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Recently it was shown that if the matter congruence of a general relativistic perfect fluid flow in an

almost FLRW universe is shear-free, then it must be either expansion or rotation-free. Here we generalize

this result for a general fðRÞ theory of gravity and show there exist scenarios where this result can be

avoided. This suggests that there are situations where linearized fourth-order gravity shares properties

with Newtonian theory not valid in General Relativity.
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I. INTRODUCTION

The observational evidence for the accelerated expan-
sion of the universe, and the introduction of the concept of
Dark Energy, has put theoretical cosmology into crisis.
This is due to the fact that despite an increasing amount
and quality of data, no model has been proposed thus far
that is able to give a completely satisfactory theoretical
explanation of all the available observational data.

Among the many different ways to achieve cosmic
acceleration, the modification of the classical gravitational
action based on General Relativity has recently gained
much attention [1–6]. The reason for this popularity is
due to the fact that these models provide a somewhat
more natural explanation of the cosmic acceleration: this
effect is due to corrections to Einstein gravity which are
directly related to the characteristic properties of the gravi-
tational interaction. Most investigations of higher order
gravity have focused on Fourth Order Gravity (FOG),
i.e., on gravitational Lagrangians in which the corrections
are at most of order four in the metric, and in what follows
we will also focus on these models.

Because the field equations resulting from FOG are
highly nonlinear, difficult conceptual and technical issues
arise which need to be resolved in order to uncover the
detailed physics of these models. Consequently it is crucial
to develop new methods which are able to assist in resolv-
ing these problems. Two such approaches, the dynamical
systems approach to cosmology and the 1þ 3 covariant
approach, have proved very useful in contributing to our
understanding of how the astrophysics and cosmology of
these theories differ from what is found in General
Relativity. Most of the work thus far has focussed on the
dynamics of homogenous cosmological models [7], the
linear growth of large scale structure [8] and on finding
exact solutions which describe the gravitational field of

stars and compact objects [9]. Of particular importance is
to understand the relationship between the Newtonian and
Relativistic limits of FOG which is important in describing
the dynamics of nonlinear fluid flows in such theories. This
is relevant both in the physics of gravitational collapse and
the late (nonlinear) stages of the structure formation [10].
Central to all of these problems is the differential prop-

erties of timelike geodesics which describe the fluid flow in
cosmology. In general the kinematics of such fluid flows
are described by the expansion�, shear (or distortion)�ab,
rotation !c, and acceleration Aa of the four-velocity field
ua tangent to the fluid flow lines, their governing equations
obtained by contracting the Ricci identities (applied to ua)
along and orthogonal to ua, which determine how they
couple to gravity [11].
The delicate relationship between the kinematic quanti-

ties in Newtonian and relativistic fluid flows in General
Relativity is most strikingly seen in a remarkable result
first obtained by Ellis in 1967 [12]. In this paper it was
found that if the four-velocity vector field of a barotropic
perfect fluid with vanishing pressure is shear-free, then
either the expansion or the rotation of the fluid vanishes.
This is a purely local result to which no corresponding
Newtonian equivalent appears to hold, as counter-
examples can be explicitly constructed [13]. It is therefore
interesting to ask whether such a result holds in the more
general setting of FOG.
As a first step towards this goal, we examine whether

this result holds in situations where the hydrodynamic and
gravitational equations have been linearized about a
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
ground [14–19]. These almost FLRW models can be
thought of as lying somewhere between the full nonlinear
situation and Newtonian theory, at least in the cosmologi-
cal context, and therefore an analysis of the theorem in this
context could shed some light on the generality of the
result in FOG, indeed, since it has already been shown in
earlier work that cosmologies with a bounce occur more
naturally in such theories [20], one might expect a some-
what weaker version of the theorem to emerge.
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We show that if the 3-curvature vanishes, then the result
of [12] can always be avoided for vacuum universes. We
also demonstrate there is at least one physically realistic
nonvacuum case in which both rotation and expansion are
simultaneously possible.

II. FIELD EQUATIONS FOR fðRÞ GRAVITY

We know that for homogeneous and isotropic space-
times, a ‘‘sufficiently general’’ fourth-order Lagrangian
only contains powers of R and we can write the action as

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fðRÞ þ 2Lm�; (1)

where Lm represents the matter contribution. Varying the
action with respect to the metric gives the following field
equations:

f0Gab ¼ Tm
ab þ

1

2
ðf� Rf0Þgab þrbraf

0 � gabrcrcf0;

(2)

where f0 denotes the derivative of the function f w.r.t the
Ricci scalar and Tm

ab is the matter stress energy tensor

defined as

Tm
ab ¼ �muaub þ pmhab þ qma ub þ qmb ua þ �m

ab: (3)

Here ua is the direction of a timelike observer, hab ¼ gab þ
uaub is the projected metric on the 3-space perpendicular
to ua. Also�m, pm, qm and �m

ab denote the standard matter

density, pressure, heat flux and anisotropic stress, respec-
tively. Equations (2) reduces to the standard Einstein field
equations when fðRÞ ¼ R.

We can write the modified field Eqs. (2) as

Gab ¼ ~Tm
ab þ TR

ab � Tab; (4)

where

~T m
ab ¼ Tm

ab

f0
; (5)

TR
ab ¼

1

f0

�
1

2
ðf� Rf0Þgab þrbraf

0 � gabrcrcf0
�
;

(6)

and the thermodynamic quantities of this fictitious ‘‘cur-
vature fluid’’ are given by

�R ¼ TR
abu

aub; pR ¼ 1

3
habTR

ab; (7)

qRa ¼ hbaT
R
bcu

c; �R
ab ¼ ½hðachbÞd �

1

3
habhcd�TR

cd:

(8)

The total thermodynamic quantities are then written as

� � �m

f0
þ�R; p � pm

f0
þ pR;

qa � qma
f0

þ qRa ; �ab � �m
ab

f0
þ �R

ab:

(9)

Using the standard 1þ 3 covariant approach [11], two
derivatives are defined: the vector ua is used to define the
covariant time derivative (denoted by a dot) for any tensor
Ta::b

c::d along the observers’ worldlines:

_T a::b
c::d ¼ uereT

a::b
c::d; (10)

and the tensor hab is used to define the fully orthogonally

projected covariant derivative ~r for any tensor Ta::b
c::d:

~r eT
a::b

c::d ¼ hafh
p
c . . . h

b
gh

q
dh

r
errT

f::g
p::q; (11)

with total projection on all the free indices. Angle brackets
denote orthogonal projections of vectors and the orthogo-
nally projected symmetric trace-free PSTF part of tensors:

Vhai ¼ habV
b; Thabi ¼

�
hðachbÞd �

1

3
habhcd

�
Tcd:

(12)

This splitting of spacetime also naturally defines the
3-volume element

�abc ¼ �
ffiffiffiffiffiffi
jgj

q
�0
½a�

1
b�

2
c�

3
d�u

d; (13)

with the following identities:

�abc�
def ¼ 3!hd½ah

e
bh

f
c�; �abc�

dec ¼ 2!hd½ah
e
b�: (14)

The covariant derivative of the timelike vector ua can now
be decomposed into the irreducible parts as

raub ¼ �Aaub þ 1

3
hab�þ �ab þ �abc!

c; (15)

where Aa ¼ _ua is the acceleration, � ¼ ~rau
a is the ex-

pansion, �ab ¼ ~rhaubi is the shear tensor and !a ¼
�abc ~rbuc is the vorticity vector. Similarly the Weyl curva-
ture tensor can be decomposed irreducibly into the
Gravito-Electric and Gravito-Magnetic parts as

Eab ¼ Cabcdu
cud ¼ Ehabi;

Hab ¼ 1

2
�acdC

cd
beu

e ¼ Hhabi;
(16)

giving a covariant description of Tidal forces and
Gravitational radiation respectively.

III. LINEARIZED FIELD EQUATIONS ABOUT
FLRW BACKGROUND

In the 1þ 3 covariant perturbation theory
[14–19,21,22], the quantities that vanish in the background
spacetime are considered to be first order and are automati-
cally gauge-invariant by virtue of the Stewart and Walker
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lemma [23]. We consider the background to be FLRW
where the Hubble scale sets the characteristic scale of the
perturbations. In the perturbed spacetime the standard
matter is considered to be a perfect fluid with the Energy
Momentum tensor given by:

Tm
ab ¼ ð�m þ pmÞuaub þ pmgab: (17)

Furthermore, we assume standard matter to have a baro-
tropic linear equation of state pm ¼ w�m satisfying the
Weak and Dominant energy conditions:

�m > 0; �m þ pm > 0; �m � jpmj: (18)

Since the matter is a perfect fluid the heat flux (qma ) and the
anisotropic stress (�m

ab) vanish in the perturbed spacetime.

In addition, since we consider shear-free perturbations the
shear tensor �ab vanishes identically.

For the Curvature Fluid the linearized thermodynamic
quantities are given as

�R ¼ 1

f0

�
1

2
ðRf0 � fÞ ��f00 _Rþ f00 ~r2R

�
; (19)

pR ¼ 1

f0

�
1

2
ðf� Rf0Þ þ f00 €Rþ f000 _R2

þ 2

3
ð�f00 _R� f00 ~r2RÞ

�
; (20)

qRa ¼ � 1

f0

�
f000 _R~raRþ f00 ~ra

_R� 1

3
f00�~raR

�
; (21)

�R
ab ¼

1

f0
f00 ~rha ~rbiR: (22)

With the conditions above, the linearized field equations
are then given by:

A. Propagation equations

_�� ~raA
a ¼ � 1

3
�2 � 1

2
ð�þ 3pÞ; (23)

_! hai � 1

2
�abc ~rbAc ¼ � 2

3
�!a; (24)

_E habi � �cdha ~rcH
ib
d ¼ ��Eab � 1

2
_�ab
R � 1

2
~rhaqbiR

� 1

6
��ab

R ; (25)

_H habi þ �cdha ~rcE
ib
d ¼ ��Hab þ 1

2
�cdha ~rc�

ib
d R; (26)

_�m ¼ �ð�m þ pmÞ�; (27)

_�þ ~raqRa ¼ �ð�þ pÞ�; (28)

B. Constraint equations

ðC0Þab :¼ Eab � ~rhaAbi � 1

2
�ab

R ¼ 0; (29)

ðC1Þa :¼ ~ra�� 3

2
�abc ~rb!c � 3

2
qaR ¼ 0; (30)

ðC2Þ :¼ ~ra!a ¼ 0; (31)

ðC3Þab :¼ Hab þ ~rha!bi ¼ 0: (32)

ðC4Þa :¼ ~rapm þ ð�m þ pmÞAa ¼ 0; (33)

ðC5Þa :¼ ~rbE
ab þ 1

2
~rb�

ab
R � 1

3
~ra�þ 1

3
�qaR ¼ 0;

(34)

ðC6Þa :¼ ~rbH
ab þ ð�þ pÞ!a þ 1

2
�abc ~rbq

R
c ¼ 0: (35)

We note that the constraints ðC1Þa, ðC2Þ, ðC3Þab, ðC5Þa and
ðC6Þa are the constraints of Einstein field equations for
general matter motion and are shown to be consistently
time propagated along ua locally in General Relativity.
However, the conditions �ab ¼ 0 and qam ¼ 0 give the two
new constraints ðC0Þab and ðC4Þa respectively. In what
follows we will use the following linearized commutation
relations for shear-free congruences. For any scalar �

½~ra
~rb � ~rb

~ra�� ¼ 2�abc!
c _�; �abc ~rb

~rc� ¼ 2!a _�:

(36)

If the gradient of the scalar is of the first order, we have

½~ra ~rb
~ra � ~rb

~r2�� ¼ 1

3
~R~rb� (37)

and

½~r2 ~rb � ~rb
~r2�� ¼ 1

3
~R~rb�þ 2�dbc

~rdð!c _�Þ; (38)

where ~R ¼ 2ð�� 1
3�

2Þ is the 3-curvature scalar. Also for

any first order 3-vector Va ¼ Vhai, we have

½~ra ~rb � ~rb
~ra�Va ¼ 1

3
~Rha½aVb�; (39)

hach
d
bð~rdV

cÞ ¼ ~rb
_Vhai � 1

3
�~rbV

a; (40)

hacð~r2VcÞ� ¼ ~rbð~rhbVaiÞ� � 1

3
�~r2Va: (41)
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IV. CONSISTENCY OF THE NEW CONSTRAINTS

We have already seen that the conditions of shear-free
perturbations together with the matter being described by a
perfect fluid in the perturbed spacetime, gives the new
constraints ðC0Þab and ðC4Þa respectively. To check their
compatibility with the existing constraints of Einstein’s
field equations, we substitute ðC0Þbd into ðC5Þb to obtain

~r d ~rhbAdi � 1

3
~rb�þ ~rd�R

bd þ
1

3
�qRb ¼ 0: (42)

Now from the constraint ðC4Þb we have

Ab ¼ � w

wþ 1
~rb�; (43)

where � ¼ lnð�mÞ. Using Eq. (43) in (42) we get the
constraint

w

wþ 1
~rd ~rhb ~rdi�þ 1

3
~rb�� ~rd�R

bd �
1

3
�qRb ¼ 0:

(44)

We note that for the new constraints to be compatible with
the existing ones the above constraint must be satisfied. To
check the spatial consistency of the above constraint on
any initial hypersurface we take the curl of (44) to get

w

wþ 1
�acb ~rc

~rd ~rhb ~rdi�þ 1

3
�acb ~rc

~rb�

� �acb ~rc
~rd�R

bd �
1

3
��acb ~rcq

R
b ¼ 0; (45)

which, on using (36) gives

w

wþ 1
�acb ~rc

~rd ~rhb ~rdi�þ 2

3
!a _�

þ 1

3
��acb ~rc

�
f000

f0
_R~rbRþ f00

f0
~rb

_R��f00

3f0
~rbR

�

� �acb ~rc
~rd

�
f00

f0
~rhb ~rdiR

�
¼ 0: (46)

Breaking the PSTF part according to Eq. (12), using the
commutators (37) and (38), and keeping only terms up to
first order, we have:

w

wþ1
�acb

�
2

3
~rc

~rb
~r2�þ1

3
~R~rc

~rb�þ _��dbk
~rc

~rd!k

�

þ2

3
!a _��f00

f0
�acb ~rc

~rd ~rhb ~rdiRþf000� _R

3f0
�acb ~rc

~rbR

þf00�
3f0

�acb ~rc
~rb

_R�f00�2

9f0
�acb ~rc

~rbR¼0: (47)

Again using (36) and (41) in the above equation and
linearizing we get

w

wþ1

�
2

3
~R!a _�� _�~rk

~ra!kþ _�~r2!a

�
þ2

3
!a _�

�f00

f0
�acb

�
2

3
~rc

~rb
~r2Rþ1

3
~R~rc

~rbRþ _R�dbk
~rc

~rdwk

�

þ2wa

3f0

�
f000� _R2�1

3
f00�2 _Rþf00� €R

�
¼0: (48)

This can also be written as

w

wþ 1

�
2

3
~R!a _�� _�~rk

~ra!k þ _�~r2!a

�

þ 2

3
!a _�� _R

f00

f0

�
2

3
~R!a � ~rk

~ra!k þ ~r2!a

�

þ 2wa

3f0

�
f000� _R2 � 1

3
f00�2 _Rþ f00� €R

�
¼ 0: (49)

Now, from relation (38) and using (31) we know that

~r k
~ra!k ¼ 1

3
~R!a; (50)

and from (27) we have

_� ¼ �ð1þ wÞ�: (51)

Thus rearranging terms gives

w�

� ~R
3
!a þ ~r2!a

�
þ 2

3
ð�þ pÞ�!a

þ _R
f00

f0

� ~R
3
!a þ ~r2!a

�

� 2�!a

3f0

�
f000 _R2 � 1

3
f00� _Rþ f00 €R

�
¼ 0: (52)

Since

�þ p ¼ ð1þ wÞ�m

f0
� f00 _R�

3f0
þ f00 €R

f0
þ f000 _R2

f0

þ f00

3f0
~r2R; (53)

the above equation, to linear order, simplifies to

w�

� ~R
3
!a þ ~r2!a

�
þ 2ð1þ wÞ�m�!a

3f0

þ _R
f00

f0

�
1

3
~R!a þ ~r2!a

�
¼ 0: (54)

Further manipulation leads to

!a

��
w�

3
þ _Rf00

3f0

�
~Rþ 2ð1þ wÞ�m�

3f0

�

þ
� _Rf00

f0
þ w�

�
~r2!a ¼ 0: (55)
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We know that in terms of the scale factor aðtÞ of a FLRW
spacetime, the expansion, acceleration, jerk and snap pa-
rameters are defined by the following relations:

� ¼ 3
_a

a
; q ¼ � €aa

_a2
; (56)

j ¼ a
:::
a2

_a3
; s ¼ a3

_a4
d4a

dt4
: (57)

From the above equations we can easily see that the time
propagations of these quantities can be written as

_� ¼ � 1

3
�2ð1þ qÞ; (58)

_q ¼ � 1

3
�ðj� q� 2q2Þ; (59)

€� ¼ 1

9
�3ð2þ 3qþ jÞ; (60)

_j ¼ 1

3
�ðsþ 2jþ 3qjÞ; (61)

€q ¼ � 1

9
�2½sþ 2j� 3q2 þ 6qj� 6q3�: (62)

Then, the Ricci scalar R is given by

R ¼ 2

3
�2ð1� qÞ þ ~R (63)

and hence

_R ¼ 2

3
�Q; (64)

where

Q ¼ 1

3
�2ðj� q� 2Þ þ ~R; (65)

_Q ¼ 1

9
�½ð4þ 5qþ jþ jqþ sÞ�2 þ 6 ~R�: (66)

This means that we can rewrite (55) as

2

3
�

�
!a

��
w

2
þ f00

3f0
Q

�
~Rþ ð1þ wÞ�m

f0

�

þ
�
f00

f0
Qþ 3w

2

�
~r2!a

�
¼ 0: (67)

We can see from this equation that spatial consistency
requires the vanishing of either � or the terms in the curly
brackets.
To check for temporal consistency of the new constraint

(67) we take its time evolution which can be written as

!a

�
�

�ð1� wÞP
3

~Rþ ð1þ wÞ
f0

ð3wþ 5Þf0 þ 4f00Q
6f0

�m

�

þ _P

P

��
1þ w

f0

�
�m

��
¼ 0; (68)

where we have used

_!a ¼
�
w� 2

3

�
�!a (69)

and

ð~r2!aÞ: ¼ ð3w� 5Þ
6

�~r2!a þ ðw� 1Þ
6

�~R!a: (70)

We have also defined

P � f00

f0
Qþ 3w

2
: (71)

From (66), we can write

_P ¼ Z�; (72)

where

Z ¼ 2

3

�
f000

f0
�

�
f00

f0

�
2
�
Q2

þ f00

9f0
ðð4þ 5qþ jþ jqþ sÞ�2 þ 6 ~RÞ: (73)

Equation (67) can then be rewritten as

�!a

��ð1� wÞP
3

~Rþ ð1þ wÞ
f0

ð3wþ 5Þf0 þ 4f00Q
6f0

�m

�

þ Z

P

��
1þ w

f0

�
�m

��
¼ 0: (74)

It follows that for the new constraints to be spatially and
temporally consistent we must have either!a� ¼ 0 or the
expression in the curly brackets must vanish. It is interest-
ing to see whether there exist solutions of a given fðRÞ
theory of gravity which can avoid the Ellis condition.
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From (74), it is easy to see that if the 3-curvature
vanishes, then the result of [24] can always be avoided
for vacuum universes (�m ¼ 0). This implies that a shear-
free, spatially flat vacuum universe in any fðRÞ theory can
rotate and expand simultaneously in the linearized regime.

The nonvacuum case is more difficult to analyze in
general; however, as we will see below there does exist
at least one nontrivial case which does violate the Ellis
condition.

For a flat Milne universe, where the matter energy
density is given by �m ¼ �0

a3ð1þwÞ , we have

_� ¼ � 1

3
�2; (75)

R ¼ 2

3
�2; (76)

aðRÞ ¼ 1ffiffiffiffi
R

p ; (77)

_R ¼ �
ffiffiffi
2

3

s
R3=2: (78)

Substituting these quantities into the Friedmann equation

1

3
�2 ¼ 1

f0

�
�m þ Rf0 � f

2
�� _Rf00

�
; (79)

one gets

� R2 d
2fðRÞ
dR2

þ fðRÞ
2

� �0

aðRÞ3ð1þwÞ ¼ 0; (80)

which has the following general solution:

fðRÞ ¼ C1R
ðð1þ ffiffi

3
p Þ=2Þ þ C2R

ðð1� ffiffi
3

p Þ=2Þ

� 4�0

1þ 12wþ 9w2
Rð3ð1þwÞ=2Þ: (81)

Let us only consider the particular solution (the last term of
the above equation), which is an Rn—theory of gravity.
Now, if we look at (74), for the corresponding flat Milne
universe in Rn gravity, the term in the curly brackets
reduces to

ð1þ wÞ�m

6f0
½3wþ 9� 4n� ¼ 0: (82)

Comparing solutions (82) and the particular solution of
(81) (with n ¼ 3ð1þ wÞ=2) we get w ¼ 1 if �m � 0. In
other words, for a stiff fluid in R3 gravity, there exists a flat
Milne-universe solution which can rotate and expand si-
multaneously at the level of linearized perturbation theory.

V. DISCUSSION AND CONCLUSION

In this paper we consider shear-free fluid flows in fðRÞ
gravity in situations where the hydrodynamic and gravita-
tional equations have been linearized about a FLRW back-
ground. This extends recent work by Nzioki et al., which
considered such situations in General Relativity [24]. We
showed that if the 3-curvature vanishes, then the result of
[12,25] can always be avoided for vacuum universes. We
also demonstrated there is at least one physically realistic
nonvacuum case in which both rotation and expansion is
simultaneously possible. This suggests that there are situ-
ations where linearized fourth-order gravity shares proper-
ties with Newtonian theory not valid in General Relativity.
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