Y ¼ ��

�
ð�þ pÞ

�
�� 1

3
�2

�
d2p

d�2
þ Z

�
; (50)

where

Z ¼ ð�þ pÞð1þ c2sÞ þ 2

3
c2s

�
�� 1

3
�2

�
: (51)

Now using (12) and (20), (23) and (50) we get

2

3
ð!aYÞ_¼ � 2

3
!a�

��
�c2s þ 2

3

�
Y

þ ð�þ pÞ
�
�� 1

3
�2

�
d2p

d�2
þ Z

�
(52)

Finally using (49) and (52) in (40) and simplifying, we get

2

3
!a�ð�þ pÞ

�
ð�þ pÞ d

2p

d�2
� c2s

�
5

6
þ c2s

2

�

�
3R

2ð�þ pÞ c
4
sð1� c2sÞ

�
¼ 0: (53)

where 3R ¼ 2½�� ð1=3Þ�2� is the spatial curvature. In
FLRW spacetimes it can be written in term of the scale
factor ‘aðtÞ’ as,

3R ¼ k

aðtÞ2 ¼ k exp

�
2

3

Z d�

�þ p

�
; (54)

where k ¼ �1; 0;þ1 denotes open, flat and closed uni-
verses, respectively. Thus we can easily see that for the new
constraints to be spatially and temporally consistent we
must have either !a� ¼ 0 or the barotropic equation of
state must satisfy the following nonlinear higher order DE:

ð�þ pÞ d
2p

d�2
� dp

d�

�
5

6
þ 1

2

dp

d�

�

� k
expf23

R d�
�þpg

2ð�þ pÞ
�
dp

d�

�
2
�
1� dp

d�

�
¼ 0: (55)

We see that the shear-free results of [3,5] are avoided, at
least at the linearized level, if the equation of state of the
matter solves (55). However, a priori it seems highly
unlikely that any realistic barotropic equation of state
will obey this extremely nonlinear equation. We now try
to find solutions of this equation, under various simplified
assumptions or realistic initial conditions, to confirm it is
nonphysical.

(1) Flat universe (k ¼ 0) with c2s ¼ constant � 0: This
is the simplest case in which the Eq. (55) reduces to
a simple algebraic equation

�
5

6
þ 1

2
c2s

�
¼ 0; (56)

which gives c2s ¼ �5=3. This is physically not pos-
sible as the lower bound on the local sound speed
(10) is violated, implying that the matter will be
locally unstable. This will then make the perturba-
tions grow and the linearized equations will be no
longer valid.
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(2) Closed/open universe with c2s ¼ constant � 0: In
this case also, the Eq. (55) reduces to an algebraic
equation, and we get the relation

3R ¼ �2
ð56 þ 1

2 c
2
sÞ

c2sð1� c2sÞ
ð�þ pÞ (57)

Differentiating (57) with respect to� and using (54)
we get

2

3

3R

ð�þ pÞ ¼ �2
ð56 þ 1

2 c
2
sÞ

c2sð1� c2sÞ
ð1þ c2sÞ: (58)

Eliminating 3R=ð�þ pÞ from (57) and (58) we get
the solution c2s ¼ �1=3, which again violates the
lower bound of the local sound speed making the
matter locally unstable and the perturbations will
grow beyond the scope of linearized regime.

(3) Flat universe with varying sound speed: In this case
the Eq. (55) becomes

ð�þ pÞ d
2p

d�2
� dp

d�

�
5

6
þ 1

2

dp

d�

�
¼ 0: (59)

To solve (59), if we choose the initial epoch
(� ¼ �0) to be a radiation dominated one (which
is quite realistic in view of our current understand-
ing of the universe) with c2s � 1=3, then from (59)
we can easily see that c2s monotonically increases
with �. And in the interval (�0 � �<1) the
function pð�Þ is concave upwards. Therefore there
must exist an earlier epoch at which pð�Þ>�,
which violates (9). Furthermore if we consider
pð�Þ to be a C1 function, we can easily see from
(59) that at the matter dominated epoch (where
pð�Þ ¼ 0 and c2s ¼ 0), all the higher derivatives of
pð�Þ with respect to � vanish, implying that the
sound speed would be constant (c2s ¼ 0) for all� 2
½0;1Þ. Hence any solution of (59) with varying
sound speed can never pass through the matter
dominated c2s ¼ 0 phase.

(4) Closed/open universe with varying sound speed:
This is the most general case and let us try to find
a solution with similar initial conditions as in the
previous case. Since we know that very early uni-
verse was radiation dominated, let us suppose that
there exists an epoch (a0 � 1) with density �0 and
pressure p0 where ð�0; p0Þ � 1=a40. As we have

already seen, 3R � 1=a20, hence the last term on

the LHS of (55) becomes suppressed and in this
case also one can easily show that c2s monotonically

increases with �. Therefore there must exist an ear-
lier epoch a1 < a0 with �1 >�0, where pð�Þ>�
and (9) is violated. In other words, no solution
satisfying (9) exists for (55) that gives a radiation
dominated era in the early universe. In this case too,
we can easily show (like the previous case) that
there exist no solution of (55) with varying sound
speed that can pass through matter dominated
c2s ¼ 0 phase. This makes the equation of state (with
varying sound speed) which solves (55) unphysical,
as we know from our present understanding of the
universe that it must pass through a matter domi-
nated epoch.

Hence for any physically realistic barotropic equation of
state, if the new constraints are to be consistently propa-
gated, we must have !a� ¼ 0. We thus proved an impor-
tant theorem for shear-free perturbations of FLRW
spacetimes:
For an ‘‘almost’’ homogeneous and isotropic Universe

filled with a barotropic perfect fluid subject to a physically
realistic equation of state, if the fluid congruence is shear-
free in a domain U, then it must be either vorticity-free or
expansion-free in U.

IV. DISCUSSIONS

This result gives an interesting scenario. The linearized
shear-free solutions—almost universally used to study the
formation of structure by gravitational instability in the
expanding universe, and believed to result in standard local
Newtonian theory—do not have the same behavior as
shear-free Newtonian solutions. This may affect simple
structure formation scenarios for rotating matter.
Wewould like to emphasize again that this local result of

linearized Einstein field equations about an FLRW uni-
verse is only valid for isentropic perfect fluids in GR. For
nonisentropic fluids, fluids with anisotropic stress (for
example, collision free neutrinos in an anisotropic space-
time) or for Scalar-Tensor theories of gravity (where we
have an extra degree of freedom) [15], this result can be
avoided and a shear-free fluid congruence may rotate and
expand simultaneously.
Another interesting point that emerged from our analysis

is that there exists a class of barotropic equation of state
(however unphysical that may be) for which the usual
shear-free result can be avoided in the linearized case. It
would be an interesting problem to see whether this same
class of equations of state (or some similar class) allows
shear-free rotating and expanding solutions for the full
nonlinear Einstein equations for a barotropic perfect fluid.
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Götingin-Heidelberg, 1959 p. 489).

[5] J.M.M. Senovilla, C. F. Sopuerta, and P. Szekeres, Gen.
Relativ. Gravit. 30, 389 (1998).

[6] G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804
(1989).

[7] G. F. R. Ellis, M. Bruni, and J. Hwang, Phys. Rev. D 42,
1035 (1990).

[8] M. Bruni, P. K. S. Dunsby, and G. F. R. Ellis, Astrophys. J.
395, 34 (1992).

[9] P. K. S. Dunsby, M. Bruni, and G. F. R. Ellis, Astrophys. J.
395, 54 (1992).

[10] M. Bruni, G. F. R. Ellis, and P. K. S. Dunsby, Classical
Quantum Gravity 9, 921 (1992).

[11] R. Maartens and J. Triginer, Phys. Rev. D 56, 4640 (1997).
[12] P. K. S. Dunsby, B. A. C. Bassett and G. F. R. Ellis,

Classical Quantum Gravity 14, 1215 (1997).
[13] R. Maartens, T. Gebbie, and G. F. R. Ellis, Phys. Rev. D

59, 083506 (1999).
[14] J.M. Stewart and M. Walker, Proc. R. Soc. A 341, 49

(1974).
[15] A. Abebe, R. Goswami, and P.K. S. Dunsby,

arXiv:1108.2900.

NZIOKI et al. PHYSICAL REVIEW D 84, 124028 (2011)

124028-6

http://dx.doi.org/10.1103/PhysRevLett.72.320
http://dx.doi.org/10.1103/PhysRevLett.72.320
http://dx.doi.org/10.1063/1.1705331
http://dx.doi.org/10.1023/A:1018854608416
http://dx.doi.org/10.1023/A:1018854608416
http://dx.doi.org/10.1103/PhysRevD.40.1804
http://dx.doi.org/10.1103/PhysRevD.40.1804
http://dx.doi.org/10.1103/PhysRevD.42.1035
http://dx.doi.org/10.1103/PhysRevD.42.1035
http://dx.doi.org/10.1086/171629
http://dx.doi.org/10.1086/171629
http://dx.doi.org/10.1086/171630
http://dx.doi.org/10.1086/171630
http://dx.doi.org/10.1088/0264-9381/9/4/010
http://dx.doi.org/10.1088/0264-9381/9/4/010
http://dx.doi.org/10.1103/PhysRevD.56.4640
http://dx.doi.org/10.1088/0264-9381/14/5/023
http://dx.doi.org/10.1103/PhysRevD.59.083506
http://dx.doi.org/10.1103/PhysRevD.59.083506
http://dx.doi.org/10.1098/rspa.1974.0172
http://dx.doi.org/10.1098/rspa.1974.0172
http://arXiv.org/abs/1108.2900

