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The generalized harmonic equations of general relativity are written in 3þ 1 form. The result is a

system of partial differential equations with first-order time and second-order space derivatives for the

spatial metric, extrinsic curvature, lapse function and shift vector, plus fields that represent the time

derivatives of the lapse and shift. This allows for a direct comparison between the generalized harmonic

and the Arnowitt-Deser-Misner formulations. The 3þ 1 generalized harmonic equations are also written

in terms of conformal variables and compared to the Baumgarte-Shapiro-Shibata-Nakamura equations

with moving puncture gauge conditions.
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I. INTRODUCTION

The generalized harmonic equations [1–3] are a sym-
metric hyperbolic formulation of general relativity. They
were originally written as a second-order system of partial

differential equations for the spacetime metric ð4Þg��. By

adding extra variables to represent derivatives of ð4Þg��, the

generalized harmonic equations can be written as a fully
first-order system [4,5], or as a system with first-order time
and second-order space derivatives [6]. Typically the fun-
damental variables are the components of the spacetime
metric and its derivatives.

In this paper we carry out a 3þ 1 splitting of the
generalized harmonic (GH) equations. In this way the
GH system is written in terms of traditional 3þ 1 variables
with first-order time and second-order space derivatives.
The 3þ 1 variables include the spatial metric gij, extrinsic

curvature Kij, lapse function � and shift vector �i. The

extrinsic curvature is directly related to the time derivative
of the spatial metric; likewise, we introduce fields� and �i

that are directly related to the time derivatives of � and �i.
The result of this analysis is a concise and elegant expres-
sion of Einstein’s theory.

Currently there are two formulations of the Einstein
equations in widespread use in the numerical relativity
community. One is the generalized harmonic system, the
other is the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) system [7,8] along with moving puncture gauge
conditions [9,10]. The BSSN equations are direct descend-
ants of the Arnowitt-Deser-Misner (ADM) equations,
which are obtained from a 3þ 1 splitting of the Einstein
equations [11]. (See also Refs. [12,13].) ADM and BSSN
are typically written as systems with first-order time and
second-order space derivatives. The fundamental variables
for ADM are the 3þ 1 variables gij, Kij, � and �i. BSSN

is obtained from a change of variables, defined by confor-
mal splitting, and the introduction of new independent
variables, namely, the conformal connection functions.
Most often the BSSN system is supplemented with the
moving puncture gauge conditions which take the form

of evolution equations for the lapse function and shift
vector.
In earlier work, Friedrich and Rendall [14] (see also

Ref. [15]) wrote the generalized harmonic equations in
terms of 3þ 1 variables gij, � and �i. Their motivation

was not to compare GH to ADM or BSSN. Consequently,
the relationship between the GH and ADM or BSSN
systems has remained obscure. In Sec. III the precise
relationship between the GH equations and the ADM
equations is presented. The relationship between the GH
equations and the BSSN equations is displayed explicitly
in Sec. V. Note that in Refs. [16,17] the Z4 formulation
[18] of general relativity is written in 3þ 1 form with a
conformal splitting, and used to compare Z4 to BSSN.
In Sec. II we review the generalized harmonic formula-

tion of general relativity and discuss its interpretation as an
initial value problem. In Sec. III we write the GH equations
in 3þ 1 form, compare the results to ADM, and show that
the system is symmetric hyperbolic. Technical details are
contained in Appendix A. In Sec. IV the 3þ 1 GH
equations are written in terms of conformal variables.
The GH equations are compared to BSSN and the
moving puncture gauge in Sec. V. In Appendix B we
show that the GH system with moving puncture gauge
conditions has the same level of hyperbolicity as BSSN
with the moving puncture gauge. A brief summary is
provided in Sec. VI.

II. GENERALIZED HARMONIC EQUATIONS

Let ð4Þg�� denote the physical spacetime metric with

Christoffel symbols ð4Þ��
��, covariant derivative r�, and

Ricci curvature ð4ÞR��. Let
ð4Þ ���

�� denote a background

connection; this connection might be built from a back-

ground metric ð4Þ �g��. As discussed in Ref. [19], the back-

ground connection is needed for general covariance. For

practical applications it would be natural to choose ���
�� to

be the flat connection. If the coordinates are interpreted as

Cartesian, then the components ���
�� are zero.
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Now introduce a spacetime vector field H�, the ‘‘gauge
source vector’’, and define

C � � H� þ ðð4Þ��
�� � ð4Þ ���

��Þg��: (1)

Note that the physical and background connections only

appear as the difference ð4Þ��
�� � ð4Þ ���

��, which trans-

forms as a tensor.
The generalized harmonic equations are

ð4ÞR�� �rð�C�Þ ¼ ��½nð�C�Þ � ð4Þg��n
�C�=2�

þ 8�G½T�� � ð4Þg��T
�
�=2�; (2a)

C� ¼ 0: (2b)

The term proportional to Newton’s constant G represents
the matter content, where T�� is the matter stress-energy-

momentum tensor. The matter equations of motion imply
the conservation laws r�T

�� ¼ 0. The term proportional

to the constant � enforces constraint damping; it depends
on a timelike, future-pointing unit vector field n�. Below
we assume that this vector field is the unit normal to a set of
spacelike hypersurfaces t ¼ const.

The GH equations (2) are equivalent to the Einstein

equations ð4ÞR�� ¼ 8�G½T�� � ð4Þg��T
�
�=2�. This follows

trivially by inserting Eq. (2b) into Eq. (2a). What makes the
GH equations interesting, and useful, is their interpretation
as an initial value problem.

Let us define M� � �ðð4ÞG�� � 8�T��Þn� where
ð4ÞG�� is the Einstein tensor and n� is the unit normal

to the t ¼ const slices. Note that H � �2M�n
� and

Mi are the Hamiltonian and momentum constraints,
respectively.

The initial value interpretation of the GH equations
relies on two key results. The first is obtained by contract-
ing Eq. (2a) with the unit normal n�. This yields an

equation of the form [5,19]

@tC� ¼ fterms�M; C; @iCg; (3)

where the terms on the right-hand side are proportional to
the constraints M� and C�, and spatial derivatives of C�.
This equation can be rearranged to show that M� is
proportional to C�, the time derivative of C�, and spatial
derivatives of C�. It follows that for any solution of the GH
equations (2), the Hamiltonian and momentum constraints
M� ¼ 0 must hold.

The second key result is obtained from the covariant
derivative of Eq. (2a). After applying the Ricci identity and
using the result (3), we find [5,19]

@tM� ¼ fterms�M; @iM; C; @iC; @i@jCg: (4)

Together, Eqs. (3) and (4) show that as long as the con-
straints C� ¼ 0 and M� ¼ 0 hold at the initial time, then
they will continue to hold for all time.

From the preceding analysis we see that a solution of
Einstein’s equations can be found by choosing initial data

that satisfy both sets of constraints, C� ¼ 0 and M� ¼ 0,
at the initial time, and then evolving this data into the
future using the GH equation (2a).
The generalized harmonic formulation of general rela-

tivity is important because the GH equations are symmetric
hyperbolic, provided the gauge source vector H� is speci-
fied directly as a function of the spacetime coordinates x�

and metric ð4Þg��. In particular, the second derivative terms

in Eq. (2a) combine to form a wave operator ð4Þg��@�@�
acting on the spacetime metric ð4Þg��. If, on the other hand,

the H�’s are specified directly and depend on @�
ð4Þg��,

then Eq. (2a) will include terms that interfere with the nice
wave operator. In general the system will no longer be
symmetric hyperbolic.
In much of the early numerical work with the GH

equations, H� was not specified directly. Rather, H� was
elevated to the status of a dynamical variable by introduc-
ing ‘‘driver’’ equations. With a driver equation, r�r�H�

or @tH
� is set equal to some function of ð4Þg�� and H

� and

their derivatives [3,20]. In this case the analysis of hyper-
bolicity is more complicated.
Recent work by Szilagyi, Lindblom, and Scheel [21] has

shown the practical benefits of the ‘‘damped wave gauge.’’
For this gauge condition H� is specified directly as a
function of the spacetime metric. Throughout this paper I
will assume that the gauge source vector is specified di-
rectly. If it depends only on the coordinates x� and metric
ð4Þg��, then the system is symmetric hyperbolic. In Sec. V

we consider the GH equations with the moving puncture
gauge. In this case H� depends on derivatives of the
metric, and the system is not symmetric hyperbolic. In
Appendix B we show that this system has the same level
of hyperbolicity as BSSN with the moving puncture gauge.

III. GH EQUATIONS IN 3þ 1 FORM

Let us begin by reviewing the 3þ 1 decomposition of
the Einstein equations [11–13]. The analysis yields evolu-
tion equations

@?gij ¼ �2�Kij; (5a)

@?Kij ¼ �½Rij � 2KikK
k
j þ KKij� �DiDj�

� 8�G�½sij � gijðs� �Þ=2� (5b)

for the spatial metric gij and extrinsic curvature Kij. Here,

Di and Rij denote the covariant derivative and Ricci tensor

built from the spatial metric. The lapse function is � and
the shift vector is �i. The time derivative operator is
defined by @? � @t �L�, where L� is the Lie derivative

along the shift. The matter variables are the energy density
� � n�n�T��, momentum density ji � �n�T�i, and spa-

tial stress sij � Tij. The 3þ 1 splitting of the matter

conservation equations r�T
�� ¼ 0 gives [22]
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@?� ¼ �sijKij þ ��K � �Dij
i � 2jiDi�; (6a)

@?ji ¼ �Kji � sijD
j�� �Di�� �Djsij: (6b)

The spatial metric and extrinsic curvature must also satisfy
the Hamiltonian and momentum constraints,

H � K2 � KijK
ij þ R� 16�G� ¼ 0; (7a)

Mi � DjK
j
i �DiK � 8�Gji ¼ 0: (7b)

If the constraints hold at the initial time, then the evolution
equations (5) and (6) insure that they will continue to hold
at future times.

In the numerical relativity community the results (5) are
referred to as the Arnowitt-Deser-Misner (ADM) equations
[11]. Here we use the common convention of writing these
equations in the form used by Smarr and York [22,23].

The mathematical details of the 3þ 1 splitting of the
generalized harmonic equations (2) are presented in
Appendix A. The result is the following system of evolu-
tion equations,

@?gij¼�2�Kij; (8a)

@?Kij¼�½Rij�2KikK
k
j ��Kij��DiDj���DðiCjÞ

���gijC?=2�8�G�½sij�gijðs��Þ=2�; (8b)

@?�¼�2���2H?; (8c)

@t�
i¼�j �Dj�

iþ�2�i��Di�þ�2Hi; (8d)

@?�¼��KijK
ijþDiD

i�þCiDi����C?=2
�4�G�ð�þsÞ; (8e)

@?�i¼gk‘ �Dk
�D‘�

iþ�Di���Di��2KijDj�

þ2�Kjk��i
jkþ��Ci�16�G�ji; (8f)

and constraints,

C? � �þ K; (9a)

Ci � ��i þ ��i
jkg

jk; (9b)

H � K2 � KijK
ij þ R� 16�G�; (9c)

Mi � DjK
j
i �DiK � 8�Gji: (9d)

The dependent variables include the spatial metric gij,

extrinsic curvature Kij, lapse function � and shift vector

�i. We have also introduced the variables � and �i.
Equation (8c) shows that � is related to the time derivative
of �. Likewise, from Eq. (8d) we see that �i is related to
the time derivative of �i. Note that the gauge source vector
H� appears in these equations as a spatial scalar H? and a
spatial vector Hi. The source H? appears in the evolution
equation (8c) for the lapse �, while the source Hi appears
in the evolution equation (8d) for the shift �i.

In deriving the 3þ 1 GH equations (8) and (9) we have
assumed that the only non vanishing components of the

background connection ð4Þ ���
�� are the spatial components

ð4Þ ��i
jk. This is equivalent to building the background con-

nection from a background metric ð4Þ �g�� which, under a

3þ 1 splitting, has unit lapse, vanishing shift, and a time-
independent spatial metric. In this case the only remaining
background structure is the spatial connection whose

components are ��i
jk � ð4Þ ��i

jk. We also assume that the

background spatial connection is flat, and in Eqs. (8) and
(9) use the notation

��i
jk � �i

jk � ��i
jk:: (10)

Finally, we let �Di denote the covariant derivative built from
the background connection.
Comparing the 3þ 1 GH equations (8a) and (8b) with

the ADM equations (5), we find

ð@?gijÞGH � ð@?gijÞADM ¼ 0; (11a)

ð@?KijÞGH � ð@?KijÞADM ¼ ��C?Kij � �DðiCjÞ
� ��gijC?=2: (11b)

As expected, the difference is proportional to the con-
straints (9).
The constraint evolution system for the 3þ 1 general-

ized harmonic equations is

@?C?¼��KC?þ�H þCiDi���DiCi�2��C?;
(12a)

@?Ci¼C?Di���DiC?�2�Mi�2�KijCj���Ci;

(12b)

@?H ¼�2��H þ2�RC?�4MiD
i��2�DiMi

þ2�ðKij�KgijÞDiCj�2��C?�32�G��C?;
(12c)

@?Mi¼�HDi�þðK	j
i �Kj

i ÞDjð�C?Þ� 1
2�DiH

���MiþDj�D½iCj�þDið�DjCjÞ� 1
2�RijCj

��DjDjCiþ�Dið�C?Þ�8�G�jiC?: (12d)

These results are found from the evolution equations (6)
and (8) applied to the definitions (9).
The GH equations are symmetric hyperbolic. This can

be shown by considering the second-order system (2a), or
the fully first-order system of Refs. [4,5]. Gundlach and
Martı́n-Garcı́a [24] have given a definition of symmetric
hyperbolicity that applies to quasilinear systems of partial
differential equations with first-order time and second-
order space derivatives. We can apply their definition to
the 3þ 1 GH equations (8).
To begin, we assume that the matter fields are not

derivatively coupled to gravity; that is, the matter
Lagrangian does not contain derivatives of the metric.
Then the matter variables �, ji, and sij do not contain

derivatives of the gravitational variables gij, Kij, �, �,

�i, and �i. We also assume, as discussed in Sec. II, that
the gauge sourcesHi andH? are directly specified in terms
of the spacetime coordinates and the metric variables gij,

�, and �i, not on their derivatives.
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The analysis can be described as follows. In effect, we
assign weight 0 to the metric variables and weight 1 to the
‘‘velocities’’Kij,�, and �

i. One unit of weight is added for

each derivative. We introduce the weight 1 variables

gmij � @mgij; (13a)

�i � @i�; (13b)

�ij � ð@i�kÞgkj; (13c)

defined as derivatives of the weight 0 variables, and com-
pute their equations of motion by differentiating Eqs. (8a),
(8c), and (8d). Note that @i�j, @igjk‘, and @ið�jkg

k‘Þ are
symmetric in i and j. The principal parts of the GH equa-
tions (8) are constructed from the highest weight terms in
the equations of motion for the weight 1 variables; these are

�@tgmij ffi 2@m�ðijÞ � 2�@mKij; (14a)

�@tKij ffi �1
2�g

mn@mgnij þ �@ði�jÞ � @i�j; (14b)

�@t�i ffi �2@i�; (14c)

�@t� ffi gij@i�j; (14d)

�@t�ij ffi �2@i�j � �@i�j; (14e)

�@t�i ffi �@i�þ gjk@j�ki; (14f)

where ffi denotes equality apart from lower weight terms.

Here we have defined the operator �@t � @t � �k@k.
We now define the quadratic form

" ¼ Mijk‘

�
1

4
gmngmijgnk‘þðKij��ðijÞ=�ÞðKk‘��ðk‘Þ=�Þ

�

þMij

�
1

�2
gk‘�ki�‘j þ ð�i � �i=�Þð�j � �j=�Þ

�

þM

�
ð�Þ2 þ 1

�2
gij�i�j

�
; (15)

where the tensors Mijk‘, Mij and M (not related to one
another) are positive definite. Direct calculation using

Eqs. (14) shows that the time derivative of " has a principal
part that can be written as the gradient of a vector 
i; that
is, @t" ffi @i


i. This shows that " is a quadratic, positive-
definite energy density with flux 
i. It follows from the
theorems of Gundlach and Martı́n-Garcı́a [24] that the
system (8) is symmetric hyperbolic.

IV. GH EQUATIONS IN CONFORMALVARIABLES

In 3þ 1 form the GH variables are gij, Kij, �, �, �
i, �i.

Introduce a time-independent spatial density of weight 2,
denoted ��. As this notation suggests, �� can be chosen as
the determinant of a background metric ��ij, and this same

background metric can be used to define the background

connection ��k
ij. Now consider the conformal variables ~�ij,

~Aij, ’, K, ~�
i, �, �, and �i defined by

~�ij ¼ ð ��=gÞ1=3gij; (16a)

~Aij ¼ ð ��=gÞ1=3½Kij � 1
3gijK�; (16b)

’ ¼ 1
12 lnðg= ��Þ; (16c)

~�i ¼ ðg= ��Þ1=3�i þ 1
6ðg= ��Þ�2=3Diðg= ��Þ: (16d)

Note that the determinant of ~�ij is �� and the trace of ~Aij

vanishes. The inverse relations are

gij ¼ e4’ ~�ij; (17a)

Kij ¼ e4’ð ~Aij þ 1
3
~�ijKÞ; (17b)

�i ¼ e�4’ ~�i � 2e�4’ ~�ij@j’: (17c)

Indices on the new variables ~Aij and ~�i are raised and

lowered with the conformal metric ~�ij.

In terms of the conformal variables, the GH equations
(8) are

@? ~�ij¼�2
3
~�ij

�Dk�
k�2� ~Aij; (18a)

@?’¼ 1
6
�Dk�

k� 1
6�K; (18b)

@?K¼� ~Aij
~Aijþ 1

3�K
2�e�4’½ ~D2�þ2 ~Di’ ~Di��þ�ðH �KC?� ~DiCi�6Ci@i’Þ�3��C?=2þ4�G�ð�þsÞ; (18c)

@? ~Aij¼e�4’½� ~Rij�2� ~Di
~Dj’þ4� ~Di’ ~Dj’� ~Di

~Dj�þ4 ~Dði� ~DjÞ’�8�G�sij�TF

�2

3
~Aij

�Dk�
k�2� ~Aik

~Ak
j þ�K ~Aij��C? ~Aijþ�e�4’½4Cði ~DjÞ’�Ck�~�ðijÞ

k�TF; (18d)

@? ~�i¼ ~�k‘ �Dk
�D‘�

iþ 2
3
~�i �Dk�

kþ 1
3
~Dið �Dk�

kÞ�2 ~Aik@k�þ2� ~Ak‘�~�i
k‘þ12� ~Aik@k’

� 4
3�

~DiKþ� ~DiC?þ 2
3�e

4’KCiþ��e4’Ci�16�G�e4’ji; (18e)

@?�¼�2���2H?; (18f)

@t�
i¼�j �Dj�

iþ�2Hiþ�2e�4’½~�i�2 ~Di’� ~Di�=��; (18g)

@?�¼�� ~Aij
~Aij� 1

3�K
2þe�4’ð ~D2�þ2 ~Di’ ~Di�ÞþCi ~Di����C?=2�4�G�ð�þsÞ; (18h)

where
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~R ij � �1
2
~�k‘ �Dk

�D‘ ~�ij þ ~�k‘½�~�m
k‘�

~�ðijÞm

þ 2�~�m
kði�~�jÞm‘ þ�~�m

ik�~�mj‘� þ ~�kði �DjÞ ~�
k:

(19)

We have also defined

�~�i
jk ¼ ~�i

jk � ��i
jk; (20)

where ~�i
jk are the Christoffel symbols built from the con-

formal metric.
In terms of conformal variables, the constraints (9) are

C?¼�þK; (21a)

Ci¼�~�iþ�~�ijk ~�
jk; (21b)

H ¼2

3
K2� ~Aij

~Aij�16�G�

þe�4’½ ~R�8 ~Di’ ~Di’�8 ~D2’�; (21c)

Mi¼ ~Dj
~Aj
i�2

3
~DiKþ6 ~Aj

i
~Dj’�8�Gji; (21d)

where ~R is the Ricci scalar built from the conformal metric
~�ij. One must remember that the indices on Ci andMi are

raised and lowered with the physical metric gij. Thus, for

example, Ci ¼ e�4’ð�~�i þ �~�i
jk ~�

jkÞ.
The system (18) is, of course, symmetric hyperbolic as

long asH? andHi do not depend on the weight 1 variables

ðK; ~Aij; ~�
i; �Þ or derivatives of the weight 0 variables

ð~�ij; ’; �; �
iÞ. We can confirm this by defining

~�mij � @m ~�ij; (22a)

~�ij � ð@i�kÞ~�kj; (22b)

�i � @i�; (22c)

’i � @i’; (22d)

and computing the principal parts of the evolutions equa-
tions for the weight 1 variables:

�@t ~�mijffi2@m ~�ðijÞ�2

3
~�ij ~�

k‘@m ~�k‘�2�@m ~Aij; (23a)

�@t’mffi1

6
~�ij@m ~�ij�1

6
�@mK; (23b)

�@tKffi�e�4’ ~�ij

�
@i ~�j�8@i’j� 1

�
@i�j

�
; (23c)

�@t ~Aijffi��e�4’1

2
~�k‘@k ~�‘ijþ�e�4’

�
�
@i ~�j�2@i’j� 1

�
@i�j

�
TF
; (23d)

�@t ~�iffi ~�k‘@k ~�‘iþ1

3
~�k‘@i ~�k‘�1

3
�@i ~Kþ�@i�; (23e)

�@t�iffi�2@i�; (23f)

�@t ~�ijffi�2e�4’

�
@i ~�j�2@i’j� 1

�
@i�j

�
; (23g)

�@t�ffie�4’ ~�ij@i�j: (23h)

One can show by explicit calculation that the positive-
definite energy density

"¼Mijk‘e4’
�
1

4
~�mnð~�mijþ4~�ij’mÞð~�nk‘þ4~�k‘’nÞ

þe4’ð ~Aijþ~�ijK=3�~�ðijÞ=�Þð ~Ak‘þ~�k‘K=3� ~�ðk‘Þ=�Þ
�

þMij

�
1

�2
e4’ ~�k‘ ~�ki

~�‘jþð~�i�2’i��i=�Þ

�ð~�j�2’j��j=�Þ
�
þM

�
ð�Þ2þ 1

�2
e�4’ ~�ij�i�j

�

(24)

satisfies the conservation equation @t" ffi @i

i.

V. COMPARISON WITH BSSN AND THE MOVING
PUNCTURE GAUGE

The BSSN equations in covariant form are [25]

@? ~�ij¼�2
3
~�ij

�Dk�
k�2� ~Aij; (25a)

@?’¼ 1
6
�Dk�

k� 1
6�K; (25b)

@?K¼� ~Aij
~Aijþ 1

3�K
2�e�4’½ ~D2�þ2 ~Di’ ~Di��

þ4�G�ð�þsÞ; (25c)

@? ~Aij¼e�4’½� ~Rij�2� ~Di
~Dj’þ4� ~Di’ ~Dj’

� ~Di
~Dj�þ4 ~Dði� ~DjÞ’�8�G�sij�TF

� 2
3
~Aij

�Dk�
k�2� ~Aik

~Ak
j þ�K ~Aij; (25d)

@? ~�i¼�~�jkCj �Dk�
iþ ~�k‘ �Dk

�D‘�
iþ 2

3
~�jk�~�i

jk
�D‘�

‘

þ 1
3
~Dið �Dk�

kÞ�2 ~Aik@k�

þ2� ~Ak‘�~�i
k‘þ12� ~Aik@k’� 4

3�
~DiK

�16�G�e4’ji: (25e)

The variables ~�i are the ‘‘conformal connection func-
tions.’’ If the background is flat and the coordinates are
interpreted as Cartesian, then the background connection

vanishes, ��i
jk ¼ 0. (We also have �Di ¼ @i.) In this case it

is common to use the notation ~�i � ~�i
jk ~�

jk for these

variables rather than ~�i. Also observe that the first term

on the right-hand side of Eq. (25e), �~�jkCj �Dk�
i ¼

~�j �Dj�
i � ~�k‘�~�j

k‘
�Dj�

i, and the Lie derivative term on

the left-hand side, �L�
~�i ¼ ��j �Dj

~�i þ ~�j �Dj�
i, com-

bine to insure that only derivatives of ~�i, and not ~�i itself,
appear in Eq. (25e). This rule is discussed in Ref. [10] and
is followed by most numerical relativity groups who use
the BSSN system.
The BSSN equations are usually accompanied by the

moving puncture gauge conditions,

@t� ¼ �i@i�� 2�K; (26a)

@t�
i ¼ �j �Dj�

i þ 3
4
~�i � ��i; (26b)
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where � is a parameter, independent of the field variables.
Equations (26a) and (26b) are the 1þ log slicing [9] and
the gamma-driver shift conditions, respectively. The
gamma-driver shift is often written as a system of first-
order equations for the shift vector�i and an auxiliary field
Bi [10]. As shown in Ref. [26], these equations can be
integrated to yield the single Eq. (26b) for �i.

By explicitly comparing the GH equations in conformal
variables, Eqs. (18), with the BSSN equations (25), we find

ð@t ~�ijÞGH�ð@t ~�ijÞBSSN¼0; (27a)

ð@t’ÞGH�ð@t’ÞBSSN¼0; (27b)

ð@tKÞGH�ð@tKÞBSSN¼�ðH �KC?� ~DiCi�6Ci@i’Þ
�3��C?=2; (27c)

ð@t ~AijÞGH�ð@t ~AijÞBSSN¼��C? ~Aij

þ�e�4’½4Cði ~DjÞ’�Ck�~�ðijÞ
k�TF;

(27d)

ð@t ~�iÞGH�ð@t ~�iÞBSSN¼ ~�jkCj �Dk�
i� 2

3
~�ijCj �Dk�

k

þ� ~DiC?þ2�K~�ijCj=3

þ��~�ijCj: (27e)

As expected, the differences between GH and BSSN are
proportional to the constraints. Note that the terms propor-
tional to C? simply exchange � for �K; likewise, the

terms proportional to Ci simply exchange ~�i for

�~�ijk ~�
jk. Also observe that only a few of the terms on

the right-hand sides of Eqs. (27) contribute to the principal
parts of the equations. In particular, we have

ð@tKÞGH � ð@tKÞBSSN ffi �ðH � ~DiCiÞ; (28a)

ð@t ~�iÞGH � ð@t ~�iÞBSSN ffi � ~DiC?: (28b)

The principal parts of the GH and BSSN equations for ~�ij,

’, and ~Aij coincide.

The results (27) provide a simple prescription for con-
verting a BSSN code into a GH code. First, add the terms
on the right-hand sides of Eqs. (27) to the BSSN equations
of motion. Next, add the equation of motion (18h) for �.
Finally, modify the evolution equations for� and�i so that
they take the form of Eqs. (18f) and (18g).

With an appropriate choice of the gauge sourcesH? and
Hi, we can adopt moving puncture gauge conditions within
the generalized harmonic formalism.1 In terms of confor-
mal variables, we need

H?¼�þ2K=�; (29a)

Hi¼e�4’ð�~�iþ2 ~Di’þ ~Di�=�Þ
þ 3

4�2
~�i� �

�2
�i; (29b)

so that the GH equations (18f) and (18g) coincide with the
moving puncture equations (26). In terms of the original
3þ 1 variables, we have

H? ¼ �þ 2K=�; (30a)

Hi ¼ 3

4�2

�
ðg= ��Þ1=3�i þ 1

6
ðg= ��Þ�2=3Diðg= ��Þ

�

� �i þDi�=�� �

�2
�i; (30b)

and the moving puncture gauge conditions read

@t� ¼ �i@i�� 2�K; (31a)

@t�
i ¼ �j �Dj�

i � ��i

þ 3
4½ðg= ��Þ1=3�i þ 1

6ðg= ��Þ�2=3Diðg= ��Þ�: (31b)

With the moving puncture gauge, the H’s depend on
weight 1 variables and derivatives of weight 0 variables.
This spoils the symmetric hyperbolicity of the system. In
Appendix B we analyze the GH equations with moving
puncture gauge conditions and show that they are strongly

hyperbolic as long as the condition 2� � ðg= ��Þ1=3 is met.
Note that one can use the constraint Ci ¼ 0 to exchange �i

for ��i
jkg

jk in Eq. (31b). This does not affect the hyper-

bolicity of the system.

VI. SUMMARY

The generalized harmonic equations have been written
in 3þ 1 form using as independent variables the spatial
metric gij, extrinsic curvature Kij, lapse function � and

shift vector �i, as well as fields� and �i related to the time
derivatives of � and �i. The resulting set of evolution
equations (8) and constraints (9) are a concise and elegant
formulation of general relativity. The GH evolution system
is symmetric hyperbolic with the conserved, positive-
definite energy density displayed in Eq. (15).
The 3þ 1 GH equations are written in terms of confor-

mal variables in Eqs. (18) and (21). This allows for a direct
comparison with the BSSN formulation of Einstein’s the-
ory, and provides a simple prescription for converting a
BSSN code into a GH code. The moving puncture gauge
conditions cannot be used with the GH equations without
spoiling symmetric hyperbolicity. Nevertheless, the GH
system with moving puncture gauge has the same level
of hyperbolicity as the BSSN systemwith moving puncture
gauge.
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APPENDIX A: 3þ1 SPLITTING

In this appendix we derive the equations of motion (8)
and the constraints (9) by carrying out a 3þ 1 splitting of
the spacetime generalized harmonic equations (2).

Let n� ¼ ��	t
� denote the covariant normal to the

spacelike hypersurfaces t ¼ const; the contravariant form
is n� ¼ ð	�

t � �i	�
i Þ=�. Also introduce the operator

X�
i ¼ 	�

i that projects spacetime covectors into spatial
covectors. The covariant form of this operator is Xi

� ¼
	i
� þ �i	t

�; it satisfies X
i
�X

�
j ¼ 	i

j and Xi
�n

� ¼ 0.

The spacetime metric is written in terms of the normal,
spatial projection operator, and spatial metric as

ð4Þg�� ¼ gijX
i
�X

j
� � n�n�: (A1)

Spacetime indices �, �, etc. are always raised and lowered

with the spacetime metric ð4Þg�� and its inverse ð4Þg��,

while spatial indices i, j, etc. are always raised and lowered
with the spatial metric gij and its inverse gij.

The spacetime Christoffel symbols can be written in
terms of 3þ 1 quantities as

n�
ð4Þ��

��n
�n� ¼ �ð@?�Þ=�2; (A2a)

Xi
�
ð4Þ��

��n
�n� ¼ ð@t�i � �j@j�

iÞ=�2

þ ðDi�Þ=�; (A2b)

n�
ð4Þ��

��X
�
i X

�
j ¼ Kij; (A2c)

Xi
�
ð4Þ��

��X
�
j X

�
k ¼ �i

jk; (A2d)

n�
ð4Þ��

��n
�X

�
i ¼ �ð@i�Þ=�; (A2e)

Xi
�
ð4Þ��

��n
�X�

j ¼ �Ki
j þ ð@j�iÞ=�; (A2f)

where @? � @t �L� is the time derivative operator used

in the main text. The results (A2) are obtained by comput-
ing the normal and tangential projections of derivatives of

the spacetime metric, @�
ð4Þg��, and using the definition of

the Christoffel symbols. Also note that we have used the
relation @?gij � �2�Kij that defines the extrinsic curva-

ture. This is the equation of motion (8a) for the spatial
metric.

We will also need the splitting of the Ricci tensor,

ð4ÞR��n
�n� ¼ ð@?K þDiD

i�Þ=�� KijK
ij; (A3a)

ð4ÞR��X
�
i X

�
j ¼ Rij þ KKij � 2KikK

k
j

� ð@?KijÞ=�� ðDiDj�Þ=�; (A3b)

ð4ÞR��X
�
i n

� ¼ �DjK
j
i þDiK; (A3c)

and the curvature scalar:

ð4ÞR ¼ Rþ KijK
ij þ K2 � 2ð@?KÞ=�� 2ðDiD

i�Þ=�:
(A4)

These results can be obtained from the definition of
the Riemann tensor in terms of covariant derivatives,
ð4ÞR����V

�¼r�r�V��r�r�V�, or from the definition

of Riemann in terms of Christoffel symbols and the
results (A2).

The GH constraint C� � H� þ ðð4Þ��
�� � ð4Þ ���

��Þg��
must be split into a normal component, C? � C�n�, and a

tangential component, Ci � C�X
�
i . These calculations de-

pend on the 3þ 1 splitting of the background connection
���

��. Let us assume that the background connection is

constructed from a background metric ð4Þ �g��. This metric

can be split with respect to the t ¼ const hypersurfaces into
the 3þ 1 quantities �gij, ��, and ��i. The results (A2),

applied to the background geometry, can be rearranged to
give the components of the background connection:

ð4Þ ��t
tt¼ð@t ��þ ��j@j ��� ��i ��j �KijÞ= ��; (A5a)

ð4Þ ��t
ti¼ð@i ��� ��j �KijÞ= ��; (A5b)

ð4Þ ��t
ij¼� �Kij= ��; (A5c)

ð4Þ ��i
tt¼ �� �Di ���2 �� ��j �Kjk �g

ki� ��ið@t ��þ ��j@j ��

� ��j ��k �KjkÞ= ��þ@t ��
iþ ��j �Dj

��i; (A5d)

ð4Þ ��i
jt¼� ��ið@j ��� ��k �KkjÞ= ��� �� �Kjk �g

kiþ �Dj
��i; (A5e)

ð4Þ ��k
ij¼ ��k

ijþ ��k �Kij= ��: (A5f)

Here, the background extrinsic curvature is defined by
ð@t �L ��Þ �gij � �2 �� �Kij.

The calculations for the normal and tangential compo-
nents of the constraint yield

C?¼H?þKþ 1

�2
@?���

��
gij �Kij� 1

� ��
ð@t�L ��Þ ��

þ 1

� ��
��i��j �Kijþ 2

� ��
��i@i ��; (A6a)

Ci¼Hiþgijg
k‘��j

k‘�
1

�
@i�� 1

�2
gijð@t�j��k �Dk�

jÞ

þ ��

�2
gij �g

k‘@k ��þ 1

�2
gijð@t ��j� ��k �Dk

��jÞ

þ 1

�2 ��
gij��

j½@t ���ð2�k� ��kÞ@k ��þ�2gk‘ �Kk‘�

� 1

�2 ��
gij��

k½��j��‘�2 ��2 �gj‘� �Kk‘: (A6b)

Here we have defined H? � H�n� and ��i � �i � ��i.

Note that each term in Eq. (A6a) is a spatial scalar, and
each term in Eq. (A6b) is a spatial covector. In these
equations we can absorb terms that depend on the physical
tensors gij, �, �

i, the background tensors �gij, ��, ��i, and

derivatives of these background tensors into H? and Hi.
We cannot absorb terms that depend on derivatives of gij,

� or �i because this would change the hyperbolicity of the
GH system. Thus, we have the following results:
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C? ¼ H? þ K þ 1

�2
@?�; (A7a)

Ci ¼ Hi þ��ijkg
jk � 1

�
@i�

� 1

�2
gijð@t�j � �k �Dk�

jÞ: (A7b)

Let us define

� � 1

�2
@?�þH?; (A8a)

�i � 1

�2
gijð@t�j � �k �Dk�

jÞ þ 1

�
@i��Hi: (A8b)

When rearranged, these definitions become the equations
of motion (8c) and (8d) for � and �i. The constraints
become

C? ¼ �þ K; (A9a)

Ci ¼ ��i þ ��ijkg
jk; (A9b)

which are Eqs. (9a) and (9b) from the main text.
Our next task is to split the terms rð�C�Þ. The normal

and tangential projections are

n�n�rð�C�Þ ¼ 1

�
ð@?C? � Ci@i�Þ; (A10a)

X
�
i X

�
jrð�C�Þ ¼ DðiCjÞ þ KijC?; (A10b)

n�X�
i rð�C�Þ ¼ 1

2�
ð@?Ci � C?@i�Þ þ 1

2
@iC? þ KijCj:

(A10c)

The projections of the spacetime GH equation (2a) are
obtained from the Eqs. (A3), (A9), and (A10) above. The
result for the normal-normal projection is

@?� ¼ ��KijK
ij þDiD

i�þ CiDi�� ��C?=2

� 4�G�ð�þ sÞ; (A11)

which is Eq. (8e) from the main text. The tangential-
tangential projection yields

@?Kij ¼ �½Rij � 2KikK
k
j � �Kij� �DiDj�� �DðiCjÞ

� ��gijC?=2� 8�G�½sij � gijðs� �Þ=2�;
(A12)

which is Eq. (8b).
The normal-tangential projection of the spacetime GH

equation leads to the result

@?�i ¼ gk‘ �Dk
�D‘��

i þ �Di�� �Di�� 2KijDj�

þ 2�Kjk��i
jk þ ��Ci � 16�G�ji

þ �gijgk‘½2 �Dkð �� �Kj‘Þ � �Djð �� �Kk‘Þ ���m �Rmk‘j�:
(A13)

We now assume the background lapse is unity, �� ¼ 1, and
the background shift vanishes, ��i ¼ 0. We also assume

that the background spatial metric �gij is flat and time

independent. These assumptions imply that the back-
ground extrinsic curvature �Kij and background Riemann

tensor �Rmk‘j vanish. Then the normal-tangential projection

becomes

@?�i ¼ gk‘ �Dk
�D‘�

i þ �Di�� �Di�� 2KijDj�

þ 2�Kjk��i
jk þ ��Ci � 16�G�ji; (A14)

which is Eq. (8f) from the main text.
The analysis shows that the spacetime GH equations (2)

are equivalent to the evolution equations (8) plus the
constraints C? ¼ 0 and Ci ¼ 0. The constraint evolution
system (9) shows that C? ¼ 0 and Ci ¼ 0 will hold for all
time if and only if all of the constraint functions C?, Ci,H ,
and Mi vanish. It is sufficient to impose these constraints
at the initial time; the evolution equations will insure that
they continue to hold into the future.

APPENDIX B: HYPERBOLICITY OF THE GH
EQUATIONS WITH MOVING PUNCTURE GAUGE

In this section we analyze the hyperbolicity of the
generalized harmonic equations with the moving puncture
gauge conditions (31). That is, we consider Eqs. (8) with
the gauge sources H? and Hi given by Eqs. (30).
Symmetric hyperbolicity is spoiled by the presence of �,
Kij, �i and derivatives of gij and � in the H’s.

Nevertheless, the equations form a quasilinear system of
partial differential equations with first-order time and
second-order space derivatives. We can apply the pseudo-
differential reduction techniques of Refs. [28–30] to check
for strong hyperbolicity.
The principal parts of the equations are constructed from

the highest weight terms. We identify the ‘‘coordinate
variables’’ gij, � and �i as weight 0 and the ‘‘velocity

variables’’ Kij, � and �i as weight 1. Each derivative adds

a unit of weight. The principal parts of the GH equations
with moving puncture gauge conditions are

�@tgij ffi 2gkði@jÞ�k � 2�Kij; (B1a)

�@tKij ffi ��

2
gk‘@k@‘gij þ �@ði�jÞ � @i@j�; (B1b)

�@t� ffi �2�K; (B1c)

�@t�
i ffi 3

4
ðg= ��Þ1=3

�
�i þ 1

6
gijgk‘@jgk‘

�
; (B1d)

�@t� ffi gij@i@j�; (B1e)

�@t�
i ffi �gij@j�þ gjk@j@k�

i; (B1f)

where �@t � @t � �i@i.
Let ni denote a covector normalized by the spatial

metric: nig
ijnj ¼ 1. The principal symbol for the system

(B1) above is defined by
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��ĝij ¼ 2gkðinjÞ�̂k � 2�K̂ij; (B2a)

��K̂ij ¼ ��

2
ĝij þ �gkðinjÞ�̂k � ninj�̂; (B2b)

�� �̂ ¼ �2�gijK̂ij; (B2c)

���̂i ¼ 3

4
ðg= ��Þ1=3

�
�̂i þ 1

6
nigk‘ĝk‘

�
; (B2d)

���̂ ¼ �̂; (B2e)

���̂i ¼ �ni�̂þ �̂i; (B2f)

where �� � �� �ini. The proper speed (proper distance
per unit proper time as measured by observers at rest in the
t ¼ const slices) of a characteristic mode is given by
ð�? ��Þ=�. (See, for example, the discussion in
Ref. [31]).

Now introduce an orthonormal triad consisting of ni and
unit vectors eiA, with A ¼ 1, 2. These vectors satisfy

nie
i
A ¼ 0 and eiAgije

j
B ¼ 	AB. When we project Eqs. (B2)

into the triad directions ni and eiA, the principal symbol
separates into blocks that have common transformation
properties under rotations about the plane orthogonal to
ni. The scalar block is

�ĝ??¼2�̂?�2�K̂??; (B3a)

�ĝAB	
AB¼�2�K̂AB	

AB; (B3b)

�K̂??¼��

2
ĝ??þ��̂?� �̂; (B3c)

�K̂AB	
AB¼��

2
ĝAB	

AB; (B3d)

��̂¼�2�ðK̂??þ K̂AB	
ABÞ; (B3e)

��̂?¼3

4
ðg= ��Þ1=3�̂?

þ1

8
ðg= ��Þ1=3ðĝ??þ ĝAB	

ABÞ; (B3f)

��̂¼ �̂; (B3g)

��̂?¼��̂þ �̂?: (B3h)

Here and below, the ? and upper case Latin indices are

defined, for example, by ĝ?? � ĝijn
inj and ĝAB �

ĝije
i
Ae

j
B. The vector block is

�ĝ?A ¼ �̂A � 2�K̂?A; (B4a)

�K̂?A ¼ ��

2
ĝ?A þ �

2
�̂A; (B4b)

��̂A ¼ 3

4
ðg= ��Þ1=3�̂A; (B4c)

��̂A ¼ �̂A: (B4d)

The tensor block is

�ĝtfAB ¼ �2�K̂tf
AB; (B5a)

�K̂tf
AB ¼ ��

2
ĝtfAB; (B5b)

where the superscript tf indicates that the tensor
is trace-free in the two-dimensional surface orthogonal
to ni.
A quasilinear system is strongly hyperbolic if

its principal symbol possesses a complete set of eigenvec-
tors with real eigenvalues �. The tensor block (B5) meets
these criteria with eigenvalues� ¼ �? � �. These eigen-
values correspond to proper speeds of �1. The vector
block also meets the criteria for strong hyperbolicity

with � ¼ �? � � and � ¼ �? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðg= ��Þ1=3

q
=2. The

proper speeds for the vector modes are �1 and

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðg= ��Þ1=3

q
=ð2�Þ.

The eigenvalues for the scalar block are � ¼ �? � �

(with multiplicity two), � ¼ �? � ffiffiffiffiffiffi
2�

p
, and � ¼ �? �

ðg= ��Þ1=6. These correspond to proper speeds �1 (with

multiplicity two), � ffiffiffiffiffiffiffiffiffi
2=�

p
, and �ðg= ��Þ1=6=�. The eigen-

vectors are complete unless the eigenvalues �? � ffiffiffiffiffiffi
2�

p
and �? � ðg= ��Þ1=6 coincide. That is, the scalar block

meets the criteria for strong hyperbolicity as long as 2� �

ðg= ��Þ1=3.
The GH system with moving puncture gauge condi-

tions is strongly hyperbolic everywhere, except for re-

gions of spacetime in which 2� ¼ ðg= ��Þ1=3. This
restriction on strong hyperbolicity also applies to BSSN
with the moving puncture gauge [32]. In fact, the char-
acteristic speeds for GH with moving puncture gauge are
precisely the same as for BSSN with moving puncture
gauge. It is recognized from studies with the BSSN

equations that the condition 2� � ðg= ��Þ1=3 is typically
violated in black hole spacetimes on a two-dimensional
surface in space [31,32]. The breakdown of strong hyper-
bolicity does not appear to cause problems for finite
difference codes. On the other hand, the lack of hyper-
bolicity can create serious problems for spectral codes
that rely on the passing of characteristic information
between spatial domains [33].
Recall that the moving puncture gauge conditions

(31) can be modified by using the constraint Ci ¼ 0
to replace �i with ��i

jkg
jk. With this replacement

Eq. (B1d) becomes

�@ t�
i ffi 3

4ðg= ��Þ1=3½gijgk‘@kg‘j � 1
3g

ijgk‘@jgk‘�: (B6)

The principal symbol (B2) along with its scalar and vector
blocks are modified accordingly. However, the eigenvalues
are not changed, and once again the eigenvectors are

complete if 2� � ðg= ��Þ1=3.
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