
Towards a fully consistent parametrization of modified gravity

Tessa Baker*

Astrophysics, University of Oxford, DWB, Keble Road, Oxford, OX1 3RH, UK

Pedro G. Ferreira†

Astrophysics and Oxford Martin School, University of Oxford, DWB, Keble Road, Oxford, OX1 3RH, UK

Constantinos Skordis‡

School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD,UK

Joe Zuntz§

Department of Physics & Astronomy, University College London, WC1E 6BT, UK
(Received 23 July 2011; published 8 December 2011)

There is a distinct possibility that current and future cosmological data can be used to constrain

Einstein’s theory of gravity on the very largest scales. To be able to do this in a model-independent way, it

makes sense to work with a general parameterization of modified gravity. Such an approach would be

analogous to the Parameterized Post-Newtonian (PPN) approach which is used on the scale of the Solar

System. A few such parameterizations have been proposed and preliminary constraints have been

obtained. We show that the majority of such parameterizations are only exactly applicable in the

quasistatic regime. On larger scales they fail to encapsulate the full behavior of typical models currently

under consideration. We suggest that it may be possible to capture the additions to the ‘Parameterized

Post-Friedmann’ (PPF) formalism by treating them akin to fluid perturbations.

DOI: 10.1103/PhysRevD.84.124018 PACS numbers: 04.50.Kd, 04.25.Nx, 95.30.Sf, 98.80.Jk

I. INTRODUCTION

It is possible that we live in a Universe in which more
than 96% of the energy and matter density is in the form of
an exotic dark substance. The conventional view is that
roughly a quarter of this obscure substance is in the form of
dark matter and the remainder is in the form of dark energy.
Theories abound that propose explanations for dark matter
and dark energy and there is an active programme of
research attempting to understand and measure them.

It may also be possible that our understanding of gravity
is lacking, and that Einstein’s theory of General Relativity
(and more specifically, the Einstein field equations) are not
entirely applicable on cosmological scales. The past de-
cade has seen unprecedented growth, from a handful to a
veritable menagerie of possible modifications to gravity
that may be perceived as a fictitious dark sector [1].

The proliferation of theories of modified gravity could
not have come at a better time. Observational cosmology
has entered what some have called an era of ‘‘precision
cosmology’’. Hubristic as such a point of view might be, it
is certainly true that cosmology is being inundated by data,
frommeasurements of the Cosmic Microwave Background
(CMB) [2,3], galaxy surveys [4], weak lensing surveys [5]
and measurements of distance and luminosity at high

redshift with supernovae Ia [6]. With such data in hand it
is possible to test cosmological models and constrain their
parameters with some precision. With the forthcoming
experiments currently on the drawing board [7–9], great
things are expected. In particular, there is a hope that it may
be possible to distinguish between the two paradigms: the
dark sector versus modified gravity.
The situation in cosmology is reminiscent of that in

General Relativity in the late 1960’s and early 1970’s.
Then, Einstein’s theory was undergoing a golden age with
discoveries in radio and X-ray astronomy, as well as preci-
sionmeasurements in the Solar System and beyond,making
it increasingly relevant. As a result, a plethora of alternative
theories of gravity were proposed which could all in prin-
ciple be tested (and ruled out) by observations [10–12]. Out
of this situation a phenomenological model of modified
gravity emerged, the Parameterized Post-Newtonian
(PPN) approximation [13–16], which could be used as a
bridge between theory and observations. In other words,
from observations it is possible to find the constraints on the
parameters in the PPN approximation. The constraints are
model-independent. From any given theory it is then pos-
sible to calculate the corresponding PPN parameters and
find if they conform to observations. The PPN approxima-
tion is sufficiently general that it can encompass almost all
modified theories of gravity that were then proposed.
Clearly something like the PPN approach is desirable

in cosmology. Given the rapid increase in the number of
modified theories of gravity, it would make sense to
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construct a parameterization that could serve as a bridge
between theory and observation. Observers could express
their constraints in terms of a set of convenient parameters;
theorists could then make predictions for these parameters
and check if their theories are observationally viable.
Instead of performing many constraint analyses on indi-
vidual theories, one could run just a single constraint
analysis on the parameterized framework. With a dictio-
nary of translations between theories and the parameteri-
zation in hand, these general constraints could be
immediately applied to any particular theory.

Another key advantage of a parameterized approach is
that it allows one to explore regions of theory space for
which the underlying action is not known. For example, in
§ VIBwewill see how the Lagrangian fðRÞ is related to our
framework ‘‘parameters’’ (which are really functions, not
single numbers—see below). Cosmological data will ex-
clude certain regions of parameter space. If a new form of
fðRÞ is proposed in the future, it should be a quick operation
to see whether it falls into the excluded region—even
though that particular Lagrangian was not known at the
time that the constraint analysis was performed.

In this paper we will discuss the requirements of how to
parametrize modifications to gravity on cosmological
scales. It develops the principles first put forward in [17]
and explores how they may be applied more generally. The
layout of this paper is as follows. In § II we discuss the idea
behind the PPN approach and show that it cannot be
imported wholesale into cosmology. We then briefly look
at attempts at parametrizing gravity and point out their
limitations. In § III we discuss a possible formalism in
detail—we co-opt the name Parameterized Post-
Friedmann approach from [18]—and argue that it may be
sufficiently general to encompass a broad class of theories.
In § IV we construct the hierarchy of equations that should
be satisfied in the case in which there are no extra fields
contributing to the modifications to gravity. In § V we
discuss the more general case with extra fields and how
this affects the relations between the different coefficients.
In § VI we focus on four modified theories of gravity and
analyze how they fit into the formalism that we are propos-
ing. Finally, in § VII we summarize the state of play of the
parameterization we are proposing.

II. THE CONVENTIONAL APPROACH

The plan is to construct a parameterization that might
mimic the PPN approach on cosmological scales. It is
therefore useful to look very briefly at the PPN approach,
which proceeds as a perturbative expansion in v=c (though
we set c ¼ 1 in what follows). Consider the modified,
linearized Schwarzschild solution:

ds2 ¼ �ð1� 2�Þdt2 þ ð1� 2�Þdr2 þ r2d�2

� ¼ G0M

r
� ¼ �PPN� (1)

whereG0 is Newton’s constant,M is the central mass,� is
the two-dimensional volume element of a sphere, ð�;�Þ
are gravitational potentials and �PPN is a PPN parameter,
equivalent to one of the older Eddington-Robertson-Schiff
parameters.
There are a few properties which are of note in this

expression. First of all, the parameterization is constructed
around a solution of the Einstein field equations, the
Schwarzschild solution (with �PPN ¼ 1)—the field equa-
tions do not come into play. Second (and this is not obvious
from the expressions above), the parameter �PPN only
depends on parameters in the theory and not on integration
constants or ‘‘environmental’’ parameters such as the cen-
tral mass. This means that, given a theory, it is possible to
predict �PPN solely in terms of fundamental parameters of
the theory (i.e. the parameters in the action). Finally, we
see that the mismatch between the gravitational potentials
can be expressed as [14]

��� ¼ �PPN� (2)

with �PPN ¼ ð�PPN � 1Þ=�PPN often called the gravita-
tional slip. General Relativity is recovered when �PPN ¼ 0.
The idea of applying an equation of the form of Eq. (2)

to cosmology emerged from the work of Bertschinger in
[19]. Bertschinger showed that on large scales it was
possible to calculate the evolution of � and � using only
information about the background evolution and assuming
a closure relationship between the two potentials. The
simplest assumption is a closure relation of the form of
Eq. (2), but in no way was it implied that this would be a
realistic relationship that would be valid in the general
space of theories of modified gravity.
Nevertheless, over the last few years the simplified

equation for gravitational slip has been adopted as a gen-
eral parameterization which should be valid in cosmology
[20–22]. It has been shown to be valid in a few cases, in the
quasistatic regime (i.e. on small scales), and explicit ex-
pressions have been found for � in terms of fundamental
parameters of those theories (some examples are collected
in [1]). Such a parameterization has been extended to
include another parameter, a modified Newton’s constant
Geff , which may differ from G0. The method is then to use
Eq. (2) and a modified Poisson equation,

� k2� ¼ 4�Geffa
2
X
i

�i�i (3)

(where �i is the energy density of fluid i and �i is the
comoving energy density) to modify the evolution equa-
tions for cosmological perturbations. A modified Einstein-
Boltzman solver is then used to calculate cosmological
observables. The two parameters (Geff , �) have been
adopted more generally and have been used to find pre-
liminary constraints on modified gravity theories by a
number of groups [21–24].
Clearly such an approach to parametrizing modified

gravity has some significant differences with the PPN
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approach. For a start, modifications are applied to the field
equations and not to specific solutions of Einstein’s field
equations. This is understandable—the solutions of
interest in cosmology are not only inhomogeneous but
time-varying, unlike the incredible simplicity of the
Schwarzschild solution that arises due to Birkhoff’s theo-
rem. Also, unlike in PPN, the parameters at play—� and
Geff—will not only depend on fundamental parameters of
the theory but also on the time evolution of the cosmologi-
cal background.

Ideally, any time-dependence in the parameterization
will be simply related to background cosmological quan-
tities (like the scale factor, energy densities or any auxiliary
fields that are part of the modifications) and not dependent
upon the time evolution of �, � or any other perturbation
variables. For such a requirement to be possible it is
essential that any parameterization is sufficiently general
to encompass a broad range of theories. As we will show in
this paper, parameterizations using Eqs. (2) and (3) are
simply not general enough to capture the full range of
behavior of modified theories of gravity. It has been argued
that such a parameterization can be used as a diagnostic;
that is, for example, a nonzero measurement of � might
indicate modifications of gravity [25]. This may be true,
but such a measurement cannot then be used to go further
and constrain specific theories. It would be more useful to
build a fully consistent parameterization which can be used
as a diagnostic and can be linked to theoretical proposals.
The purpose of this paper is to take the first steps towards
such a parameterization.

III. THE FORMALISM

When considering modified gravity theories it can be
helpful to cleanly separate the nonstandard parts from the
familiar terms that arise in General Relativity (henceforth
GR). We can always write the modifications as a an addi-
tional tensor appearing in the Einstein field equations, i.e.

G�� ¼ 8�G0a
2T�� þ a2U�� (4)

The diagonal components of the tensor U�� are equivalent

to an effective dark fluid with energy density X and iso-
tropic pressure Y (where the constants have been ab-
sorbed). The zeroth-order Einstein equations are then:

EF � 3H 2 þ 3K ¼ 8�G0a
2
X
i

�i þ a2X (5)

ER � �ð2 _H þH 2 þ KÞ ¼ 8�G0a
2
X
i

Pi þ a2Y (6)

where H ¼ H=a is the conformal Hubble parameter and
K is the curvature. We will use EF and ER as defined
above throughout this paper. For future use we define E ¼
EF þ ER. The summations in the above expressions are
taken over all conventional fluids and dark matter, and
dots denote derivatives with respect to conformal time. In

this paper we will largely adhere to the definitions and
conventions used in [17]. We also note that the Bianchi
identity r�G

�
� ¼ 0 implies the relation:

_E F þH ðEF þ 3ERÞ ¼ 0 (7)

Assuming that the conservation law r�T
�
� ¼ 0 holds

separately for ordinary matter and the effective dark
fluid, X and Y must be related by the equation
_Xþ 3H ðXþ YÞ ¼ 0.
Continuing in this vein, our goal is to write the linearly

perturbed Einstein equations as:

�G�� ¼ 8�G0a
2�T�� þ a2�U�� (8)

In general the tensor �U�� will contain both metric per-

turbations and extra degrees of freedom (hereafter d.o.f)
introduced by a theory of modified gravity. We can sepa-
rate �U�� into three parts: i) a part containing only metric

perturbations, ii) a part containing perturbations to the
extra d.o.f., iii) a part mixing the extra d.o.f. and perturba-
tions to the ordinary matter components:

�U�� ¼ �Umetric
�� ð�̂; �̂ . . .Þ þ �Udof

��ð�; _�; €� . . .Þ
þ �Umix

�� ð�� . . .Þ (9)

The argument variables in this expression will be intro-
duced shortly. We have written the Einstein field equations
such that T�

� contains only standard, uncoupled matter
terms and hence obeys the usual (perturbed) conservation
equations, �ðr�T

�
� Þ ¼ 0. As a result U

�
� must obey its

own independent conservation equations, so that at linear-
order we have �ðr�U

�
� Þ ¼ 0. We will use the following

notation to denote components of �U
�
� from here onwards:

U� ¼ �a2�U0
0;

~riU� ¼ �a2�U0
i

UP ¼ a2�Ui
i; DijU� ¼ a2

�
Ui

j �
1

3
�Uk

k�
i
j

�
(10)

where Dij ¼ ~ri
~rj � 1=3qij

~r2
projects out the longitudi-

nal, traceless part of �U�
� and qij is a maximally symmet-

ric metric of constant curvature K. The definition ofU�. In
the case of unmodified background equations perturbed
conservation equation for U

�
� gives us the following two

constraint equations at the linearized level [17]:

_U� þHU� � ~r2
U� þ 1

2
a2ðXþ YÞð _	þ 2 ~r2


Þ
þHUP ¼ 0 (11)

_U � þ 2HU� � 1

3
UP � 2

3
~r2
U� þ a2ðX þ YÞ� ¼ 0

(12)

where the metric fluctuations 	; 
 and � are defined in
eqn. (13).
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In this paper we will initially present general forms for
the construction of metric-only �U�� that satisfy Eqs. (11)

and (12), then impose the restriction that the field equations
can contain at most second-order derivatives. Gravitational
theories containing derivatives greater than second-order
are generally disfavoured as they typically result in insta-
bilities or the presence of ghost solutions [1,26,27].
However, we note that some special cases of higher-order
theories are acceptable e.g. fðRÞ theories [28] (see § VIB).
Hence we start with the general case in order to indicate
how our results may be extended to higher-derivative
theories [29].

The requirement of second-order field equations means
that U� and U� can only contain first-order derivatives
with respect to conformal time, as can be seen from
Eqs. (11) and (12). The specific implications this has
depends on which of the tensors in eqn. (9) are present.
In § IV we will explore the structure of theories with only
metric perturbations, while theories with extra degrees of
freedom will be presented in § V. In Appendix B we
display formulae for generating constraint equations in
an arbitrary-order theory of gravity with no additional
degrees of freedom.

We write the perturbed line element (for scalar pertur-
bations only) as:

ds2 ¼ �a2ð1� 2�Þdt2 � 2a2ð ~ri
Þdtdx
þ a2

��
1þ 1

3
	

�
qij þDij�

�
dxidxj (13)

It will prove useful to define the gauge-variant combi-
nation:

V ¼ _�þ 2
 (14)

We also define the gauge-invariant potentials:

�̂ ¼ � 1

6
ð	� ~r2

�Þ þ 1

2
HV (15)

�̂ ¼ ��� 1

2
_V � 1

2
HV (16)

�̂ and �̂ are equivalent to the Bardeen potentials ��H

and �A respectively. Note that �̂ contains a second-
order time-derivative. In the first four sections of this
paper we will frequently use a linear combination of
these variables that remains first-order in time deriva-
tives of perturbations, due to a cancellation between the
_V terms:

�̂ ¼ 1

k
ð _̂�þH �̂Þ (17)

From § V onwards we specialise to the conformal
Newtonian gauge, and hence revert to the familiar
potentials � and �. We introduce a shorthand notation
for the components of �G�� in exact analogy to that

introduced for �U��, i.e. E� ¼ �a2�G0
0 etc. Hereafter

the left-hand sides of the perturbed Einstein equations
will be denoted by:

E� ¼ 2ð ~r2 þ 3KÞ�̂� 6H k�̂� 3

2
HEV

E� ¼ 2k�̂þ 1

2
EV

EP ¼ 6k
d�̂

d�
þ 12H k�̂� 2ð ~r2 þ 3KÞð�̂� �̂Þ � 3E�̂

þ 3

2
ð _ER � 2HERÞV

E� ¼ �̂� �̂ (18)

In terms of these variables the perturbed Einstein equa-
tions are [17]:

E� ¼ 8�Ga2
X
i

�i�i þU� (19)

E� ¼ 8�Ga2
X
i

ð�i þ PiÞ�i þU� (20)

EP ¼ 24�Ga2
X
i

�i	i þUP (21)

E� ¼ 8�Ga2
X
i

ð�i þ PiÞ�i þU� (22)

For simplicity we will hereafter consider only the case
of a universe with zero spatial curvature, K ¼ 0.

IV. THE GENERAL PARAMETERIZATION—NO
EXTRA FIELDS

A. General case—unmodified background

Let us begin with the simplest case by applying two
restrictions: i) We consider the case of modifications to
gravity that appear only at the perturbative level, that is,
they maintain the background equations of GR for a
Friedmann-Robertson-Walker metric; ii) there are no new
d.o.f. present in the theory, so �U�� contains only metric

perturbations. We will relax restriction i) in § IVD and
restriction ii) in § V. We will see shortly that the treatment
presented in this subsection is also applicable to 
CDM,
because the X þ Y terms in eqns. (11) and (12) vanish for a
cosmological constant. The agreement between an exact

CDM background and current data means that theories
obeying restrictions i) and ii) are of particular interest, even
though they correspond to a limited region of theory space.
The requirement of gauge form-invariance places strong

restrictions on the forms that �U�� can take [17]. We will

postpone a detailed discussion of these restrictions until
§ IVD, where they will be a useful tool in guiding us to
allowed combinations of metric perturbations. In this sub-
section it suffices to point out that the standard Einstein
field equations of GR are of course already gauge
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form-invariant; so any additive modification like �U��

must be independently gauge form-invariant in order to
preserve the invariance of the whole expression. This
property is a direct consequence of the fact that we have
not yet modified the background equations. In this case the
only objects that can be present in the tensor �U�� are the

gauge-invariant metric potentials �̂ and �̂.
So, we can construct the tensor �U�� from series of all

the possible derivatives of �̂ and �̂. This structure should
be general enough to encompass any metric theories,
where the action is constructed purely from curvature
invariants, e.g. fðRÞ gravity, Gauss-Bonnet gravity [30]
and Lovelock gravity [31]. If we wish to parameterize
only second-order theories then we will need to truncate
these series at N ¼ 2, as discussed in § III. The compo-
nents of U�� are given by:

U� ¼ XN�2

n¼0

k2�nðAn�̂
ðnÞ þ Fn�̂

ðnÞÞ (23)

U� ¼ XN�2

n¼0

k1�nðBn�̂
ðnÞ þ In�̂

ðnÞÞ (24)

UP ¼ XN�1

n¼0

k2�nðCn�̂
ðnÞ þ Jn�̂

ðnÞÞ (25)

U� ¼ XN�1

n¼0

k�nðDn�̂
ðnÞ þ Kn�̂

ðnÞÞ (26)

The coefficients An-Kn are functions of the scale factor a,
wavenumber k and background quantities such as _�i—for
the sake of clarity we will suppress these dependencies
throughout. The factors of k ensure that the coefficient
functions are dimensionless.

Let us take a moment to explain the upper limits on the

summations in Eqs. (23)–(26). �̂ and �̂ are first-order in
time derivatives (see Eqs. (15) and (17)). U� is differ-
entiated in Eq. (11), so truncating the series in Eq. (23)

at �̂ðN�2Þ gives field equations containing time derivatives
of orderN.U� is treated analogously toU�. AsUP andU�

are not differentiated in the components of the Bianchi
identity, the series in Eqs. (25) and (26) are allowed to
extend one order higher than those in Eqs. (23) and (24).

We substitute our forms for U�,U�,UP andU� into the

components of the Bianchi identity (11) and (12). �̂ and �̂
are nondynamical fields and so will not evolve in the
absence of source terms. Yet when we perform the sub-
stitution, the Bianchi identity appears to give us two evo-

lution equations for �̂ and �̂. The only way this can be

avoided is if the coefficients of each term �̂ðnÞ and �̂ðnÞ

vanish individually, which provides us with constraint
equations on the functions An-Kn (this procedure will be
clarified with an example shortly). Each component of the

Bianchi identity results in N constraint equations from

each of the �̂ðnÞ terms and �̂ðnÞ terms, and Eqs. (23)–(26)
contain 8N � 4 coefficient functions in total. Hence we
have 4N � 4 free functions with which to describe the
theory.

B. Second-order case—unmodified background

In Appendix B we give formulae for generating the
constraint equations of an arbitrary-order theory with un-
modified background equations. We will now explicitly
present the second-order case, which corresponds to setting
N ¼ 2 in Eqs. (23)–(26). In a general case this will give us
four free functions. However, if the background equations

are unaltered then we must set F0 ¼ I0 ¼ 0 because �̂
contains a second-order conformal time-derivative of the
scale factor. One might consider cancelling this €a term by
adding a term proportional to EV, but this would break the
gauge-invariance of the perturbed Einstein equations. We
will see later that modification of the background equations
allows us to add an EV term without violating gauge-

invariance, which in turns means that �̂ can be present in
U� and U�.
Using Eqs. (11) and (12) we find that setting F0 ¼

I0 ¼ 0 forces J1 ¼ K1 ¼ 0 also. Then, for the second-
order case, the remaining terms in �U�� are:

U� ¼ A0k
2�̂ U� ¼ B0k�̂

UP ¼ C0k
2�̂þ C1k

_̂
�þ J0k

2�̂

U� ¼ D0�̂þD1

k
_̂
�þ K0�̂

(27)

The constraint equations are given in Table I, indicating
the terms and Bianchi identity from which they arise
(B1 ) Eq. (11), B2 ) Eq. (12)). These expressions can
be generated using the formulae in Appendix B. We can

see immediately that the �̂ terms in UP and U� vanish,

leaving �U�� expressed entirely in terms of �̂ and
_̂
�. We

have two free functions remaining, which we will choose

to be D0 and D1. Eliminating C1 from the two
_̂
� con-

straints gives (where H k ¼ H =k):

TABLE I. Table of the constraint equations for the second-
order metric theory specified in § IVB. These can be generated
using the formulae in Appendix B.

Origin Constraint equation

1 [B1] �̂ _A0 þHA0 þ kB0 þHC0 ¼ 0

2 [B1]
_̂
� A0 þH kC1 ¼ 0

3 [B1] �̂ J0 ¼ 0

4 [B2] �̂ _B0 þ 2HB0 � 1
3 kC0 þ 2

3 kD0 ¼ 0

5 [B2]
_̂
� B0 � 1

3C1 þ 2
3D1 ¼ 0

6 [B2] �̂ 2K0 � J0 ¼ 0
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H
k

D1 ¼ � 1

2
ðA0 þ 3H kB0Þ (28)

The combination on the right-hand side appears when we
form the (Fourier-space) Poisson equation from eqns. (19)
and (20), where it acts to modify the value of Newton’s
gravitational constant:

� k2�̂ ¼ 4�
G0

1� ~g
a2
X
i

�i�i (29)

where �i ¼ �i þ 3H ð1þ wiÞ�i is a gauge-invariant
matter perturbation and

~g ¼ � 1

2
ðA0 þ 3H kB0Þ (30)

The sum in Eq. (29) is over all known fluids and dark
matter, and G0 denotes the canonical value of Newton’s
constant. From here on we will replace D1=k in eqn. (27)
by ~g=H to remind us of the connection between the
modifications to the slip relation and the Poisson equa-
tion. We will also replace D0 by � to distinguish it from
the other coefficient functions, which can all be expressed
in terms of ~g and � using the constraint equations. We
continue to suppress the arguments of ~g and � .

The effective gravitational constant appearing in the
Poisson equation is Geff ¼ G0=ð1� ~gÞ. The traceless
space-space component of the Einstein equations becomes:

�̂� �̂ ¼ 8�G0

X
i

ð�i þ PiÞ�i þ ��̂þ ~g

H
_̂
� (31)

The anisotropic stress perturbation �i is automatically
gauge-invariant, but negligible for standard fluids at late
times. The above expression echoes its PPN equivalent,
Eq. (2); but note that, as discussed in § II, � is a function of
background quantities (which potentially introduce time-
and scale-dependence), whereas �PPN depended only upon
fundamental parameters of a gravitational theory.

Other authors have made numerous different choices for
the two free functions of a second-order theory; a useful
summary of some of these is provided by [22]. A common
choice is to introduce a function Q ¼ Geff=G0, related to
our ~g by Q ¼ ð1� ~gÞ�1 [21] (though different notation is
in no short supply). The relationship between the two

potentials is often parameterized as �̂ ¼ slipða; kÞ�̂ in

the spirit of the PPN parameter �PPN [13]. It might be felt
that by introducing yet another parameterization of PPF we
are adding to this disarray. However, in the next subsection
we will argue that a two-function slip relation such as
Eq. (31) is needed to avoid implicitly introducing
higher-order derivatives into a purely metric theory.

Writing the relationship between the two gauge-

invariant potentials as �̂ ¼ slipða; kÞ�̂ implies that the

spatial off-diagonal component of the Einstein field equa-
tions is:

�̂� �̂ ¼
�
1� 1

slip

�
�̂ (32)

Comparing the above equation with Eq. (31) implies:

�1
slip ¼ 1� � � ~g

H
d ln�̂

d�
(33)

Now slip has an environmental dependence, which is

problematic. We would require detailed knowledge of the
environment in which we wish to test a theory a priori, and
the PPF functions would need to be recalculated for nu-

merous different situations. Unless
_̂
� ¼ 0, the parameter-

izations in Eqs. (31) and (32) do not have a simple
equivalence.
A degeneracy arises between ~g and � when comparing to

data from weak gravitational lensing, which probes the
combination �þ� in the conformal Newtonian gauge.
In parameterizations equivalent to ðQ;slipÞ the degener-

acy is Qð1þ 1=slipÞ, so for lensing applications it makes

sense to define new parameters along and perpendicular to
the degeneracy direction [32–34]. In the ð~g; �Þ parameteri-
zation a degeneracy remains. The dominant contributions
to lensing signals come from quasistatic scales, on which
time derivatives of perturbations can be neglected (see later
for a fuller discussion). The degeneracy is then:

� k2ð�þ�Þ ¼ 4�G0a
2
X
i

�i�i

ð2� �Þ
1� ~g

(34)

It seems that neither of the two parameterizations pre-
sented so far are optimal for weak lensing constraints.

C. Why neglecting ~g in the slip relation implies a
higher-derivative theory

We have seen in the previous section that in a metric-
based second-order theory of modified gravity the most
general form of the gravitational slip should be expressed

in terms of the gauge-invariant potential �̂ and its first
derivative with respect to conformal time. Two free func-
tions � and ~g were used as the coefficients of these terms,
respectively, where ~g resulted in a modification to
Newton’s gravitational constant in the Poisson equation.

Using a single function to relate �̂ and �̂ is equivalent to
setting ~g ¼ 0 (see Eq. (31)), which is inconsistent with
allowing a second free function to modify Newton’s con-
stant. Making the choice ~g ¼ 0 uses up 1� of freedom,
leaving us only a single free function with which to de-
scribe the system.
The above reasoning is set within the confines of a

second-order theory. We will now show that using a single

function to relate �̂ and �̂ while maintaining Geff � G0

is equivalent to invoking a higher-derivative theory of
gravity. To do this, let us consider the form that the tensor
�U�� would take in a third-order theory. Its components

would be:
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U� ¼ A0k
2�̂þ A1k

_̂
�þ F0k

2�̂

U� ¼ B0k�̂þ B1
_̂
�þ I0k�̂

UP ¼ C0k
2�̂þ C1k

_̂
�þ C2

€̂
�þ J0k

2�̂þ J1k
_̂
�

U� ¼ D0�̂þD1

k
_̂�þD2

k2
€̂
�þ K0�̂þ K1

k
_̂
�

(35)

The constraint equations for this system are given in
Table II. We will continue to define the combination
that modifies G0 as ~g ¼ �0:5ðA0 þ 3H kB0Þ, but note
that this is no longer equal to H kD1 as it was in the
second-order case. Consider the case where we set D1 ¼
D2 ¼ K0 ¼ K1 ¼ 0, that is, we use a single function to

relate �̂ and �̂. Through linear combinations of the
constraints in Table II we derive the expressions:

A1 þ 3H kB1 ¼ 0 (36)

F0 þ 3H kI0 ¼ 0 (37)

~g ¼ 3

2
B1

�
H 2

k þ
1

3
�

_H k

k

�
¼ 1

2k2
B1ð3E2 þ k2

�
(38)

The first two of these expressions are the combinations
that appear when we form the Poisson equation. They
indicate that the potential additive modifications propor-

tional to
_̂
� and �̂ disappear; the format of eqn. (29) is

retained. Equation (38) shows that we can only have a
modification to the effective gravitational constant if
B1 � 0, and so from Eq. (36) A1 � 0 also. Using the
third equation in Table II, C2 � 0 in this case. Hence

we are forced to include
_̂
� terms in U� and U�, and a

€̂
�

term in UP. Since �̂ contains a first-order time-derivative
already (see Eq. (15), the _U� in Eq. (11) will result in
field equations containing third-order time derivatives—a
higher-order gravitational theory.

This result is a direct consequence of choosing D1 ¼ 0
in U�. Removing this constraint changes Eq. (38) to:

~g ¼ 1

2k2
B1

�
3E

2
þ k2

�
þH kD1 (39)

which permits B1 ¼ 0, ~g � 0, as we had in § IVB.
The above findings make sense within the context of the

Lovelock-Grigore theorem [35,36], which states that under
the assumptions of four-dimensional Riemannian geome-
try and no additional fields, the Einstein-Hilbert action
(plus a cosmological constant) is the only possible action
that leads to local second-order field equations. In Eq. (27)
the presence of D1=k in U� means that this parameteri-
zation implies a nonlocal theory. This is not in itself
problematic—nonlocal theories can arise when a degree
of freedom has been integrated out, or eliminated from
the action using an integral solution of the corresponding
equation of motion. If D1 ¼ D2 ¼ K1 ¼ 0 in Eq. (35)
there are no nonlocal terms present in the gravitational
field equations, so we should not be surprised that the
Lovelock-Grigore theorem prevents us from obtaining a
second-order theory. In § VI we will meet theories which
evade the Lovelock-Grigore theorem in a number of
different ways: by introducing new d.o.f. (e.g. scalar-
tensor theory), higher-order field equations (fðRÞ gravity),
or through nonlocality and extra dimensions (DGP).

D. Cases with ‘‘XY’’ backgrounds

The previous examples have all assumed that the
background field equations are those of a Friedmann-
Robertson-Walker metric plus standard cosmological flu-
ids. We now relax this assumption and consider theories
which modify the Einstein field equations at both the
background and perturbative levels. It is well-known that
any modification to background-level field equations is
indistinguishable from the effects of a dark fluid [37];
hence we can write any background equations as the
standard FRW ones with an additional energy density and
pressure, see Eqs. (5) and (6). Wewill refer to such theories
as having ‘‘XY backgrounds’’.
Any extension to GR must preserve the property of

diffeomorphism invariance. Invariance under passive dif-
feomorphisms corresponds to the familiar principle of
general covariance. Applying a passive diffeomorphism
will generally result in field equations which look different
to those in the old co-ordinate system. In contrast, invari-
ance under active diffeomorphisms requires that the actual
form of field equations remains unchanged by a gauge
transformation. In Table III we list the gauge transforma-
tions for relevant variables. In practical terms, gauge form-
invariance means that the extra terms that appear under a
gauge transformation must cancel each other (using iden-
tities from the zero-order field equations if need be). This
places tight restrictions on our form for �U��.

TABLE II. Table of the constraint equations for the third-order
metric theory specified in § IVC. These can be generated using
the formulae in Appendix B.

Origin Constraint equation

1 [B1] �̂ _A0 þHA0 þ kB0 þHC0 ¼ 0

2 [B1]
_̂
� _A1 þHA1 þ kA0 þ kB1 þHC1 ¼ 0

3 [B1]
€̂
� kA1 þHC2 ¼ 0

4 [B1] �̂ _F0 þHF0 þ kI0 þH J0 ¼ 0

5 [B1]
_̂
� kF0 þH J1 ¼ 0

6 [B2] �̂ _B0 þ 2HB0 � 1
3 kC0 þ 2

3 kD0 ¼ 0

7 [B2]
_̂
� _B1 þ kB0 þ 2HB1 � 1

3 kC1 þ 2
3 kD1 ¼ 0

8 [B2]
€̂
� B1 � 1

3C2 þ 2
3D2 ¼ 0

9 [B2] �̂ _I0 þ 2H I0 � 1
3 kJ0 þ 2

3 kK0 ¼ 0

10 [B2]
_̂
� I0 � 1

3 J1 þ 2
3K1 ¼ 0
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To see how this happens in ordinary GR, consider the
linearly perturbed ‘‘00’’ component of the Einstein equa-
tions (that is, Eq. (19) withU� set to zero). When we apply
a gauge transformation the left-hand side acquires a term
�3HE�=a. This is cancelled by the transformation of �
on the right-hand side, provided that E ¼ EF þ ER ¼
8�Ga2

P
i�ið1þ wiÞ, i.e. provided that the zeroth-order

equations are satisfied. This is why we were only able to
use gauge-invariant potentials in �U�� in § IVA and IVB:

if we do not alter the zeroth-order equations, adding any-
thing else breaks gauge form-invariance.

Now that we wish to consider XY backgrounds
this procedure no longer works, because E �
8�G0a

2
P

i�ið1þ wiÞ. We must add a new term to U�

that will produce a part like 3
aHa2ðX þ YÞ� under a gauge

transformation. Only then will the gauge-variant parts
cancel by virtue of the zeroth-order equation.

As a toy example, consider a simple theory which
modifies the zeroth-order equations solely by introducing
time-dependence to Newton’s gravitational constant.
Following the notation of previous sections, we can write
the sum of the modified Friedmann and Raychaudhuri
equations as:

E ¼ 8�
G0

1� ~gbðaÞa
2
X
i

�ið1þ wiÞ (40)

Rewriting this in the form of ordinary GR (and hereafter
suppressing the argument of ~gb):

E ¼ 8G0a
2
X
i

�ið1þ wiÞ þ ~gbE (41)

from which we can identify a2ðXþ YÞ ¼ ~gbE (see Eqs. (5)
and (6)). A possible form for U� is then:

U� ¼ �6~gbH
�
k�̂þ 1

4
EV

�
þ A0k

2�̂ (42)

Unlike the second-order example of § IVB, U� now con-

tains a �̂ term. The offending second-order derivative of

the scale factor present in �̂ is cancelled by the term

proportional to EV. We did not have the freedom to add
such a term in the case of unmodified background equa-
tions, because V is gauge-variant.
Using Eq. (42) in Eq. (19) and the transformations given

in Table III, it can be verified that the gauge-variant parts
cancel by satisfying eqn. (40). Note that the need to have
gauge-invariant second-order equations has totally fixed
the first term in Eq. (42); all freedom resides in the
gauge-invariant part of U� via the function A0.
As a quick sanity check, one can verify that the field

equations remain second-order in the conformal
Newtonian gauge. In this gauge V ¼ _V ¼ 0, � ¼ ��

and 	 ¼ �6�, so �̂ and �̂ reduce to their familiar coun-
terparts� and� that appear in the linearly perturbed FRW

metric (recall that �̂ ¼ 1=kð _̂�þH�Þ). U� is then ex-
plicitly first-order in derivatives, resulting in second-order
equations.
U� is treated analogously to U�, and has the form:

U� ¼ 2

�
k�̂þ 1

4
EV

�
þ B0k�̂ (43)

Combining Eqs. (42) and (43), we find that the Poisson
equation has the same form as it did in the case with
unmodified background equations, Eq. (29). We define
the combination ~g ¼ �1=2ðA0 þ 3H kB0Þ as we did in
§ IVB. We will assume that the modifications to Newton’s
gravitational constant appearing in the zeroth-order and
perturbed equations are the same, i.e. ~gb ¼ ~g, noting that
we have not formally proved this to be the case.
Once we have deduced the form of U� and U�, UP and

U� can be found using the Bianchi identities Eqs. (11) and
(12). Eliminating the free function A0 in favor of ~g and B0,
these are:

HUP ¼ 3�̂

�
kH _B0 þ kB0L

2

3
k2ð _~gþH ~gÞ

�

þ 3
_̂
�

�
kHB0 þ ~g

�
E

2
þ k2

3

��

þ 6ð _~gH þ ~gLÞ
�
k�̂þ 1

4
EV

�

þ 6~gH
d

d�

�
k~�þ 1

4
EV

�
3

2
~gEV

�
k2

3
� _H

�

� 3

2
E~gH _V (44)

U� ¼ �̂

2H k

�
2kð _~gþH ~gÞ � 3B0

�
E

2
þ k2

3

��

� ~g

H
ðk~�� _̂

�Þ

where L ¼ H 2 þ _H � k2

3
: (45)

As expected, we find thatU� contains only gauge-invariant
perturbation variables. This must be the case since all other

TABLE III. Behavior of metric and fluid variables under
infinitesimal diffeomorphisms generated by the vector field

�� ¼ að��; ~ric Þ. Note that the shear � is gauge-invariant.

Metric variables Fluid variables

� ! �� _�
a � ! �� 3

a ð1þ wÞH�


 ! 
þ 1
a ½�þH c � _c � � ! �þ 1

a �

	 ! 	þ 1
a ½6H�� 2k2c � Q ! Qþ 1

a ½ _w� 3wH ð1þ wÞ��
� ! � 2

a c � ! �
V ! V þ 2

a �

Components of �G��

E� ! E� � 3
aH ðEF þ ERÞ�E� ! E� þ 1

a ðEF þ ERÞ�
EP ! EP þ 3�

a ð _ER � 2HERÞE� ! E�
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terms in Eq. (22) are gauge-invariant, so there is nothing to
cancel against.

If we express the last term in U� in terms of �̂ we find
that we can write the relationship between the two poten-

tials as �̂ ¼ slipða; kÞ ~� for this toy example. We have

already chosen our two PPF functions to be ~g and B0, so
slip is simply a particular combination of these:

slip ¼ H ð1� ~gÞ
H ð1� ~gÞ � _~gþ 3B0

2k ðE2 þ k2

3 Þ
(46)

The key result of this toy example is that (for purely metric
theories) �U�� can have a more complex form when the

background equations are not standard FRW plus standard
cosmological components (baryons, CDM, etc.) The hier-
archy of constraint equations becomes more complex due
to the nonzero X and Y terms in Eqs. (11) and (12). We
can use the principles of energy conservation, gauge-
invariance and second-order field equations as a shortcut
to the correct forms; the same results would be obtained
by solving the hierarchy of constraint equations directly.

V. THE GENERAL
PARAMETERIZATION—EXTRA FIELDS

The formalism we have developed so far is only appli-
cable to purely metric theories. Yet, as discussed in § II, the
majority of modified gravity theories introduce new de-
grees of freedom, often as additional scalar, vector or
tensor fields. It is not immediately obvious that the behav-
ior of these theories can be encapsulated by a either a
ðQ;slipÞ or ð~g; �Þ parameterization. There is a risk that

we might develop a model-independent formalism that
does not map onto most of our well-studied theories.

In § VI we will study several example cases, chosen to
be representative of common classes of modified gravity
models, and ask whether they can be expressed in the two-
function format of quasistatic PPF. Attempting to map
disparate theories onto a single framework is only plausible
if those theories share some common features. Hence,
before turning to specific examples, we wish to consider
what general statements can be made about the structure of
the field equations in theories with extra degrees of
freedom.

Let the scalar perturbations to an extra degree of free-
dom be denoted by �, e.g. if the new degree of freedom is a
scalar field � then � ¼ ��. (We have succumbed to the
common but unwise choice of terminology by referring to
‘‘scalar perturbations’’, even though the new degree of
freedom may itself be a vector or tensor field. ‘Spin-0
perturbations’ would be a better choice of terminology
[38]). If we are to obtain second-order field equations
then we know that U� and U� can only contain the
perturbations � and _�.

More generally we can introduce multiple new d.o.f. and
denote their scalar perturbations by the vector ~�, with

components �ðiÞ. The perturbed field equations in a gen-
eral gauge are awkward and rarely used; hence we will
specialize to the conformal Newtonian gauge for the
remainder of this paper. The relevant expressions for
scalar-tensor theory (§ VIA) are presented in a general
gauge in Appendix A.
In the conformal Newtonian gauge the 00-element of the

tensor �U�� can be represented as:

U� ¼ k2 ~�T
0 ~�þ k ~�T

1
_~�þ A0k

2�þ A1k _�þ F0k
2�

þ F1k _�þM0

k2
��þM1

k3
� _� (47)

where �� is the total energy density fluctuation of standard
cosmological fluids (similarly for �, 	 and � to be used
shortly). ~�0 and ~�1 denote vectors of functions with the
same dimensionality as ~�. ~�i, Ai, Fi and Mi are functions
of background quantities such as � and a; these dependen-
cies have been suppressed for clarity. Note that Eq. (47) has
the form indicated schematically in Eq. (9). The term
M1� _� represents a modification which depends on the
rate of change of the density fluctuations of ordinary
matter. Whilst formally this term is permitted to be present
in U�, we are unaware of any theory of modified gravity
that results in a perturbed 00-equation with a term like this.
Theories employing a chameleon mechanism introduce
modifications to GR that depend upon the environmental
matter density, but not upon its rate of change. We will
therefore choose M1 ¼ 0 in what follows. The �� term in
Eq. (47) can be eliminated using the relation:

8�G0a
2�� ¼ E� �U� (48)

E� can be expressed in terms of �, _� and � in the
conformal Newtonian gauge, see Eqs. (18). Rearranging
and redefining the coefficient functions, we obtain:

U� ¼ k2 ~�T
0 ~�þ k ~�T

1
_~�þ A0k

2�þ A1k _�

þ F0k
2�þ F1k _� (49)

This procedure has enabled us to eliminate energy density
fluctuations of ordinary matter from U�. If the new d.o.f.
are not coupled to ordinary matter then �� does not appear
in U� anyway. It is worth reminding the reader that in this
section we are working in the conformal Newtonian gauge,
so � and � should not be confused with their gauge-

invariant counterparts �̂ and �̂, which already contain
first- and second-order derivatives, respectively. If we
were to consider Eq. (49) in a general gauge we would

find that
_̂
� and �̂ only appear in the combination �̂. The _�

in Eq. (49) would become� _� (recall that in the conformal

Newtonian gauge �̂ � � � � 1
6� and �̂ � � � ��,

using Eqs. (15) and (16)).
We apply a similar treatment to the remaining compo-

nents of �U��. Recall that UP and U� are permitted to

contain second-order terms such as €� and €�. Terms such as

TOWARDS A FULLY CONSISTENT PARAMETRIZATION OF . . . PHYSICAL REVIEW D 84, 124018 (2011)

124018-9



_�, _	, €	, _� and €� are discarded to maintain contain
consistency with our treatment of U�; we stress again
that this is done only on an intuitive basis. The resulting
expressions for �U�� (together with Eq. (49)) are as

follows:

U�¼k ~	T
0 ~�þ ~	T

1
_~�þB0k�þB1

_�þI0k�þI1 _� (50)

UP ¼ k2 ~�T
0 ~�þ k ~�T

1
_~�þ ~�T

2
€~�þ C0k

2�þ C1k _�

þ C2
€�þ J0k

2�þ J1k _�þ J2 €� (51)

U� ¼ ~"T0 ~�þ 1

k
~"T1

_~�þ 1

k2
~"T2

€~�þD0�þD1

k
_�

þD2

k2
€�þ K0�þ K1

k
_�þ K2

k2
€� (52)

where 	i; . . . "i and Bi; . . .Ki denote functions of back-
ground quantities.

The Bianchi identities then give us two constraint equa-

tions coupling terms in �ðiÞ, �, � and their derivatives. In
contrast to the previous section we can no longer set the
coefficients of the each term to zero individually. In the
case without extra fields this was possible because all our
variables were nondynamical, so obtaining evolution equa-
tions for them would be unphysical. But now that extra
fields appear in �U��, the Bianchi identities yield equa-

tions describing how the metric variables respond to the set
of perturbations ~�. Therefore we no longer have a hier-
archy of constraint equations for the coefficients �0; . . .K2

that allow us to reduce them down to two functions. This is
not problematic in itself. To map a specific theory onto the
parameterization we can simply pull the necessary coef-
ficients out of the perturbed field equations. We will see
shortly (§ VI) that in many cases that these are relatively
simple functions.

To constrain a general parameterized theory using
Markov Chain Monte Carlo (MCMC) analysis we instead
choose some sensible ansatz for the functions �0; . . .K2.
For example, a Taylor series up to cubic order in �
 was
used in [39,40]; the MCMC then constrains the coefficients
of the terms in the Taylor series. Rigidly fixing the format
of the parameterization in this way means that we simply
have to constrain real numbers. This simplicity is a key
advantage of explicitly parameterizing for the new fields as
in Eqs. (49)–(52). The alternative approach—absorbing the
new fields into an evolving Geff and slip parameter where
possible—will giveGeff and � very complicated forms that
are difficult to parameterize (for example, see Eqs. (76) and
(96)). The trade-off is that our method requires consider-
ably more than two coefficient functions. We expect that
some of these will be well-constrained by the data, others
less so.

In the case of just one or two new d.o.f., the system
consisting of the Einstein equations, the two conservation
equations for ordinary matter and two Bianchi identities

for the U-tensor can be solved. In order to avoid a contra-
diction, the Bianchi identities for the U-tensor must be
equivalent to the equations of motion for the extra degrees
of freedom (obtained by varying the action with respect to
the extra fields or similar). Futhermore, when only a single
d.o.f. is present the solutions of the two components of the
Bianchi identity must be consistent with each other.
When more than two new d.o.f. are present the Bianchi

identities do not provide sufficient information to solve the
system, and we must supply additional relations between
the new d.o.f, metric variables and matter variables. With
our goal of an abstract, unified framework in mind, we will
introduce a general structure to tackle such cases. We make
the conjecture that one can use the ‘‘generalized dark
matter’’ (GDM) formalism developed by Hu [41] in order
to obtain the necessary closure relations. GDM is a phe-
nomenological model in which specification of three
parameters—an equation of state, a rest-frame sound speed
and a viscous sound speed—suffice to reconstruct the full
perturbed stress-energy tensor of a fluid. Cold dark matter,
radiation, massive neutrinos, WIMPs, scalar fields and a
cosmological constant can all be recovered as limiting
cases of GDM. In our case the d.o.f. parameterized as
GDM may be genuine fluid components (e.g. scalar or
vector fields), or effective fluids (e.g. the scalaron of fðRÞ
gravity, the Weyl fluid of DGP gravity—see § VI). For
example, in Eq. (49) we identify the extra d.o.f. with an
energy density perturbation:

~� T
0 ~̂�þ ~�T

1
_̂
~� ¼ 8�G0a

2�E�E (53)

where the ‘‘hat’’ symbol indicates that we have folded in
the necessary metric perturbations to make gauge-invariant
versions of � and _�. Similarly we can construct gauge-

invariant ~̂�,
_̂
~� and

€̂
~� from the terms in eqns. (50)–(52), and

identify these with velocity, pressure and anisotropic stress
perturbations, respectively. A subscript E will be used to
indicate these effective perturbations.
The GDM formalism then provides a way of reducing

these four fluid perturbations to just two, which can then be
related to the metric potentials via the perturbed conserva-
tion equations. These are [41]:

_�E ¼ �ð1þ wEÞðk2�E � 3 _�Þ þ _wE�E

1þ wE

� 3HwE�E þ ½. . .��þ ½. . .� _�þ ½. . .� €�
þ ½. . .��þ ½. . .� _�þ ½. . .� €� (54)

_�E ¼ �H ð1� 3c2adÞ�E þ c2ad�E þ wE�E

ð1þ wEÞ
� 2

3
�E þ ½. . .��þ ½. . .� _�þ ½. . .� €�

þ ½. . .��þ ½. . .� _�þ ½. . .� €� (55)
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where the square brackets denote combinations of the
functions Bi; . . .Ki. We should remember that these are

really second-order equations, due to the
_̂
~� in Eq. (53). In

Eq. (55) the pressure perturbation of the effective fluid has
been decomposed into an adiabatic and a nonadiabatic
part:

	E ¼ c2ad�E þ wE�E (56)

We have adopted common notation by using �E to repre-
sent the dimensionless nonadiabatic pressure perturbation;

this should not be confused with our metric potential �̂.
The adiabatic sound speed is fully determined by the
equation of state parameter wE:

c2ad ¼ wE � 1

3H

_wE

1þ wE

(57)

The nonadiabatic pressure perturbation is specified by
introducing a parameter c2eff , interpreted as the sound speed
of the fluid in its rest frame:

wE�E ¼ ðc2eff � c2adÞð�E þ 3H ð1þ wEÞ�EÞ (58)

A third and final parameter is needed to relate the aniso-
tropic stress, �E, to the velocity perturbations. This is the
viscosity parameter c2vis:

ð1þ wEÞð _�E þ 3H�EÞ � _wE

wE

�E ¼ 4c2visk
2�E (59)

By combining Eqs. (57)–(59) with Eqs. (54) and (55) we
can obtain two equations relating any two of the fluid
perturbations to the two metric potentials (although we

note that the presence of the _�E term in Eq. (59) might
make this step nontrivial). These expressions will contain
the three GDM parameters fwE; c

2
eff ; c

2
visg. An equivalent

three-parameter framework was studied in the context of
dark energy in [42], and constraints from current and future
data sets were investigated in [43].

We have already mentioned the degeneracy between
modifications to gravity and fluid components in the
zeroth-order field equations [37]. An explicit example of
this is presented in [44] for the case of Eddington-Born-
Infeld gravity. We stress that the effective fluids represent-
ing the extra d.o.f. at the background and perturbed levels
need not have the same properties. Indeed, it is most likely
that they will be different. If they are not, we have no way
of deciding whether dark energy is really a modification to
gravity or a dark fluid, even using observations that reflect
the rate of growth of structure [45].

As described above, for theories with two or less extra
d.o.f. the GDM prescription is not strictly needed; the
system of equations is already closed. But if we wish to
constrain modified gravity in a model-independent way we
cannot make assumptions about the number of new d.o.f.
introduced. The GDM approach allows us to obtain model-
independent closure relations at the expense of introducing

three new parameters, which would need to be constrained
in a MCMC analysis.

VI. EXAMPLES

Thus far our discussion of the PPF parameterization has
been purely formal. Studying some specific cases of gravi-
tational theories should help to consolidate the ideas out-
lined in this paper. The four examples presented here are
chosen to represent some common classes of theories of
modified gravity; a comprehensive review of many other
theories is presented in [1]. A simple scalar-tensor theory
and Einstein-Aether theory represent theories that intro-
duce additional fields to GR (scalar and vector fields,
respectively). Theories with additional tensor fields such
as Eddington-Born-Infeld gravity [44,46] and bimetric
theories [47] also belong to this broad category. fðRÞ
gravity is studied as an example of a higher-derivative
theory; Hořava-Liftschitz gravity [48–50] and Galileon
theories [51,52] also fall into this class. Our final example
is Dvali-Gabadazze-Porrati gravity (DGP) [53,54], which
we study as a representative higher-dimensional theory.
Whilst DGP itself is now disfavored by observations, it
incorporates features common to other braneworld theories
[55,56] such as Randall-Sundrum models [57,58] and cas-
cading gravity [59].
For each theory we will consider the extent to which the

gravitational field equations can be modeled by the PPF
parameterization. Is it possible to describe such a rich
variety of theories using only two functions? The usual
arena for PPF is the quasistatic limit, in which time deriva-
tives of perturbations can be neglected relative to spatial
derivatives. This is the dominant regime for measures of
the rate of structure growth, such as weak lensing and
peculiar velocity surveys. However, we are also interested
in using constraints from the Integrated Sachs-Wolfe ef-
fect, which requires consideration of scales above the
quasistatic regime. There has been much work recently
highlighting the importance of a correct relativistic treat-
ment of large scales, for both the theoretical and observed
matter power spectrum [60–63]. We will consider whether
the PPF parameterization can be extended to this regime.

A. Scalar-tensor theory

Scalar-tensor theories, first considered by Jordan, Brans
and Dicke [64], modify GR by introducing a scalar field
which couples to the Ricci scalar in the gravitational
action. The concept is closely linked to that of quintes-
sence, in which a scalar field is used a dark energy fluid-
type component but without the explicit nonminimal
coupling to the Ricci scalar. Particle physics is in no short
supply of candidate scalar fields, and the reduction of
higher-dimensional theories to effective four-dimensional
field theories also gives rise to candidate scalars (moduli).
However, finding a field with exactly the right properties to
account for dark energy has proved difficult. There is an
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obvious aesthetic appeal in connecting the scalar field with
the inflaton; however, they need not a priori be the same
field, and introducing such a connection creates further
obstacles to constructing viable models.

In general, three functions are required to specify a
scalar-tensor theory: the coupling to the Ricci scalar,
Fð�Þ, a potential for the scalar field, Uð�Þ, and a function
multiplying the kinetic term of the scalar, Zð�Þ. However,
it is possible to reduce Fð�Þ and Zð�Þ to just one function
through a field redefinition, resulting in Fð�Þ ¼ � and
Zð�Þ ¼ !ð�Þ=� [65]. The choice !ð�Þ ¼ constant is
termed a Brans-Dicke theory, which recovers GR plus a
cosmological constant in the limit ! ! 1, Uð�Þ ! 
.
Measurements from the Cassini spacecraft constrain ! *
40; 000 (2� limits) in the solar system [66].

A generic property of scalar-tensor theories is that they
result in a time-dependent gravitational ‘‘constant’’. This is
precisely one of the features of the PPF formalism (through
~g in our parameterization), which gives hope that scalar-
tensor gravity might be fully accommodated by PPF. For
simplicity we will focus on a scalar-tensor theory with
variable coupling !ð�Þ and no potential, working in the
conformal Newtonian gauge. The action in the Jordan
frame is:

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�R�!ð�Þ
�

ðr�Þ2
�

þ Sm½c ðiÞ; g��� (60)

where Sm½c ðiÞ; g��� is the matter action and c ðiÞ the matter

fields. Varying this action with respect to the metric yields
the gravitational field equations [67]:

G�� ¼ 8�G0

�
T�� þ!ð�Þ

�2

�
r��r��� 1

2
g��ðr�Þ2

�

þ 1

�
ðr�r��� g��h�Þ (61)

where h ¼ g��r�r�. G�� is the usual Einstein tensor of

GR and the scalar field has been rescaled so that it is
dimensionless, � ! �=G0. In a smooth, unperturbed
FRW universe this gives us the background equations
(c.f. Eqs. (5) and (6)):

EF ¼ 8�G0

�
a2
X
i

�i þ 1

2
!ð�Þ

_�2

�2
� 3H

_�

�
(62)

ER ¼ 8�G0

�
a2

X
Pi þ 1

2
!ð�Þ

_�2

�2
þ

€�

�
þH

_�

�
(63)

Variation of the action with respect to� gives the equation
of motion for the scalar field [67]:

h� ¼ 1

2!ð�Þ þ 3

�
8�G0a

2T
�
� � d!ð�Þ

d�
ðr�Þ2

�
(64)

Rewriting Eq. (61) in the form of Eq. (4) indicates that the
form of U�� must be:

U�� ¼ G��ð1��Þ þ!ð�Þ
�

�
r��r��� 1

2
g��ðr�Þ2

�

þr�r��� g��h� (65)

Linearly perturbing this expression (and raising an index)
will give us U�, U�, UP and U�. We obtain:

U� ¼ E�ð1��Þ þ _�½3 _�� þ�

�
6H _��!ð�Þ

_�2

�

�

þ ��

�
1

2

d!ð�Þ
d�

_�2

�
� 1

2
!ð�Þ

_�2

�2
� k2 � 3H 2

�

þ _��

�
�3H þ!ð�Þ

_�

�

�
(66)

U� ¼E�ð1��Þþ��

�
!ð�Þ

_�

�
�H

�
þ _��þ�½� _��

(67)

UP ¼ EPð1��Þ þ _�½�6 _��

þ�

�
�6 €�� 6H _�� 3!ð�Þ

_�2

�

�
þ _�½�3 _��

þ ��

�
� 3

2
!ð�Þ

_�2

�2
þ 3

2

d!ð�Þ
d�

_�2

�
þ 3H 2

þ 6 _H þ 2k2
�
þ _��

�
3H þ 3!ð�Þ

_�

�

�
þ 3 €��

(68)

U� ¼ E�ð1��Þ þ �� (69)

Specializing to the conformal Newtonian gauge (in which
V ¼ 0) means that we lose the time derivatives in Eqs. (15)
and (16). Hence the appearance of � in U� and U� above
gives us no cause for concern; the Bianchi identities will
remain second-order equations. If we had kept to a general
gauge additional terms in V, 
 and � would be present in

the above expressions, ensuring that �̂ only appeared

within the combination
_̂
�þH �̂ and that any €a=a terms

cancel. The (lengthy) corresponding expressions for a
general gauge are displayed in Appendix A. There we
also demonstrate that the general-gauge expressions still
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obey the constraints of yielding second-order, gauge-
invariant perturbed field equations.

We can see that Eq. (66) has the form indicated in
Eq. (49); in this particular case we can pick out the
coefficient functions:

A0 ¼ �2ð1��Þ A1 ¼ 3 _�

k
� 6H kð1��Þ

F0 ¼ �6H 2
kð1��Þ þ 6

H k

k
_��!ð�Þ

k2

_�2

�
F1 ¼ 0

�0 ¼ 1

2k2
d!ð�Þ
d�

_�2

�
� 1

2k2
!ð�Þ

_�2

�2
� 1� 3H 2

k

�1 ¼ �3H k þ!ð�Þ
k

_�

�
(70)

Similarly one can read off the coefficients 	i; . . . "i
and Bi; . . .Ki for scalar-tensor theory by matching
Eqs. (50)–(52) with Eqs. (67)–(69).

Using the expressions for U� and U� in Eqs. (8) we can
form the modified (Fourier-space) Poisson equation. Some

of the terms in �� and � _� can be combined to form the
gauge-invariant density perturbation of a scalar field:

���� ¼ ��� þ 3H ð�� þ P�Þ��
¼ _�ð� _�� _��þ 3H��Þ (71)

The Poisson equation for scalar-tensor gravity is then:

�2k2� ¼ 8�G0a
2

�

�X
i

�i�i þ ��

!ð�Þ
�

��

�

þ 3
_�

�
½ _�þH�� � ��

�

�
k2 þ 6H 2

þ 1

2

_�2

�

�
!ð�Þ
�

� d!ð�Þ
d�

��
(72)

�i is a gauge-invariant density perturbation to matter
(CDM, baryons, radiation), and we have redefined the
scalar field so as to pull a factor of 8�G0a

2 out of the
second term. We have chosen to write the Poisson equation
in this form because it delineates the extra terms that arise
in a scalar-tensor theory compared to uncoupled quintes-
sence. We reach a quintessencelike limit by setting
!ð�Þ ¼ � and removing the �-R coupling in the action.
As a result, the last two lines of Eq. (72) do not arise and
the prefactor is just 8�G0a

2 (because we do not rescale
� ! �=G0). It is the last two lines that offer the distinction
between quintessence and scalar-tensor gravity. The slip
relation is:

��� ¼ ��

�
(73)

It is useful to consider some simplifying limits of the
above expressions. The ‘‘smooth’’ limit, in which the
perturbations of the scalar field are negligible relative to
the matter perturbations, gives us:

� 2k2� ¼ 8�
G0

�
a2
X
i

�i�i þ 3
_�

�
½ _�þH�� (74)

The second term on the right-hand side cannot be absorbed
into the first term without giving Geff an undesired envi-
ronmental dependence.
However, if we take the quasistatic limit of Eq. (72)—

that is, we neglect time derivatives of perturbation varia-
bles and take k � H—we find that the modifications to
the Poisson equation can indeed be repackaged as a modi-
fied gravitational constant. In this limit it is possible to
write the relation between the two metric potentials as
� ¼ slip�; e.g. for the choice !ð�Þ ¼ � the form of

slip is particularly simple [68,69]:

slip ¼ �þ 1

�
(75)

Combining Eqs. (72) and (73) with the slip relation, we
obtain:

�k2�¼8�
G0

�
a2
�X

i

�i�iþ!ð�Þ
�

����

��
1þ 1

slip

�
�
1� 1

slip

� _�2

2k2�

�
!ð�Þ
�

�d!ð�Þ
d�

�
þ 3H
k2slip

_�

�

��1

(76)

where the expression in square brackets gives the time-
and scale-dependence of Newton’s gravitational constant.
As mentioned earlier, it is important that we also con-

sider the (super)horizon-scale limit of these theories for
correct treatment of their predicted effects on the matter
power spectrum and large-angle CMB power spectrum.
Taking the limit k � H allows us to neglect the
k2��=� term of Eq. (72), but there are no other obvious
simplifications unless �� is negligible on these scales. It
seems that in order to cope with the superhorizon limit we
need a parameterization that allows for additive modifica-
tions to the Poisson equation, as well as a modifiedGeff . Of
course, there is no barrier to using the standard PPF format
to model part of the modifications, but we need to remem-
ber that the correspondence between parameterization and
theory would no longer be exact on large scales.

B. fðRÞ gravity
Another commonly-studied theory is fðRÞ gravity, for

which the action is a general function of the Ricci scalar,
fðRÞ; see [70] for a detailed review. Two approaches to
fðRÞ gravity are possible. In the metric formulation the
affine connection �

�
�� is defined in terms of the metric

components in the usual way, and gravitational field

TOWARDS A FULLY CONSISTENT PARAMETRIZATION OF . . . PHYSICAL REVIEW D 84, 124018 (2011)

124018-13



equations are obtained by varying the metric with respect
to g�� only. In the Palatini formulation of fðRÞ gravity
the connection and the metric are treated as independent
variables and the action is varied with respect them
individually. One finds that in the metric formulation
there is a propagating scalar degree of freedom fR ¼
@fðRÞ=@R. Since the Ricci scalar is constructed from
second derivatives of the metric, the kinetic term of the
scalar degree of freedom contains fourth-order derivatives
and hence metric fðRÞ gravity corresponds to a higher-
order theory.

The presence of a scalar degree of freedom within fðRÞ
theories can be made explicit by applying a conformal
transformation that maps fðRÞ gravity onto a scalar-tensor
theory. Metric and Palatini fðRÞ gravity map onto Brans-
Dicke theories with ! ¼ 0, � 3

2 respectively [70]. The

scalar field arising under the conformal transformation
is sometimes referred to as the ‘‘scalaron’’. In the
conformally-transformed frame (the Einstein frame) the

scalaron acquires a coupling to the matter fields c ðiÞ,
leading to nonstandard conservation equations. Hence the
nontransformed frame (the Jordan frame) is regarded as the
physical frame in which observations are made.

The action in the Jordan frame is;

S ¼ 1

16�G0

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Sm½c ðiÞ; g��� (77)

Variation with respect to the metric leads to the field
equations:

fRR�� � 1

2
fðRÞg�� �rurvfR þ g��hfR ¼ 8�a2G0T��

(78)

This can be rewritten in the form of Eq. (4) with the
following expression for U��:

U��¼R��ð1�fRÞ�1

2
g��ðR�fðRÞÞþrurvfR�g��hfR

(79)

We will let � denote the perturbation to the extra degree of
freedom, ie. � ¼ �ðfRÞ ¼ fRR�R. Perturbing the above
expression

U� ¼ E�ð1� fRÞ þ _�½3 _fR� þ�½6H _fR�
þ �½3 _H � k2� þ _�½�3H � (80)

U� ¼ E�ð1� fRÞ þ �½�H � þ _�þ�½� _fR� (81)

UP ¼ EPð1� fRÞ þ _�½�6 _fR� þ�½�6 €fR � 6H _fR�
(82)

þ _�½�3 _fR� þ �½�3 _H � 6H 2 þ 2k2� þ _�½3H �
þ 3 €�U� ¼ E�ð1� fRÞ þ � (83)

The similarity between the sets of Eqs. (66)–(69) is imme-
diately apparent, suggesting the identification of fR as the
scalaron. However, in fðRÞ gravity the ‘‘extra’’ d.o.f,�, can
be expressed in terms of metric potentials. _� and €� are
given by the expressions:

_� ¼ f3R _R�Rþ fRR
_ð�RÞ (84)

€� ¼ �Rðf4R _R2 þ f3R €RÞ þ 2f3R _R _ð�RÞþfRR
€ð�RÞ (85)

where f4R indicates the fourth derivative of f with respect
to R etc., and

a2�R ¼ �4k2�� 18H _�� 6 €�

� 2ð6 _H þ 6H 2 � k2Þ�� 6H _� (86)

a2ð _�RÞ ¼ �2a2H�R� _�ð4k2 þ 18 _H Þ � 18H €�

� 6�ð3Þ � 12�ð €H þ 2H _H Þ
� _�ð18 _H þ 12H 2 � 2k2Þ � 6H €� (87)

a2ð €�RÞ ¼ ��Ra2ð2 _H þ 4H 2Þ � 4a2H ð _�RÞ
� 18 €H _�� €�ð36 _H þ 4k2Þ � 18H�ð3Þ

� 6�ð4Þ � 12�ðH ð3Þ þ 2 _H 2 þ 2H €H Þ
� _�ð30 €H þ 48 _HH Þ
� €�ð24 _H þ 12H 2 � 2k2Þ � 6H�ð3Þ (88)

The coefficients corresponding to the general expres-
sions in § V can be computed. For example, matching
onto Eq. (49):
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A0 ¼ �2ð1� fRÞ � 4
fRR
a2

ð3 _H � k2 þ 6H 2Þ þ 12H
f3R
a2

_R

A1 ¼ �6H kð1� fRÞ þ 3
_fR
k
þ 6

fRRH k

a2
ð5k2 � 18H 2Þ þ 54

f3R
ka2

H 2 _R

A2 ¼ 6
fRR
a2

ðk2 þ 3H 2 � 3 _H Þ þ 18
f3R
a2

H _R A3 ¼ 18k
fRR
a2

H

F0 ¼ �6H 2
kð1� fRÞ þ 6

H k

k
_fR þ 6

fRR
a2

�
�12H 2H 2

k � 6H 2
k
_H � 6 _H 2

k þ 6H k
€H k þ 4H 2 þ 3 _H � k2

3

�

þ 6
f3R
a2

H _R

�
6H 2

k þ 6
_H k

k
� 1

�

F1 ¼ 18
H k

a2
ð2fRR _H þ f3RH _RÞ F2 ¼ 18H 2 fRR

a2
�ðiÞ
0 ¼ �ðiÞ

1 ¼ �ðiÞ
2 ¼ �ðiÞ

3 ¼ 0 (89)

The slip relation and modified Poisson equation for fðRÞ
gravity become:

��� ¼ �

fR
(90)

�2k2� ¼ 8�
G0

fR
a2
X
i

�i�i þ 3
_fR
fR

½ _�þH��

� �

fR

�
3

2
Eþ k2

�
(91)

Again we see that these expressions are largely similar to
the scalar-tensor case with !ð�Þ ¼ 0, fR replacing � and
� � ��. However, we note that the similarities are aes-
thetic only; the equivalence between scalar-tensor theory
and fðRÞ gravity is only formally realized under a confor-
mal transformation as described above. �� represents a
perturbation to a new field that is genuinely additional to
GR, whereas � is really a placeholder for the combination
of metric perturbations in Eq. (86).

In the ‘‘smooth’’ limit � ! 0 we obtain the analogy of
Eq. (74):

� 2k2� ¼ 8�
G0

fR
a2
X
i

�i�i þ 3
_fR
fR

½ _�þH�� (92)

with the same second background-dependent term as the
scalar-tensor case.

For measures of late-time structure growth we are pre-
dominantly interested in the quasistatic regime. Using
� ¼ fRR�R and Eq. (86) we can replace � in the Poisson
equation and slip relation by sequence of the metric
potentials and their derivatives, just as we laid out in
Eqs. (23)–(26). For example, in the quasistatic limit the
slip relation becomes:

��� ¼ fRR
fRa

2
ð2ð�6 _H þ k2Þ�� 4k2�Þ (93)

This matches the result of Pogosian & Silvestri [71] if we

further neglect the _H term. They expressed the slip
parameter of fðRÞ gravity in the quasistatic limit as:

slip ¼ 3þ 2Q

3þ 4Q
(94)

where Q is defined as the squared ratio of the Compton
wavelength of the scalaron to the physical wavelength of
a mode:

Q ¼ 3
k2

a2
fRR
fR

�
�
�C

�

�
2

(95)

In this limit the Poisson equation can be rewritten as:

�k2� ¼ 8�
G0

fR
a2
X
i

�i�i

�
1þ 1

slip

�
1þ 3

_fR
fR

H
k2

�

� 3

2

E

k2

�
1� 1

slip

���1
(96)

The term in square brackets controls the time- and scale-
dependence of the effective Newton’s constant.
It is no surprise to find that fðRÞ gravity behaves similar

to scalar-tensor theory in the superhorizon limit. We can
neglect k2 in eqn. (91) and eliminate � using Eq. (90), but

the resulting expression will still have terms in� and _� on
the right-hand side that can not be written as a Geff . The
conclusion is analogous to that of § VIA: the mapping
between a ðGeff ; slipÞ parameterization is exact in the

quasistatic limit, but only approximate in the large-scale
regime.

C. Einstein-Aether theory

The emergence of string theory as a candidate theory of
quantum gravity leads to the possibility that spacetime
coordinates are noncommutative [72]. Under these circum-
stances Lorentz symmetry may be violated. Hence much
effort has been invested in exploring ways in which
Lorentz violation can be implemented without marring
the key successful features of GR, such as general covari-
ance. A minimal way to do this is to introduce a vector field
into the action, which defines a preferred reference frame
at every point in spacetime. In Minkowski spacetime one
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can simply introduce a constant vector field into the back-
ground, but in a curved spacetime this is not possible; the
Lorentz-violating vector field must be promoted to a dy-
namical field derived from a generally covariant action. If
invariance under three-dimensional spatial rotations is pre-
served then the vector field must be timelike. Einstein-
Aether theories [73] introduce such a vector field (‘‘the
aether’’) of unit length, which is constrained not to vanish
so that Lorentz violation is maintained even in a vacuum.
The unit, timelike nature of the vector field is enforced
through means of a Lagrange multiplier in the action.

TeVeS [74] is a well-known example of another theory
that contains Lorentz-violating vector fields. When formu-
lated in the Einstein frame, TeVeS introduces both a unit,
timelike vector field and a scalar field, and employs a free
function to ensure that it reduces to Modified Newtonian
Dynamics (MOND) [75] in the nonrelativisitc limit. Upon
transformation to the Jordan frame—in which particles
follow geodesics of the metric—the unit length of the
vector field is not preserved. It was shown by Zlosnik
[76] that the scalar field present in the Einstein frame is
absorbed by the vector field in the Jordan frame, and
dynamically determinines the modulus of the vector.
Hence TeVeS is equivalent to an Einstein-Aether theory
in which the aether field has variable length. Our study of
the compatibility of Einstein-Aether theory with the PPF
framework therefore has implications for TeVeS also.

The most general action for Einstein-Aether theories is:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½RþLEAðg��; A�Þ� þ Sm½c ðiÞ; g���

(97)

where the aether Lagrangian is

L EAðg��; A�Þ ¼ M2F ðKÞ þ �ðA�A� þ 1Þ (98)

M has the dimensions of mass. K is a scalar formed from
the kinetic term of the vector field:

K ¼ M�2K�	
��r�A

�r	A
�

K�	
�� ¼ c1g

�	g�� þ c2�
�
��

	
� þ c3�

�
��

	
�

(99)

where ci are dimensionless constants. Barbero &
Villaseñor [77] have identified special choices of ci for
which Einstein-Aether theory becomes equivalent to GR
under a field redefinition. More generally, the ci must obey
certain restrictions if the linearized field equations are to be
hyperbolic—hence admitting a well-posed initial value
problem—and exclude superluminal propagation of aether
perturbations and gravitational waves [78]. In general there
is potentially a fourth term in Eq. (99), but in the case of
purely spin-0 perturbations this can be absorbed by suitable
redefinitions of c1 and c3. We will assume there is no direct
coupling between matter and the aether; they interact only
gravitationally.

The gravitational field equations obtained by varying the
Einstein-Aether action with respect to the metric can be
written in the form of Eq. (4), where the modification
tensor U�� is effectively the stress-energy tensor of the

aether:

U�� ¼ r�ðF KðJð��A�ÞÞ � J�ð�A�Þ � Jð��ÞA�ÞÞ

�F KY�� þ 1

2
g��F þ �A�A� (100)

where round brackets around subscripts denotes symmet-
rization with weight 1=2. We use the notation F K ¼
dF =dK, and the following definitions:

J�� ¼ K�	
��r	A

� (101)

Y�� ¼ c1ðr�A�r�A� �r�A
�r�A�Þ (102)

Varying the action with respect to the aether field gives the
equation of motion:

r�ðF KJ
�
�Þ ¼ 2�A� (103)

Finally, varying the action with respect to the Lagrange
multiplier � gives the constraint A�A� ¼ �1. The require-

ment of a spatially isotropic background fixes A� ¼
ð1; 0; 0; 0Þ. Using this in Eq. (103) enables us to solve for
the Lagrange multiplier:

� ¼ � 1

2
A�r�ðF KJ

�
�Þ (104)

which can be substituted back into Eq. (100) to eliminate
�. Defining � ¼ c1 þ 3c2 þ c3, the resulting zeroth-order
field equations are:

½1�F K��H 2 þ 1

6
FM2a2 ¼ 8�G0a

2

3

X
i

�i (105)

� ½1� 2�F K�H 2 � 2 _H
�
1� 1

2
�F K

�

þ
�
_F K � 1

2

�
FM2 ¼ 8�G0a

2
X
i

Pi (106)

r�A
� ¼ 3H (107)

and the kinetic scalar K simplifies to

K ¼ 3�
H 2

M2
(108)

The first two equations above can be written in the form of
Eqs. (5) and (6) with the identifications

a2X ¼ 3F K�H 2 � 1

2
a2FM2 (109)

a2Y ¼ �2F K�H 2 þ 1

2
a2FM2 � �ðF KH Þ_ (110)
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For simplicity we will treat only the linear Einstein-
Aether theory, in which F ðKÞ ¼ K. In this particular
instance Eqs. (105) and (106) can alternatively be rewritten
(making use of Eq. (108) such that they differ from the
equivalent expressions in GR only through a modification
to Newton’s gravitational constant:

G0 ! G0

1� �
2

(111)

The situation in Einstein-Aether theory is similar to the toy
model we considered in § IVD, with the instance ~g ¼ �=2.
We therefore expect the perturbations of U�� to look

similar to Eqs. (42)–(45). However, we have now intro-
duced an extra field into the theory that was not present in
the toy model, and this will give rise to new terms. Recall
that when we applied a gauge transformation to Eq. (42)
any terms produced by gauge-variant quantities cancelled
due to the background Eq. (40). From this we can deduce
that any new terms introduced by the vector field must be
explicitly gauge-invariant.

Now we wish to consider linearly perturbed Einstein-
Aether theory; we write the perturbations to the vector field
as

A� ¼
�
1þ Z;

1

a
@iQ

�
(112)

Taking the linear perturbation of the constraint
A�A� ¼ �1 we find that the perturbation to the 0th

component of the vector field is tied to the metric per-
turbations by Z ¼ � ¼ ��, the last equality being true
in the conformal Newtonian gauge only. The perturbed
equation of motion for the vector field is:

c1ð €Qþ k2Qþ 2H _Qþ 2H 2Qþ _�þ _�þ 2H�Þ
þ ð3c2 þ c3Þ

�
k2Qþ 2H 2Q� €a

a
þ _�þH�

�
¼ 0

(113)

One can then find the linear perturbations of U��. This is

a lengthy but straightforward exercise [78,79]. Using
Eq. (113) to remove second-order derivatives from U�,
the results are:

U� ¼ ðc1 � �Þk2HQþ c1k
2ð _Qþ�Þ

� 3�H ½ _�þH�� (114)

U� ¼ �½ _�þH�� þ ðc1 þ c2 þ c3Þk2Q (115)

UP ¼ �k2ð _Qþ 2HQÞ þ 3�ð €�þ 2H _�

þ ð2 _H þH 2Þ�þH _�Þ (116)

U� ¼ �ðc1 þ c3Þð _Qþ 2HQÞ (117)

It is straightforward to read off the coefficients intro-
duced in Eq. (49):

A1 ¼ �3�H k F0 ¼ c1 � 3�H 2
k

�0 ¼ H ðc1 � �Þ �1 ¼ c1k A0 ¼ F1 ¼ 0

(118)

and similarly for the remaining coefficients 	i; . . . "i
and Bi; . . .Ki of Eqs. (50)–(52). Note from Eq. (113)
that the d.o.f. �ð� QÞ is not dimensionless, so neither
are �0 and �1.
The Poisson equation in Einstein-Aether theory is:

�2k2� ¼ 8�G0a
2
X
i

�i�i þ k2ðHQð3c1 þ 2c3Þ

þ c1ð _Qþ�ÞÞ (119)

Consideration of some special cases of the ci should help
us gain some understanding of this expression. Firstly we
note that the slip between the metric potentials is sourced
by spatial perturbations to the vector field, so in the smooth
limit we recover� ¼ �. In this limit the only modification
to the Poisson equation is through a constant rescaling of
Newton’s constant:

� 2k2� ¼ 8�
G0

1þ c1
2

a2
X
i

�i�i (120)

With Q ¼ 0 all explicit traces of extra fields disappear
from the components of U�� (though we ought to remem-

ber that the perturbation to the time component of the
vector field still remains, ‘‘disguised’’ as the metric per-
turbation �). We note immediately that the constants
renormalizing Newton’s gravitational constant in the back-
ground and linear-order equations are not generally the
same, being � and�c1 respectively. If we make the choice
� ¼ �c1, this special case of Einstein-Aether theory can
be compared to the toy model considered in § IVD. In that
example the background gravitational field equations were
modified but no extra fields were present, and we assumed
that the same quantity renormalized G at both unperturbed
and linearly perturbed order. Indeed we find that with the
choices _~g ¼ B0 ¼ 0, � ¼ �c1 and V ¼ _V ¼ 0 (to recover
the conformal Newtonian gauge) the Eqs. (42) and (43)
reproduce Eqs. (114)–(117) in the limit Q ¼ 0.
Another case of interest is the choice c1 þ c3 ¼ 0,

c2 ¼ 0. This causes the first part of the stress-energy
tensor of the aether (line 1 in Eq. (100)) to adopt a
form akin to the Maxwell tensor of electromagnetism
[80]. Under these conditions the gravitational slip again
vanishes. Note that this differs from scalar-tensor and
fðRÞ gravity, where the slip could only be zero if the
extra fields (treating the scalaron as an extra field) were
unperturbed. The Poisson equation now becomes:
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� 2k2� ¼ 8�
G0

1þ c1
2

a2
X
i

�i�i � k2c1
1þ c1

2

ð _QþHQÞ

(121)

In the quasistatic limit the _Q term can be neglected.
However, the ‘‘electromagnetic condition’’ has prevented
us from obtaining a relation between Q, � and �. So in
this special case we are unable to package the modifica-
tions to the Poisson equation as a modified Newton’s
constant, even in the quasistatic regime. This is an inter-
esting result, because thus far we have always found this
to be possible. Indeed, for choices other than c1 ¼ �c3
we can write the slip relation in the usual format � ¼
slip�, with slip parameter:

slip ¼ 1� 4
H 2

k2
c1 þ c3

c1 þ c2 þ c3

�
1� �

2

�
(122)

The Poisson equation is then:

�2k2� ¼ 8�G0a
2
X
i

�i�i

�
1þ c1

2slip

� 3c1 þ 2c3
4ðc1 þ c3Þ

�
1� 1

slip

���1
(123)

As before, the term in square brackets acts like an evolv-
ing Geff .

Whilst Einstein-Aether gravity has a similar quasistatic
form to scalar-tensor gravity and fðRÞ gravity, its large-
scale behavior is distinctly different. In the limit k ! 0
Eq. (119) reduces to the standard Poisson equation of GR.

This is partly due to the absence of a term like Qð _�þ
H�Þ, such as occurred in the scalar-tensor and fðRÞ
cases. Terms like this originate from couplings between
new degrees of freedom and the curvature scalar R in
the action. A direct coupling of this type is not present
in the Einstein-Aether case—instead, the coupling be-
tween the aether and the metric is enforced through a
Lagrange multiplier. However, it is not true that
Einstein-Aether theory reduces to GR in the superhor-
izon regime, because the slip relation still has a non-GR
form (Eq. (117)).

D. DGP gravity

Dvali-Gabadadze-Porrati (DGP) gravity [53] has re-
ceived much attention over the past decade. The model
considers our (3þ 1)-dimensional spacetime to be a hy-
persurface (brane) embedded in a five-dimensional bulk,
with matter fields confined to the brane but gravity free to
propagate into the extra dimension. There are two branches
to the theory, arising from a choice of sign accompanying a
square root in the Friedmann equation [55]:

H2 � 
H

rc
¼ 8�G

3

X
i

�i (124)

where 
 ¼ �1. Note that we have returned to using physi-
cal time rather than conformal time here in order to make
the late-time behavior more explicit. The parameter rc in
this expression defines a crossover scale below which
gravity is effectively four-dimensional, but above which
five-dimensional effects become important. It is deter-
mined by the ratio of the four- and five-dimensional gravi-
tational coupling constants:

rc ¼ �2
5

2�2
4

(125)

In a CDM-dominated universe we have H ! 
=rc at
asymptotically late times. The choice 
 ¼ 1 corresponds
to a universe that accelerates without the need for a cos-
mological constant, although the crossover scale must still
be fine-tuned to fit current supernovae data, with rc � H�1

0

[55]. Alas, the self-accelerating branch of DGP has been
effectively ruled out as a viable theory due to a ghostlike
instability [81–83], and its failure to fit multiple observa-
tional data sets simultaneously—a feat achieved by
CDM
[84]. Nevertheless, we propose to describe the relations
between DGP gravity and the PPF formalism as a typical
model for cosmological perturbations in higher-
dimensional theories.
We will adopt the Gaussian Normal longitudinal (GNL)

gauge, in which the brane remains unperturbed at the
hypersurface y ¼ 0 and we recover the familiar 4D con-
formal Newtonian gauge on the brane only. The action for
a simple DGP model is:

S ¼ 1

2�2
5

Z
d5X

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð5Þg

q
½ð5ÞR� 2
5�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q �
1

2�2
4

ð4ÞRþLB

�
(126)

where ð5Þg and ð5ÞR are the five-dimensional metric and
curvature scalar of the bulk; XA and x� denote five-
dimensional and brane coordinates, respectively. LB is
the Lagrangian of the (brane-confined) matter fields and
possible brane tension �, which is related to the 5D and
induced 4D cosmological constants [85].
It will be useful to write the modifications to the

Friedmann and Raychaudhuri equations in the form of an
‘‘XY’’ background, as specified in Eqs. (5) and (6) [1]:

X ¼ 3


rc
H Y ¼ �


ðdHdt þ 3H2Þ
rcH

(127)

where t denotes physical time. Effective 4D field equations
are obtained by projecting onto the brane [86]:

ð4ÞG�� þ
4g�� ¼ �4
5	�� � E�� (128)

Here g�� is the induced metric on the brane. The tensor

	�� (not to be confused with the scalar pressure perturba-

tion �	) is given by:
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	��¼�1

4
~T��

~T�
� þ 1

12
~T ~T��þ1

8
g��

~T�	
~T�	� 1

24
g��

~T2

(129)

where

~T �� ¼ T�� � 1

�2
4

G�� (130)

E�� is the projection of the 5DWeyl tensor onto the brane:

E�� ¼ ð5ÞCA
BCDnAn

CgB�g
D
� (131)

By supplementing the Bianchi identities with the Codazzi
equation and Israel junction conditions [87] one finds that
the matter energy-momentum tensor is separately con-
served from 	�� and E�� [86]:

r�T�� ¼ 0 (132)

r�E�� ¼ �4
5r�	�� (133)

where r� is the covariant derivative associated with the
induced 4D metric on the brane.

Comparison of Eqs. (4) and (128) enables us to straight-
forwardly write down the tensor U�� for DGP gravity:

U�� ¼ �
4g�� þ �4
5	�� � E�� � �2

4T�� (134)

Now the key question is: are we able to perturb this
expression for U�� to obtain U�, U�, UP and U� in the

same way that we have done for scalar-tensor gravity, fðRÞ
theories and Einstein-Aether theory (§ VIA, VIB, and
VIC)? The answer is a qualified yes and no. We are able
to write down expressions for these quantities and deter-
mine the coefficients laid out in § V. However, the per-
turbed components of U�� contain four new d.o.f. arising

from the perturbations to the projectedWeyl tensor. Hence,
unlike the previous three examples presented in this sec-
tion, the system is not closed using just the Bianchi iden-
tities. We cannot obtain the closure relations needed to
solve for these new d.o.f. using the purely 4D formalism
developed in this paper.

Let us elaborate. We will label quantities related to the
Weyl tensor by the letter E, as we shall see it plays the role
of the effective fluid discussed in § V. Since the Weyl
tensor is traceless by construction (and we are assuming
isotropy amongst the three spatial dimensions of the brane)
we deduce that the Weyl ‘‘fluid’’ must have a radiationlike
equation of state, wE ¼ 1=3. It is common practice to
neglect the small contribution of the Weyl fluid to the
cosmological background, and define its components at
the perturbed level:

�E0
0 ¼ �E � E0

i ¼ ~ri�E

Ei
j ¼

1

3
�E�

i
j þDi

j�E

(135)

The perturbations of Eq. (134) are then:

U� ¼ 1

6
�4
5a

2 ~�2 ~�� a2�E � �2
4a

2��

U� ¼ 1

6
�4
5a

2 ~�ð~�þ ~PÞ~�� a2�� �2
4a

2ð�þ PÞ�

UP ¼ 1

2
�4
5a

2½ð~�þ ~PÞ~� ~�þ~�2 ~	� � a2�E � 3�2
4a

2�	

U� ¼ � 1

12
�4
5a

2ð~�þ 3 ~PÞð~�þ ~PÞ~�� a2�E

� �2
4a

2ð�þ PÞ� (136)

The quantities marked by tildes are components of ~T��

defined in Eq. (130), and the unsubscripted quantities refer
to ordinary matter components, as in previous sections. By
using Eqs. (4) and (130) we can rewrite the above expres-
sions as:

U� ¼ 3

2r2cX
ðE� þ a2�EÞ U� ¼ 3

2r2cX
ðE� þ a2�EÞ

UP ¼ 3

2r2cX

�
EP � 1

2
a2�E

� Xr2c
2Xr2c � 3

ð1þ wEÞðE� �U� þ a2�EÞ
�

U� ¼ � 3

r2cðX þ 3YÞ ðE� þ a2�EÞ (137)

Well below the crossover scale we recover GR, as Ui ! 0
if rc ! 1. Using the definitions for the Ei, we can then put
the above expressions into the form of Eqs. (49)–(52). For
the U� component the nonzero coefficients are:

A0 ¼ � 3

r2cX
A1 ¼ � 9H k

r2cX

F0 ¼ � 9H 2
k

r2cX
�ð1Þ
0 ¼ 3a2

2r2cX

(138)

where we have dropped the factor of k2 in the first term of

Eq. (49) in order to keep �ð1Þ
0 dimensionless. Unlike the

previous examples, we now have a vector of three extra
d.o.f.: ~� ¼ f�E;�E; �Eg.
The two perturbed components of Eq. (133) are [1]:

_�E þ 4H�E �r2�E ¼ 0 (139)

_�Eþ4H�E�1

3
�Eþð1þwEÞ

�
�Eþ3

H
a

�E

�

þ r2

1þ3wE

�
4

3
�Eþ2ð1þwEÞ

a2
½ð2þ3wEÞ���Þ�

�
¼0

(140)

Now the difficulty is apparent—we have two equations for
the three variables�E,�E and �E. We could eliminate�E

or �E from the above equations, but the anisotropic stress
of theWeyl fluid remains a free function. If we stay entirely
within the bounds of a 4D formalism it must be treated as
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an additional source in the 4D effective Einstein equations.
Some authors have obtained a closed system on the brane
by setting �E to zero, e.g. [88], but this will not be the case
is general.

It is not surprising that �E appears as a free function in
the perturbed effective Einstein equations. Gravitational
waves propagating in the bulk spacetime contribute to
�E when they impinge upon the brane, and these cannot
be fully described by brane-bound perturbations. However,
by tackling the full system of perturbations in the bulk it is
possible to express the impact of the gravitational waves
on the brane in terms of other brane-bound quantities.
Mukohyama [89] has shown that all 5D metric, matter
and Weyl-fluid perturbations can be related to a master
variable � which obeys a partial differential equation in
the bulk. This is the master equation [54]:

@

@t

�
1

na3
@�

@t

�
� @i@i

a2

�
n�

a3

�
�

�
n�0

a3

�0 ¼ 0 (141)

where primes denote derivatives with respect to the bulk
co-ordinate y, and we have assumed a Minkowski bulk.
The perturbations of the Weyl fluid are given in terms of
� by [54]:

�E ¼ � k4

3a5
�

��������b
(142)

�E ¼ k2

3a4

�
@�

@t
�H�

���������b
(143)

�E ¼ � 1

6a3

�
3
@2�

@t2
� 3H

@�

@t
þ k2

a2
�� 3

H

dH

dt
�0

���������b

(144)

where a subscript b denotes evaluation on the brane and k
is the 3-momentum on the homogeneous background.
Equations (141) and (144) are the expressions we need
to close the system of perturbations. We have introduced
an extra variable, �, but this has been compensated for by
the addition of two new equations. A solution of the
master equation is then sufficient to fully determine the
system of perturbations. The fact that all perturbations
can be related to a single scalar is a result of the high
degree of symmetry present in this system (a maximally
symmetric brane in a maximally symmetric bulk); � is
not generally believed to have a physical interpretation.

But we are not quite out of the woods yet. Though the
system of equations is now closed, it is not closed on the
brane alone. Equations (141) and (144) depend on deriva-
tives of the master variable normal to the brane, and hence
in general knowledge of the bulk perturbations will be
required to solve the system. Koyama & Maartens [90]
neatly sidestepped this issue by considering perturbations
in the small-scale, quasistatic regime of a Minkowski
bulk. This enabled them to make the approximation

jH�0j � k2�=a2 so that the troublesome terms can be
neglected, as well as time derivatives. Under these as-
sumptions one finds that the energy density and aniso-
tropic stress perturbations of the Weyl fluid are simply
related by �E ¼ 2k2�E. In the quasistatic regime the
master equation then has an analytic solution [90]:

� ¼ Cð1þHyÞ�ðk=aHÞ (145)

where C is a constant, and regularity of the bulk pertur-
bations has been used to eliminate a second possible
solution. Solving for the Weyl-fluid and metric perturba-
tions, the modified Poisson equation and slip relation are:

� 2k2� ¼ 8�G0a
2
X
i

�i�i

�
1� 1

3	

�
(146)

k2ð���Þ ¼ 8�
G0

3	
a2
X
i

�i�i

where 	 ¼ 1� 2rcH

�
1þ 1

3H2

dH

dt

� (147)

It is easy to see that our PPF function ~g should be identified
with ð1� 3	Þ�1. Combining Eqs. (146) and (147) to
eliminate matter terms, we obtain:

��� ¼ 2

1� 3	
� (148)

From this we can deduce the PPF function � ¼ 2=ð1�
3	Þ. Alternatively, in the ðQ;slipÞ format we obtain:

Q ¼ ð1� 1
3	Þ; slip ¼ ð3	� 1Þð3	þ 1Þ�1.

For scales larger than the quasistatic regime the deriva-
tives normal to the brane cannot be ignored. Sawicki, Song
and Hu were able to evolve large-scale modes numerically
by implementing a scaling ansatz [91]:

� ¼ AðpÞapGðxÞ (149)

where x is the distance from the brane in units of the causal
horizon and p is a constant. The authors took a trial value
for p and solved the system of equations iteratively to
obtain subsequent corrections. They recovered the quasi-
static solution of Koyama and Maartens and were able to
calculate the behavior of horizon-scale modes. However,
the labour involved in obtaining these solutions is decid-
edly nontrivial. If we wish to constrain general classes of
gravitational theories simultaneously we need a method
that does not require detailed numerical evolution for each
theory individually. This is the motivation behind the
GDM-based approach we put forward in § V. In the case
of DGP gravity the new d.o.f. are already written in the
form of fluid perturbations, and we suggest that other
theories may be amenable to a similar treatment.
Returning briefly to the quasistatic limit of Eqs. (146)

and (147), we note that the master-variable route to obtain-
ing a modified Poisson equation and a slip relation was
decidedly different to that taken in § VIA, VI B, and VIC.
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So it is interesting to find that we have reached the same
conclusion in all four cases: the usual two-function PPF
parameterization works well in the quasistatic limit, but for
scales larger than this it no longer captures the full behav-
ior of the theories studied here.

We should not be particularly surprised by this conclu-
sion. Given the different physical mechanisms employed
by the four theories studied here, it is quite a remarkable
feat that they can be mapped onto a common framework at
all, in any limit—let alone a framework simple enough to
express the departures from GR using only two functions.
It is not unexpected to find that the correspondence be-
tween parameterization and theory does not hold perfectly
for all scales.

VII. DISCUSSION

The wide array of modified gravity theories now present
in the literature renders the individual testing of theories
time-consuming and impractical. There is also the possi-
bility that none of the theories currently under considera-
tion are correct, or that General Relativity remains valid
for all length scales and environments. The Parameterized
Post-Friedmann formalism provides a useful framework
for constraining deviations from General Relativity with-
out recourse to a specific underlying theory of modified
gravity.

In this paper we have shown how the constraints of
energy conservation, gauge invariance and second-order
field equations can be used to reduce the components of a
purely metric theory to two free functions. This process has
highlighted some consistency conditions that arise when
adopting a parameterized form for modifications to GR.
We have put forward a general structure for the perturbed
Einstein equations that should be applicable to any single-
metric theory for which the gravitational action is built
from only curvature invariants. However, when additional
degrees of freedom are introduced into a gravitational
theory (such as extra fields), our ability to make precise
statements about the form of the modifications to the
Einstein equations is reduced.

Though a rich zoo of underlying physical mechanisms
has been put forward, ultimately we are concerned with
their effects on observables. The observables themselves
(galaxies, CMB photons) are predominantly controlled by
the evolution of matter perturbations. There are only a
limited number of ways that a theory of modified gravity
can affect the matter perturbations: for example, by chang-
ing the strength of gravitational coupling or the relation-

ship between the metric potentials �̂ and �̂. But these
effects are, to a certain extent, degenerate with the presence
of a second fluid [45]. A reduced gravitational coupling
could be mimicked by pressure support from another fluid.
A nonzero gravitational slip could be introduced by a fluid
with non-negligible viscosity. Hence we suggest that it may
be possible to treat the extra d.o.f. of a theory by an

effective fluid; Generalized Dark Matter (GDM) provides
one method of doing this in the case of spin-0 perturba-
tions. An effective fluid-type approach of this kind is al-
ready present in DGP.
Such treatment is not strictly necessary when two or

fewer new degrees of freedom are present. But if we wish
to keep our parameterization as general as possible, then
we need a method to deal with more than 2 degrees of
freedom. The GDM approach provides closure relations
for such cases. The GDM parameters fwE; c

2
eff ; cvisg cannot

be assigned the direct interpretation they possess for real
fluids. But if constraints on these parameters favor bizarre-
seeming values that would be unphysical for a real fluid
than this could indicate their origin to be modified gravi-
tational laws and not dark energy.
To date, the mapping of theories onto the PPF frame-

work has only been computed explicitly for a small number
of cases. In this paper we have added Einstein-Aether to
this collection. In the quasistatic limit the two-function
parameterization has always been found applicable, but it
is possible that there are some classes of theories which
cannot be reduced to such a simple format. In addition, we
have found that on horizon scales the parameterization of
the modified Poisson and slip relations no longer matches
onto the underlying expressions exactly. These large scales
are important for accurate calculation of how the ISW
effect and matter power spectrum are affected by modified
gravity theories. So should we give up on the goal of a
unified parameterization?
Not at all. Consider the analogous problem in dark

energy; the equation of state is commonly reduced to just
two numbers via the CPL parameterization [92,93]:

wðaÞ ¼ w0 þ wað1� aÞ (150)

Whilst it is unlikely that a physically-motivated dark en-
ergy model will map neatly onto this expression, Eq. (150)
provides a useful way to obtain constraints on the expected
behavior of dark energy. Of course the approach is not
ideal—if the equation of state were to behave in a radically
different way to our expectations then it would not be
adequately described by fw0; wag. But the form of
Eq. (150) has physical motivation, and gives us a way to
tackle large classes of models without specializing to a
particular theory.
The PPF formalism should be viewed in a similar way.

Equation. (29) and (31) may not match up exactly to all
theories on all scales, but they do provide a phenomeno-
logical way to search for the approximate signatures we
expect modified gravity to leave. Similarly, our proposal of
mapping additional degrees of freedom onto a GDM
framework may not hold exactly for all possible theories.
But while we have not yet reached an ideal parameteriza-
tion of modified gravity, we believe that the approach
outlined in this paper is likely to have a wider range of
applicability than most of the forms currently in common
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use. If, when combined with the next generation of experi-
ments, we fail to make progress on breaking the degener-
acy between dark energy and modified gravity, then we
will need to rethink our tools. For the present, use of the
parameterizations described here is a justifiable simplifi-
cation, provided that we are not lulled into thinking that
their correspondence to underlying theories is exact in all
situations.

If we are to use such a phenomenological methodology
we need to choose a parameterization that closely models
our expectations. Small differences in the structure of the
modifications to Einstein’s equations can lead to significant
effects, independent of the ansatz being used for the PPF
functions. We will demonstrate these differences and how
they affect the constraints obtained in a future work [40].
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APPENDIX A: GAUGE-INVARIANT EQUATIONS
FOR SCALAR-TENSOR THEORY

In this Appendix we display explicitly the gauge-
invariant form of the modifications to the perturbed
Einstein equations in the case of scalar-tensor gravity. At
the level of the homogeneous, background universe the
modifications are contained in the diagonal components of
a tensorU��, see Eq. (4). The perturbed components of this

tensor appearing in Eqs. (19)–(22) are denoted by U�, U�,
UP and U� as given in Eqs. (10). In § VIA these compo-
nents were derived in the conformal Newtonian gauge for
simplicity. Using the notation introduced in § III, the
expressions in a general gauge are:

U� ¼ E�ð1��Þ þ 3 _� �̂þ
�
��� _�
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d!ð�Þ
d�
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U� ¼ E�ð1��Þ þ
�
��� _�

V

2

�
(A4)

In these expressions the scalar field perturbations ��,
� _� and � €� appear only in gauge-invariant combinations
with the variables V and �. �̂ is also gauge-invariant.
The last terms in U�, U� and UP are not gauge-
invariant, and neither are E�, E� and EP. But we find
that the additional terms produced by these parts under a
gauge transformation cancel by virtue of the background
Eqs. (62) and (63)—see Table III for the transformation
properties. Note that all terms in the spatial, traceless
Einstein equation are individually gauge-invariant.

So the perturbed Einstein equations with the additions
above remain fully gauge-invariant, as they must do.

However, on first inspection it looks like we have violated

the constraint of having second-order field equations.

Recall that this constraint restricts U� and U� to contain

at first-order time derivatives at most, due to Eqs. (11) and

(12). It is easy to see that the €� terms present inU� cancel,

but in U� this is not explicitly obvious. In addition, U�

appears to contain a second-order time derivative of the

scale factor coming from the
_̂
� term (see Eq. (15)). To

show this is not a problem we will need to use the zero-

order Bianchi identity, Eq. (7). In the case of scalar-tensor

theory this becomes:
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where we have made use of Eq. (62). Using this to sub-

stitute for the ! €� term in Eq. (A1) and simplifying we

obtain the alternative form:

U� ¼ E�ð1��Þ � 1

2
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We see that the terms containing second derivatives of �
and the scale factor have both cancelled. The above ex-

pression is now demonstrably first-order in time deriva-

tives, but its ability to yield gauge-invariant Einstein

equations is no longer obvious.

APPENDIX B: CONSTRAINT EQUATIONS

In the case of unmodified background equations, con-
straints are obtained by applying the Bianchi identity to a
U-tensor of the general format shown in Eqs. (23)–(26). It
is possible to deduce the general structure of these con-
straint equations and use this as a shortcut. The constraint

equations arising from the coefficient of �ðnÞ can be gen-
erated from the following formulae:

½B1� _An þ kAn�1 þHAn þ kBn þHCn ¼ 0 (B1)

½B2� _Bn þ kBn�1 þ 2HBn � 1

3
kCn þ 2

3
kDn ¼ 0 (B2)

where B1 indicates Eq. (11), B2 indicates Eq. (12). The

constraints arising from the term �̂ðnÞ are analogous:

½B1� _Fn þ kFn�1 þHFn þ kIn þH Jn ¼ 0 (B3)

½B2� _In þ kIn�1 þ 2H In � 1

3
kJn þ 2

3
kKn ¼ 0 (B4)

Note that for an Nth-order theory, FN�2 and IN�2 must be
set to zero to avoid picking up (N þ 1)-th derivatives of the
scale factor.
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