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We compute the entanglement entropy associated to the Hawking emission of a (1þ 1)-dimensional

acoustic black hole in a Bose-Einstein condensate. We use the brick wall model proposed by ’t Hooft,

adapted to the momentum space, in order to tackle the case when high frequency dispersion is taken in

account. As expected, we find that in the hydrodynamic limit the entropy only depends on the size of the

box in the near-horizon region, as for gravitational (1þ 1)-dimensional black holes. When dispersion

effects are considered, we find a correction that depends on the square of the size of the near-horizon

region measured in units of healing length, very similar to the universal correction to the entropy found in

the case of spin-1=2 Heisenberg XX chains.
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I. INTRODUCTION

When Hawking realized that a Schwarzschild black hole
emits radiation like a black body with a temperature de-
termined by its mass [1], investigations focused on the
connection between the Hawking-Bekenstein formula [2]
for the entropy S ¼ 1

4M
2
PlA, where A is the area of the

horizon, and some consistent microscopic counting of
degrees of freedom. Generally speaking, there is a large
consensus on defining the entropy by using the
von Neumann formula S ¼ �Trð� ln�Þ where � is a den-
sity matrix. In particular, one can associate the density
matrix to the substate formed by the outside region of the
black hole. In this case, the entropy measures the degree of
entanglement between the modes in the two sides of the
horizon [3]. Alternatively, entropy can be defined through
the statistical mechanics of a system in the vicinity of the
horizon [4,5]. Remarkably, the two characterizations coin-
cide and agree with the Bekenstein-Hawking formula up to
the factor 1=4, whose origin is still unknown. It should also
be mentioned that these microscopic realizations of the
entropy suffer from ultraviolet divergences, that can be
cured by introducing a cutoff at around the Planck scale,
see [6] for recent developments and [7] for a review.

The lack of experimental evidence for Hawking radia-
tion is mainly due to the smallness of ℏ and c�1. However,
as first noticed by Unruh in 1981, in condensed matter
physics there are systems that closely mimic curved space-
time configurations, and where the speed of light is effec-
tively replaced by the speed of sound waves, so the
suppression of quantum effects can be lifted by several
order of magnitudes [8]. In particular, an irrotational fluid
flowing through a device able to accelerate it to supersonic
speed can generate a thermal flux of phonons that shows
the same characteristics of the Hawking radiation emitted
by a black holes, see [9] and references therein. This
possibility was studied in the context of Bose-Einstein

condensates (BEC) and many other systems, see e.g.
[10]. Although no analog formulae to the Hawking-
Bekenstein one are known for these dumb holes, we expect
that entropy can be associated to the phonons created via
the Hawking mechanism. In fact, the acoustic horizon acts
as a partitioning screen, which is a sufficient condition to
create entanglement and, therefore, entanglement entropy.
In this paper, we would like to address the calculation of

the entanglement entropy associated to the analog of the
Hawking radiation created in (1þ 1)-dimensional acoustic
black holes in dilute BEC gas. In order to avoid typical
infrared divergences occurring in this kind of bipartite
systems, we confine the region in which we compute the
entropy into a box of size L and located at an arbitrary
distance � near the horizon. The (1þ 1)-dimensional
acoustic black holes was intensively studied both analyti-
cally [11–14] and numerically [15] as it might be experi-
mentally realizable. In the limit where the wavelength of
the modes are much larger than the healing length of the
gas, one can neglect the high frequency dispersion typical
of this system (the so-called hydrodynamic limit). In this
case, we expect that the entropy is proportional, at the
leading term, to lnðL=�Þ. This is due to the fact that the
mode equation in (1þ 1) dimensions is nearly conformally
invariant, exactly like in the case of a (1þ 1)-dimensional
gravitational black hole.1 Therefore, the entropy is purely
‘‘geometric’’ and arbitrary, in the sense that it cannot
depend on the parameters of the black hole. In this paper,
we verify this by employing the brick wall model proposed
by ’t Hooft in [5], see also [16]. We stress that the entan-
glement entropy computed here refers only to the phononic
radiation produced by the Hawking mechanism, and has
nothing to do with the thermodynamic entropy of the Bose-
Einstein condensate, which vanishes.
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1In the case of gravitational (1þ 1)-dimensional black holes
obtained by dimensional reduction, conformal invariance is
obtained by neglecting a potential term, see e.g. [11].
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The main results of our work concern however the case
when dispersion is taken in account, and conformal invari-
ance is broken. In fact, the dispersion typically introduces a
high-order differential operator in the mode equations,
with a prefactor that depends on the healing length, in
analogy with certain gravitational models endowed with
modified dispersion relations, see e.g. [17]. Because of this
term, the entropy is no longer arbitrary and it is reasonable
to expect that it depends on the healing length. Indeed, we
find that this is the case, by using the brick wall technique
introduced by ’t Hooft and adapted to the momentum
space. As far as we know, this is the first time that such a
method is employed in the context of acoustic black holes,
and we find that our adaptation to momentum space be-
comes a powerful tool to compute the entanglement en-
tropy, especially when high frequency dispersion is
present.

The plan of the paper is the following. In the next section
we briefly review the equations governing the (1þ 1)-
dimensional BEC in both the hydrodynamic limit and the
dispersive case. In Sec. III we recall the brick wall model,
and we show how one can use it in momentum space. In
Sec. IV we apply the method to compute the entanglement
entropy in the acoustic black hole with dispersion. In
Sec. V we discuss our results, and compare them with
some numerical calculations.

II. THE SETUP

In the dilute gas approximation [18], the BEC can be

described by an operator �̂ that obeys the equation

iℏ@t�̂ ¼
�
� ℏ2

2m
~r2 þ Vext þ g�̂y�̂

�
�̂; (1)

where m is the mass of the atoms, g is the nonlinear atom-
atom interaction constant, and Vext is the external trapping
potential. The wave operator satisfies the canonical com-

mutation relations ½�̂ðt; ~xÞ; �̂ðt; ~x0Þ� ¼ �3ð ~x� ~x0Þ. To

study linear fluctuations, one substitutes �̂ with �0ð1þ
�̂Þ so that �0 satisfies the Gross-Pitaevski equation

iℏ@t�0 ¼
�
� ℏ2

2m
~r2 þ Vext þ gn

�
�0; (2)

and the fluctuation �̂ is governed by the Bogolubov-
de Gennes equation

iℏ@t�̂ ¼ � ℏ2

2m

�
~r2 þ 2

~r�0

�0

~r
�
�̂þmc2ð�̂þ �̂yÞ; (3)

where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
is the speed of sound, and n ¼ j�0j2 is

the number density. We now focus on the (1þ 1)-
dimensional case and consider a configuration with con-
stant v and n, while the speed of sound cðxÞ smoothly
decreases from the subsonic region to the supersonic one,
and it is equal to v at x ¼ 0, as in [11].

This is possible provided one modulates g, and hence the
speed of sound c, by keeping the combination gnþ Vext

unchanged [15]. In this way, Eq. (2) admits the plane-wave
solution �0 ¼

ffiffiffi
n

p
expðik0x� i!0tÞ where v ¼ ℏk0=m is

the condensate velocity. To study the Bogolubov-
de Gennes equation, we expand the field operator as

�̂ðt; xÞ ¼ P
j½âj�jðt; xÞ þ âyj ’�

j ðt; xÞ� and we find that

the modes �jðt; xÞ and ’jðt; xÞ satisfy the coupled differ-

ential equations [13]�
ið@t þ v@xÞ þ �c

2
@2x � c

�

�
�j ¼ c

�
’j;�

�ið@t þ v@xÞ þ �c

2
@2x � c

�

�
’j ¼ c

�
�j;

(4)

where � ¼ ℏ=ðmcÞ is the healing length of the condensate.
In these settings, the dispersive effects are signaled by

the presence of �, which depends on the local velocity of
sound and that is a nonperturbative parameter [13].
Therefore, to study the case when dispersion is negligible
one must switch to the density-phase representation con-
sisting in defining the density n̂1 and phase operators �1 via

�̂ ¼ n̂1
2n

þ i
�̂1
ℏ
; (5)

along the lines of [11]. With these definitions, the limit
� ! 0 is well defined and one finds the single equation

ð@t þ v@xÞ 1
c2

ð@t þ v@xÞ�1 ¼ @2x�1: (6)

The analogy with gravitational black holes comes about
when one notices that the above equation can be written
as h�1 ¼ 0, where the d’Alambertian is defined on the
so-called acoustic metric

ds2¼ n

mc
½�ðc2�v2Þdt2�2vdxdtþdx2þdy2þdz2�;

(7)

and where one assumes that �1 does not depend on the
transverse coordinates y and z [12]. The metric shows an
event horizon located where cðxÞ ¼ v and its structure is
the same of the Painlevé-Gullstrand line element, up to the
conformal factor n=ðmcÞ. Note that Eq. (6) is not confor-
mally invariant unless c is constant.

III. THE BRICK WALL IN MOMENTUM SPACE

We now turn to the calculation of the entropy with the
brick wall method, originally described by ’t Hooft in
[5], where it was applied to a (3þ 1)-dimensional
Schwarzschild black hole. The method is based on the
counting of the modes of a massive scalar field, with
Dirichlet boundary conditions, defined inside a box of
size L and placed at a distance � from the horizon. The
result is that the entropy is proportional to the area of the
horizon. Also, the proper distance between the horizon and
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the edge of the box is a constant of the order of the Planck
length. The physical interpretation of this entropy is dis-
cussed in great detail in [19].

For (1þ 1)-dimensional gravitational black holes, the
result is radically different and, at the leading order, the
entropy reads

S ’ 1

6
ln

�
L

�

�
; (8)

in the limit L=� � 1 [20]. In the case of the acoustic black
hole studied here, the result is the same, at least at the
leading order, if we do not account for high frequency
dispersion. To show this, it is sufficient to assume that
the modes that are solutions to Eq. (6) vanish at the
boundaries of the segment ½�; L�, where � is located near
the horizon, at x ¼ 0, and L is the length of the near-
horizon region, namely, the region where we can linearize
the speed of sound as cðxÞ ’ cð0Þ þ �x on each side of the
horizon. In this expansion

� ¼ 1

2v

d

dx
ðc2 � v2Þx¼0 (9)

is the analog of the surface gravity of the black hole. The
stationary solutions fðxÞ of Eq. (6) can be found with a
WKB approximation by writing the solution as

�1ðxÞ ¼ �0ffiffiffiffiffiffiffiffiffi
fðxÞp exp

�
i

ℏ

Z x
fðx0Þdx0

�
: (10)

This expression can be seen as the continuum limit of a
function of the form expðiPnknÞ for n ¼ 0 . . . nmax, where
the sum counts the number of modes. Thus, in the contin-
uum limit, the number of modes populating the interval
½�; L� with frequency ! is given by [5]

nð!Þ ¼ 1

�ℏ

Z L

�
fðxÞdx ’ !

��
ln

�
L

�

�
: (11)

We now recall that the free energy and the entropy
associated to massless spin-0 particles are given, respec-
tively, by

F ¼ �
Z 1

0

nðEÞ
ðe	E � 1ÞdE; S ¼ 	2 dF

d	
; (12)

where E ¼ ℏ! and 	 is the inverse of the temperature of
the black hole, 	 ¼ ðkBTÞ�1 ¼ 2�=ðℏ�Þ.

By replacing the expression (10) into Eq. (6), and keep-
ing only the leading terms in ℏ we find that fðxÞ ’
ℏ!=ðcðxÞ � vÞ. By expanding around the horizon, where
cðxÞ ’ vþ �x, we see that the dominating solution for
small x is fðxÞ ’ ℏ!=�x, thus we find Eq. (8). This result
confirms the validity of the brick wall model to compute
the entanglement entropy when the acoustic metric has a
horizon. In fact, the presence of a horizon is crucial to this
result, as fðxÞ / 1=x precisely because of the vanishing of
the gtt term of the metric (7) at the horizon. We note further
that Eq. (8) agrees also with the calculation of the leading

term of entanglement entropy in bipartite spin chains [21],
including the noncritical case, where conformal symmetry
is only approximate [22], as in the case studied here.
To tackle the dispersive case, it is convenient to derive

this result also in momentum space. One defines the

Fourier transform ~�1 of the modes via

�1ðxÞ ¼
Z dpffiffiffiffiffiffiffi

2�
p eipx ~�1ðpÞ; (13)

so that Eq. (6) in momentum space becomes

ð!� vpÞ 1
ĉ2

ð!� vpÞ~�1 ¼ ip2 ~�1; (14)

where, in the near-horizon approximation,

1

ĉ2
’ 1

v2

�
1� 2i�

v
@p � 3�2

v2
@2p

�
: (15)

The solutions ~fðpÞ to Eq. (14) can be written in terms of
Whittaker functions. However, for our purposes it is suffi-
cient to use again the WKB method by substituting in
Eq. (14) the expression

~�ðpÞ ¼
~�0ffiffiffiffiffiffiffiffiffiffi
~fðpÞ

q exp

�
i

ℏ

Z p
~fðp0Þdp0

�
: (16)

If we consider the large vp=� limit, i.e. we select wave-
lengths much smaller than the near-horizon region (whose
size is approximately v=�), and we recall that we are in the
regime of linear dispersion! ¼ cðxÞp , we find that, at the
lowest order in the WKB expansion,

~fðpÞ ’ ℏ!
�p

: (17)

As we are in momentum space, we now count the modes
with an associated momentum between pmin and pmax. The
first value corresponds to the largest wavelength admitted
in the near-horizon region and corresponds to the infrared
contribution to the integral (11). The value pmax is inter-
preted as the minimal distance that we can probe with our
modes. As we are considering the hydrodynamic limit, this
implies pmax� � 1. In analogy with Eq. (11), the number
of modes is defined as

~nð!Þ ¼ 1

�ℏ

Z pmax

pmin

~fðpÞdp ¼ !

��
ln

�
pmax

pmin

�
: (18)

By following the same steps as above, we find that

S ¼ 1

6
ln

�
pmax

pmin

�
: (19)

This expression is equivalent to Eq. (8) in terms of count-
ing the number of degrees of freedom, however it stresses
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the fact that the entropy diverges in the ultraviolet non-
locally, i.e. in no particular point in the near-horizon re-
gion. In this respect, the expression above reflects more
closely the properties of the entanglement entropy [6].

Before considering the dispersive case, we recall that the
near-horizon region has an extension L roughly given by
the speed of sound multiplied by the typical time �t taken
by a mode to cross this region. Therefore, by using Eq. (8),
we can write _S ¼ 1=ð6�tÞ. On the other hand, the surface
gravity can be interpreted as the inverse of the time taken
by a mode to cross the near-horizon region. Therefore, we
find that _S ¼ �=6, in line with [23], up to a factor of 2, that
depends on considering bosons rather than fermions.
Although there is no explicit time-dependence in the
model, the Hawking mechanism still produces a steady
flow of outgoing phonons at a rate that depends on �.
Therefore, the time derivative of S should be interpreted
as the production rate of the entropy associated to this flow.

IV. DISPERSIVE CASE

We now consider the dispersive case, and evaluate the
contribution to the entropy given by high frequency modes.
The two equations of the system (4) can be easily de-
coupled in momentum space. By defining ��ðt; xÞ ¼
expði!tÞ½�ðxÞ � ’ðxÞ�, we find that the Fourier transforms
of Eqs. (4) read

ĉ2 ~�þðpÞ �
�ð!� pvÞ2

p2
� ℏ2p2

4m2

�
~�þðpÞ ¼ 0;

~��ðpÞ � 2mð!� pvÞ
ℏp2

~�þðpÞ ¼ 0:

(20)

The first of these equations can be solved with the WKB
method in the near-horizon approximation ĉ ¼ vþ i�@p.

At the leading order, we find

~fðpÞ ¼ vℏ
�

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� !

vp

�
2 � �2

0p
2

4

s 1
A; (21)

where �0 ¼ �ðx ¼ 0Þ is the healing length at the horizon.
The number of modes is

~nð!Þ ¼ v

��0�

Z xmax

xmin

dx

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� a

x

�
2 � x2

4

s 3
5; (22)

where x ¼ p�0 and a ¼ !�0=v. The integration bounda-
ries are fixed by the positivity of p and of the argument of

the square root, namely 0< x<�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a

p [ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

p
< x < 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2a
p

. However, as the wave-
lengths of the physically realistic modes, given by v=!,
must be much larger than �0, we see that a � 1. Thus, we
can simplify the above integral by expanding the integrand
function and the upper integration limit as

~nð!Þ ’ v

��0�

Z a

�
dx

�
a

x
� x3

8a

�
; (23)

where � ¼ �0pmin � a is set to cope with the same loga-
rithmic divergence encountered in the nondispersive case.
With the help of Eqs. (12), we calculate the entropy in the
form S ¼ Slead þ Scorr where

Slead ¼ 1

4
� 


6
þ �ð1; 2Þ

�2
þ 1

6
ln

�
�

2�vpmin

�
; (24)

Scorr ¼ � 1

960

�2
0�

2

v2
: (25)

In these expressions 
 is the Euler constant and �ð1; 2Þ is
the first derivative of the � function evaluated at 2. To
obtain this result, we assumed that the inverse temperature
of the Hawking radiation is 	 ¼ 2�=ðℏ�Þ, i.e. it is not
affected by dispersion [9,14].

V. DISCUSSION

We first note that the correction Scorr to the entropy is set
by the square of the size of the near-horizon region L ’
v=� measured in units of the healing length. Remarkably,
this term is very similar to the one found in the case of the
one dimensional spin-1=2 Heisenberg XX chain in a mag-
netic field [24].
Another important observation is that the leading term

Slead is no longer completely arbitrary as in the hydro-
dynamic case. In fact, dispersion affects the integration
boundaries in Eq. (22), which are no longer put by hands,
but are fixed in the ultraviolet by the system itself, as the
dispersion relation in this system is fixed by the properties
of the BEC and can be found to be expressed by the
function [13]

ð!� vpÞ2 ¼ c2
�
p2 þ �2p4

4

�
: (26)

As a result, the leading term turns out to be a numerical
constant plus a logarithmic correction that depends on the
infrared regulator. Physically, the argument of the loga-
rithm �=ð2�vpminÞ can be written as the ratio of the
maximum wavelength allowed in the system �max ¼
1=pmin and the size of the box, i.e. of the near-horizon
region, L. It is reasonable to expect that, by taking in
account the dependence of �1 upon transverse directions
(while keeping the potential a function of x only) one can
provide for an effective mass able to act as an infrared
regulator. This issue will be investigated in a future paper.
To further check our results, we compute the entropy

numerically, and we cope with the infrared divergence in
two ways. In the first, we set the value of xmin ¼ 10�12 in
the integral (22). In the second, we subtract to the integrand
the function a=x and we let xmin ¼ 0. The upper integra-
tion limit is set at xmax ¼ 10�4 in both cases. The two
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results are plotted in Fig. 1, and we see that the entropy is in
fact constant in terms of the normalized temperature
�0kBT=ðvℏÞ ’ �0=ð2�LÞ. The different numeric values
of the plateaux depend only on the choice of the infrared
regularization. If one considers typical experimental values

for Rubidium atoms, like v ¼ 4� 10�3 m=s, �0 ¼
2� 10�7 m, � ¼ 2; 7� 103 Hz, the Hawking temperature
is of the order of few nK [11], which corresponds to values
on the horizontal axis around 0.05. We see that the entropy
is constant in a large range containing this value. This is
expected as the first order correction, which can be written
as Scorr ’ �ð��0kBT=4vℏÞ2=15, is very small for these
values.
In summary, we have verified that the scaling behavior

of the entropy in the hydrodynamic limit is the same as the
one predicted by conformal field theory, by using a method
inspired by the brick wall model for astrophysical black
holes. When dispersion is taken into account, we found a
correction that is similar to the one calculated for the
entanglement entropy of certain spin-chain systems.
Also, the leading term appear to be a constant determined
uniquely by the infrared cutoff. These elements, although
not a rigorous proof, strongly support the interpretation of
the brick wall entropy as due to the entanglement of the
phonon pairs created via the Hawking mechanism.
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