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We present some arguments suggesting that the mismatch between Bekenstein-Hawking entropy and

the entropy of entanglement for vector fields is due to the same gauge configurations that saturate the

contact term in topological susceptibility in QCD. In both cases, the extra term with the ‘‘wrong sign’’ is

due to distinct topological sectors in gauge theories. This extra term has a nondispersive nature, cannot be

restored from the conventional spectral function through dispersion relations, and cannot be associated

with any physical propagating degrees of freedom. We make a few comments on some of the profound

consequences of our findings. In particular, we speculate that the source of the observed dark energy may

also be related to the same type of gauge configurations that are responsible for the mismatch between

black hole entropy and the entropy of entanglement in the presence of a causal horizon.
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I. INTRODUCTION

The relation between black hole entropy and the entropy
of entanglement for matter fields has been a subject of
intense discussion for the last couple of years, see the re-
views in [1–4] and references therein. There are many
subtleties in relating these two things. The present work is
concentrated just on one specific subtlety first discussed in
[5]. Namely, it has been claimed [5] that for spin zero and
one-half fields, the one loop correction to the black hole
entropy is equal to the entropy of entanglement,while for the
spin one field black hole entropy has an extra term describ-
ing the contact interaction with the horizon. Precisely, this
contact interaction with the horizon is the main topic of the
present work. Beforewe elaborate on this subject wewant to
make one preliminary remark regarding the term ‘‘black
hole entropy.’’ As it has been argued in a number of papers,
see e.g.[6–8] and also review papers [1–4], the notion of
black hole entropy should apply not just to black holes but to
any causal horizon (‘‘black hole entropy without black
holes’’). We adopt this viewpoint, and in fact we shall not
discuss black hole physics in this paper at all. Rather, the
main application of our studies will be the cosmology of the
expanding universe and its causal horizon. For short, we
shall use term ‘‘entropy’’ throughout the paper.

The unique features of the contact term related to the
vector gauge field in the entropy computations can be
summarized as follows [5] (see also the follow-up paper
in [9]):

(a) The contact term being a total derivative can be
represented as a surface term determined by the
behavior at the horizon;

(b) This term makes a negative contribution to black
hole entropy.

(c) Therefore, it cannot be identified with the entropy of
entanglement, which is intrinsically positive quantity.

(d) This contribution does not vanish even in two
dimensions when the entropy of entanglement is

identically zero as no physical propagating degrees
of freedom are present in the system.

(e) This contribution is gauge invariant in two dimen-
sions and gauge dependent in the four-dimensional
(4D) case [9].

(f) The technical reason for this phenomenon is as
follows: One cannot use the physical Coulomb
gauge (when only physical degrees of freedom are
present in the system) as it breaks down at the origin,
where A� is ill-defined. Therefore, an alternative
description in terms of a covariant gauge (when
unphysical degrees of freedom inevitably appear in
the system) should be used instead.

(g) In this covariant description the entropy is obtained
by varying the path integral with respect to the deficit
angle of the cone as explained in [5]. Such a proce-
dure can (in principle) lead to a negative value for the
entropy. In fact, it does come out negative [5].

The main goal of the present work is to argue that the
presence of this ‘‘weird’’ term is intimately related to the
well-known property of gauge theories where the summa-
tion over all topological sectors must be performed for the
path integral to be properly defined. We explain how all the
features denoted as (a–g) in the list above can be naturally
understood within our framework when the sum over topo-
logical sectors is properly taken into account. InMinkowski
space the corresponding procedure is known to produce a
nondispersive contact term with the ‘‘wrong sign,’’ which
plays a crucial role in the resolution of the so-called Uð1ÞA
problem in QCD. Precisely, this nondispersive contact term
eventually becomes theweird termwith the properties (a–g)
when we go from conventional Minkowski space into a
curved/time-dependent background with a causal horizon.
Our consideration in this paper will be based on an

analysis of the local characteristics (such as topological
susceptibility, free energy density, etc.) computed deep
inside the horizon region. It is very different from the
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computation of a global characteristic such as the total
entropy of a black hole when the closest vicinity of
the horizon (just outside of it) plays the crucial role in
the computations. Nevertheless, we remain sensitive to the
existence of the horizon because our analysis is based on
consideration of some specific topologically protected
quantities. Essentially, by analyzing the very unusual fea-
tures listed above, i.e. (a–g), we learn some important
lessons regarding the behavior of the ground state resulting
from the mere existence of a causal horizon in the presence
of the gauge degrees of freedom in the system.

Thpaper is organized as follows. In Sec. II we present our
arguments for the two-dimensional (2D) case when all com-
putations can be explicitly performed. We generalize our
arguments for the four-dimensional case in Sec. III.We argue
that this term is indeed gauge dependent in four dimensions
in the Abelian case as the explicit computations of Ref. [9]
suggest. However, we shall argue that this term becomes
gauge independent in the non-Abelian case. We make a
few comments on some of the profound consequences of
our findings in Sec. IV, wherewe speculate that the source of
the observed dark energy might be related to the same gauge
configurations that are responsible for themismatch between
black hole entropy and the entropy of entanglement.

II. TOPOLOGICAL SECTORS, CONTACT TERM
WITH THEWRONG SIGN, ANDALLTHAT FOR 2D

QED IN RINDLER SPACE

First of all, we shall demonstrate below the presence of a
nonconventional contribution into the energy with a wrong
sign in Minkowski space. This contribution is gauge invari-
ant, and it exists even in pure photodynamics when no
propagating degrees of freedom are present in the system.
It cannot be removed by any means (such as redefinition of
the energy) as it is a real physical contribution. In particular,
the anomalous Ward identities (which emerge when the
massless fermions are added into the system) cannot be
satisfied without this term. We shall argue that this term
can be treated as a contact term, and in fact is related to the
existence of different topological sectors in this (naively
trivial) two-dimensional photodynamics. In other words,
the presence of different topological sectors in the system,
which we call the ‘‘degeneracy’’ for short,1 is the source of
this contact term, which is not related to any physical
propagating degrees of freedom.

In the next step, we discuss the same system in the
presence of the horizon in the Rindler space. We shall
argue that the contact term (which emerges as a result of
topological features of gauge theory) demonstrates the
weird and strange properties listed above in the presence
of the horizon.
In what follows it is convenient to study the topological

susceptibility � (rather than free energy itself) which is
related to the � dependent portion of the free energy
density2 as follows

�ð�; � ¼ 0Þ ¼ �@2Fvacð�; �Þ
@�2

���������¼0
; (1)

where � is the conventional � parameter which enters the
Lagrangian along with topological density operator, see a
precise definition below. We always assume that � ¼ 0,
however �ð� ¼ 0Þ � 0 does not vanish, and in fact is the
main ingredient of the resolution of the Uð1ÞA problem in
QCD [10–12], see also [13–15]. Free energy itself Fvacð�Þ
can be always restored from� as dependence on � is known
to be Fvac � cos�. As we show below, the topological
susceptibility � (and therefore Fvac), being the local char-
acteristics of the system, nevertheless are quite sensitive to
the mere existence of the horizon, even when computed far
away from it. As we shall see this sensitivity is related to the
degeneracy of the system and topological nature of �.

A. Topological susceptibility and contact term

The simplest (and physically attractive) choice is the
Coulomb gauge when no physical propagating degrees of
freedom are present in the system, and therefore the dy-
namics must be trivial. It is well known why this naive
argument fails: the vacuum in this system is degenerate,
and one should consider an infinite superposition of the
winding states jni as originally discussed in [16]. Such a
construction in the Coulomb gauge restores the cluster and
other important properties of quantum field theory. The
vacuum in this gauge is characterized by long-range forces
(if charged physical fermions are introduced into the sys-
tem). This long-range force prevents distant regions from
acting independently. We believe that precisely this feature
leads to the difficultiesmentioned in [5] in the computations
of the entropy in the physical Coulomb gauge in two di-
mensions, where a covariant gauge has been used instead.
As our goal is to make a connection with the computa-

tions of Ref. [5], we shall not elaborate on the Coulomb
gauge in the present paper any further, but rather consider a
covariant gauge to study this system. In the covariant
Lorentz gauge, there are no long-range forces. Instead,
new (unphysical) degrees of freedom emerge in the system,
see precise definition below.

1Not to be confused with the conventional term ‘‘degeneracy’’
when two or more physically distinct states are present in the
system. In the context of this paper the ‘‘degeneracy’’ implies the
existence of winding states jni constructed as follows: T jni ¼
jnþ 1i. In this formula the operator T is the large gauge
transformation operator which commutes with the Hamiltonian
½T ; H� ¼ 0. The physical vacuum state is unique and con-
structed as a superposition of jni states. In the path integral
approach, the presence of n different sectors in the system is
reflected by the sum over k 2 Z in Eqs. (10)–(12).

2in case of infinite manifold (rather than finite size � ¼ T�1)
the free energy from relation (1) becomes the conventional
vacuum energy as employed in study of the Uð1ÞA problem in
QCD in [10–12].

ARIEL R. ZHITNITSKY PHYSICAL REVIEW D 84, 124008 (2011)

124008-2



We want to study the topological susceptibility � in the
Lorentz gauge defined as follows,3

� � e2

4�2
lim
k!0

Z
d2xeikxhTEðxÞEð0Þi; (2)

where Q ¼ e
2�E is the topological charge density and

Z
d2xQðxÞ ¼ e

2�

Z
d2xEðxÞ ¼ k (3)

is the integer valued topological charge in the 2D Uð1Þ
gauge theory, EðxÞ ¼ @1A2 � @2A1 is the field strength.
The expression for the topological susceptibility in the
2D Schwinger QED model is known exactly as [17]

�QED ¼ e2

4�2

Z
d2x

�
�2ðxÞ � e2

2�2
K0ð�jxjÞ

�
; (4)

where�2 ¼ e2=� is the mass of the single physical state in
this model, andK0ð�jxjÞ is the modified Bessel function of
order 0, which is the Green’s function of this massive
particle. The expression for � for pure photodynamics is
given by (4) with coupling e ¼ 0 in the brackets,4 which
corresponds to the decoupling from the matter field c , i.e.

�E&M ¼ e2

4�2

Z
d2x½�2ðxÞ�: (5)

The crucial observation here is as follows: any physical
state contributes to � with negative sign

�dispersive � lim
k!0

X
n

h0j e
2�Ejnihnj e

2�Ej0i
�k2 �m2

n

< 0: (6)

In particular, the term proportional �K0ð�jxjÞ with the
negative sign in Eq. (4) is resulted from the only physical
field of mass �. However, there is also a contact termR
d2x½�2ðxÞ� in Eqs. (4) and (5) which contributes to the

topological susceptibility � with the opposite sign, and
which cannot be identified according to (6) with any con-
tribution from any physical asymptotic state.

This term has a fundamentally different, nondispersive
nature. In fact, it is ultimately related to different topologi-
cal sectors of the theory and the degeneracy of the ground
state [18] as we will shortly review below. Without this
contribution it would be impossible to satisfy the Ward
identity (WI) because the physical propagating degrees of
freedom can only contribute with sign ð�Þ to the correla-
tion function as Eq. (6) suggests, while WI requires � ¼ 0
in the chiral limit m ¼ 0. One can explicitly check that WI
is indeed automatically satisfied5 only as a result of exact

cancellation between the conventional dispersive term with
sign ð�Þ and the nondispersive term (5) with sign ðþÞ,

� ¼ e2

4�2

Z
d2x

�
�2ðxÞ � e2

2�2
K0ð�jxjÞ

�

¼ e2

4�2

�
1� e2

�

1

�2

�
¼ e2

4�2
½1� 1� ¼ 0: (7)

B. The origin of the contact term—the sum
over topological sectors

The goal here is to demonstrate that the contact term in
exact formulae (4) and (5) is a result of the sum over
different topological sectors in the 2D pure Uð1Þ gauge
theory as we now show. We follow [17] and introduce
the classical ‘‘instanton potential’’ in order to describe
the different topological sectors of the theory, which
are classified by integer number k defined in Eq. (3). The
corresponding configurations in the Lorentz gauge on the
two-dimensional Euclidean torus with total area V can
be described as follows [17]:

AðkÞ
� ¼ ��k

eV
���x

�; eEðkÞ ¼ 2�k

V
; (8)

such that the action of this classical configuration is

1

2

Z
d2xE2 ¼ 2�2k2

e2V
: (9)

This configuration corresponds to the topological charge k
as defined by (3). The next step is to compute the topo-
logical susceptibility for the theory defined by the follow-
ing partition function:

Z ¼ X
k2Z

Z
DAe�ð1=2Þ

R
d2xE2

: (10)

All integrals in this partition function are Gaussian and can
be easily evaluated using the technique developed in [17].
The result is determined essentially by the classical con-
figurations (8) and (9) as real propagating degrees of free-
dom are not present in the system of pure Uð1Þ gauge field
theory in two dimensions. We are interested in computing
� defined by Eq. (2). In the path integral approach, it can be
represented as follows:

� ¼ e2

4�2Z

X
k2Z

Z
DA

Z
d2xEðxÞEð0Þe�ð1=2Þ

R
d2xE2

: (11)

This Gaussian integral can be easily evaluated6 and the
result can be represented as follows [18]:

3Here we use Euclidean metric where path integral computa-
tions (4) have been performed.

4Factor e2

4�2 in front of (4) does not vanish in this limit as it is
due to our definition (2) rather than the result of dynamics.

5When m � 0, the WI takes the form ��mjh �c c ij. It is also
automatically satisfied because �2 ¼ e2

� þOðmÞ, and cancella-
tion in Eq. (7) is not exact resulting in behavior ��m in
complete accord with WI [19].

6One can check that the contribution resulting from the quan-
tum fluctuations about the classical background (8) does not
change the result (13). Indeed, the corresponding extra ‘‘quan-
tum’’ contribution e2

4�2 � Rd2x½�2ðxÞ � 1
V� ¼ 0 vanishes as

expected.
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� ¼ e2

4�2
� V �

P
k2Z

4�2k2

e2V2 expð� 2�2k2

e2V
ÞP

k2Z expð� 2�2k2

e2V
Þ : (12)

In the large volume limit V ! 1, one can evaluate the
sums entering (12) by replacing

P
k2Z ! R

dk such that

the leading term in Eq. (12) takes the form

� ¼ e2

4�2
� V � 4�

2

e2V2
� e

2V

4�2
¼ e2

4�2
: (13)

A few comments are in order. First, the obtained expression
for the topological susceptibility (13) is finite in the limit
V ! 1, coincides with the contact term from exact com-
putations (4) and (5) performed for 2D Schwinger model in
Ref. [17], and has the wrong sign in comparison with any
physical contributions (6). Second, the topological sectors

with very large k� ffiffiffiffiffiffiffiffiffi
e2V

p
saturate the series (12). As one

can see from the computations presented above, the final
result (13) is sensitive to the boundaries, infrared regulari-
zation, and many other aspects that are normally ignored
when a theory from the very beginning is formulated in
infinite space with the conventional assumption about triv-
ial behavior at infinity. Last, but not least, the contribution
(13) does not vanish in a trivial model when no any
propagating degrees of freedom are present in the system!
This term is entirely determined by the behavior at the
boundary, which is conveniently represented by the classi-
cal topological configurations (8) describing different to-
pological sectors (3), and accounts for the degeneracy of
the ground state.7 We know that this term must be present
in the theory when the dynamical quarks are introduced
into the system. Indeed, it plays a crucial role in this case as
it saturates the WI as formula (7) shows.

C. The ghost as a tool to describe the contact term

The goal here is to precisely describe the same contact
term (5) and (13) without the explicit sum over different
topological sectors, but rather, using the auxiliary ghost
fields as it was originally done in Ref. [16] (using the so-
called the Kogut-Susskind dipole). This auxiliary ghost
field effectively accounts for the degeneracy of the ground
state as discussed above. The computations in both
Refs. [5,16] are performed precisely in terms of the same
auxiliary scalar field defined as follows:

A� ¼ ���@
��: (14)

This formal connection allows us to make a link between
expressions (5) and (13) for the contact term with the
wrong sign computed in our framework in terms of the
auxiliary scalar field as described below and the entropy
computations performed in Ref. [5] featuring the ‘‘weird
properties’’ (e–g) as listed in the Introduction.

Our starting point is the effective Lagrangian describing
the same two-dimensional gauge system. However, now the
theory is formulated in covariant Lorentz gauge in terms of
the scalar fields [16]. The crucial element accounting for
different topological sectors of the underlying theory, and
corresponding degeneracy of the ground state, does not go
away in this description. Rather, this information is now
coded in termsof unphysical ghost scalar fieldwhichprovides
the required wrong sign for the contact term (5) and (13).
A precise construction is as follows. The effective

Lagrangian describing the low-energy physics (in
Minkowski metric) is given by [16]

L ¼ 1
2@�	̂@�	̂þ 1

2@�	2@
�	2 � 1

2@�	1@
�	1

� 1
2�

2	̂2 þmjh �qqij cos2 ffiffiffiffi
�

p ½	̂þ	2 �	1�: (15)

The fields appearing in this Lagrangian are

	1 ¼ the ghost; 	2 ¼ its partner; (16)

while 	̂ is the only physical massive degree of freedom. It
is important to realize that the ghost field 	1 is always
paired up with	2 in each and every gauge invariant matrix
element, as explained in [16]. The condition that enforces
this statement is the Gupta-Bleuler-like condition on the
physical Hilbert space H phys, which reads like

ð	2 �	1ÞðþÞjH physi ¼ 0; (17)

where the ðþÞ stands for the positive frequency Fourier
components of the quantized fields. One can easily under-
stand the origin of a wrong sign for the kinetic term for 	1

field. It occurs as a result of the h2 operator when the
Maxwell term E2 �h2 is expressed in terms of the scalar
field (14). As usual, the presence of fourth-order operator is
a signal that the ghost is present in the system. Indeed, the
relevant operator ½hhþ�2h� which emerges for this
system can be represented as the combination of the ghost

	1 and a massive physical 	̂ using the standard trick by
writing the inverse operator as follows:

1

hhþ�2h
¼ 1

�2

�
1

�h��2
� 1

�h

�
: (18)

This is a simplified explanation of how the sign ð�Þ
emerges in the Lagrangian (15) describing auxiliary 	1

field, see Ref. [16] for details.
The contact term in this framework is precisely repre-

sented by the ghost contribution[18,19] replacing the stan-
dard procedure of summation over different topological
sectors as discussed above II B. Indeed, the topological

density Q ¼ e
2�E in 2D QED is given by e

2�E ¼ ð e
2�Þ

ffiffiffi
�

p
e �

ðh	̂�h	1Þ [16]. The relevant correlation function in
coordinate space which enters the expression for the
topological susceptibility (2) can be explicitly computed
using the ghost as follows:

7See footnote 1 for clarification of the term ‘‘degeneracy.’’ In
the given context the degeneracy implies the sum over k 2 Z in
Eqs. (10)–(12).
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�ðxÞ �
�
T

e

2�
EðxÞ; e

2�
Eð0Þ

�

¼
�
e

2�

�
2 �

e2

Z d2p

ð2�Þ2 p
4e�ipx

�
� 1

p2 þ�2
þ 1

p2

�

¼
�
e

2�

�
2
�
�2ðxÞ � e2

2�2
K0ð�jxjÞ

�
(19)

where we used the known expressions for the Green’s

functions (the physical massive field 	̂ as well as the ghost
	1 field) determined by Lagrangian (15) and switched
back to Euclidean metric for comparison with previous
results from Secs. II A and II B.

The obtained expression precisely reproduces the exact
result (4) as claimed. In the limit e ! 0 when matter fields
decouple from gauge degrees of freedom we reproduce the
contact term (5) and (13) which was previously derived as
a result of the summation over different topological sectors
of the theory. The nondispersive contribution manifests
itself in this description in terms of an unphysical ghost
scalar field which provides the required wrong sign for the
contact term.

At the same time, this unphysical ghost scalar field does
not violate unitarity or any other important properties of
the theory as consequence of Gupta-Bleuler-like condition
on the physical Hilbert space (17). Indeed, while the
ghost’s number density operator, N may look dangerous
due to the sign ð�Þ in the commutation relations

N¼X
k

ðbyk bk�ayk akÞ ½bk;byk0 �¼�kk0 ; ½ak;ayk0 �¼��kk0

(20)

one can in fact check that the expectation value for any
physical state vanishes as a result of the subsidiary condi-
tion [16,18]:

hH physjNjH physi ¼ 0; ðak � bkÞjH physi ¼ 0: (21)

This vanishing result (21) obviously implies that no en-
tropy may be produced in Minkowski space. In other
words, the fluctuations of unphysical fields described by
operator (20) do not lead to any physical consequences
(except for merely existence of the contact term (5) as
already discussed).

We shall see in next subsection how this simple picture
drastically changes when we consider the very same sys-
tem but in the presence of the horizon. We shall argue that
the number density N of ‘‘fictitious particles’’ with wrong
commutation relations starts to fluctuate in the presence of
the horizon, in contrast with Eq. (21). Therefore, we for-
mulate a conjecture that precisely these fluctuations are
responsible for a term with a wrong sign in entropy com-
putations [5,9]. The corresponding contribution, as we al-
ready mentioned, is not related to any physical propagating
degrees of freedom but rather, is due to the presence of
topological sectors in gauge theories (and the degeneracy

of the ground state as its consequence, see footnote 1 for
clarification of the terminology) which eventually lead to a
nondispersive contribution in topological susceptibility. To
simplify things in what follows we consider a simple
Rindler space when the Bogolubov’s coefficients are ex-
actly known. However, we argue that a generic case (when
horizon is present in the system) leads to very similar
conclusion.

D. Rindler space

The total entropy with weird properties listed in the
Introduction was computed a while ago [5], and there is
no reason to review these results in the present paper. These
original results have been reproduced in [9] by using
another technique. Furthermore, in the same paper [9] it
has been demonstrated that in the two-dimensional case the
final result is gauge invariant, and therefore, it obviously
represents a physically observable quantity. As we men-
tioned earlier, we are not interested in computing global
characteristics such as total entropy. Rather, we are inter-
ested in computing some local properties, such as topo-
logical susceptibility, or the �� dependent portion of the
energy density (1) in the presence of the horizon. However,
we shall argue below, the source of weird features in both
cases is the same, and, in fact, related to the fundamental
properties of gauge theories as discussed in Sec. II B.
As we explained above, the presence of different topo-

logical sectors in gauge theory (and the degeneracy of the
ground state as its consequence) leads to the contact term
(5) even when no physical propagating degrees of freedom
are present in the system. In the physical Coulomb gauge
this term manifests itself as the presence of a long-range
force which prevents distant regions from acting indepen-
dently. The same feature but in covariant Lorentz gauge is
expressed in terms of new (unphysical) degrees of freedom
(16) which emerge in the system and effectively reproduce
the contact term as explicit computations show (19). While
these unphysical degrees of freedom do fluctuate, these
fluctuations do not lead to any physical observable expec-
tation values in Minkowski space (21) as a result of the
cancellation between two unphysical fields similar to the
conventional Gupta-Bleuler condition in QED when two
unphysical photon’s polarizations cancel each other. We
want to see how this conclusion changes when a horizon is
present in the system.
One can repeat the construction in Sec. II C to describe

(unphysical) degrees of freedom but in Rindler space [18].
A Rindler observer in a (R,L) wedge will measure the
number density of unphysical states using density operator

NðR;LÞ which is given by

N ðR;LÞ ¼ X
k

ðbðR;LÞyk bðR;LÞk � aðR;LÞyk aðR;LÞk Þ: (22)

The subsidiary condition (17) defines the physical sub-
space for accelerating Rindler observer
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ðaðR;LÞk � bðR;LÞk ÞjH ðR;LÞ
phys i ¼ 0; (23)

such that the exact cancellation between 	1 and 	2 fields
holds for any physical state defined by Eq. (23), i.e.

hH ðR;LÞ
phys jNðR;LÞjH ðR;LÞ

phys i ¼ 0; (24)

as it should. However, if the system is prepared as the
Minkowski vacuum state j0i, then a Rindler observer using
the same operator forNðR;LÞ (22) will observe the following
number density in mode k,

h0jNðR;LÞj0i ¼ h0jðbðR;LÞyk bðR;LÞk � aðR;LÞyk aðR;LÞk Þj0i

¼ 2e��!=a

ðe�!=a � e��!=aÞ ¼
2

ðe2�!=a � 1Þ ; (25)

where we used known Bogolubov’s coefficients mixing the
positive and negative frequency modes for operators

bðR;LÞk ; aðR;LÞk describing unphysical fluctuations [18].

One can explicitly see why the cancellation (21) of
unphysical degrees of freedom in Minkowski space fail
to hold for the accelerating Rindler observer (25). The
technical reason for this effect to occur is the property of
Bogolubov’s coefficients which mix the positive and nega-
tive frequencies modes. The corresponding mixture cannot
be avoided because the projections to positive-frequency
modes with respect to Minkowski time t and positive-
frequency modes with respect to the Rindler observer’s
proper time 
 are not equivalent. The exact cancellation of
unphysical degrees of freedom which is maintained in
Minkowski space cannot hold in the Rindler space because
it would be not possible to separate positive frequency
modes from negative frequency ones in the entire space-
time, in contrast with what happens in Minkowski space
where the vector @=@t is a constant Killing vector, orthogo-
nal to the t ¼ const hypersurface. The Minkowski separa-
tion is maintained throughout the whole space as a
consequence of Poincaré invariance. It is in drastic contrast
to the accelerating Rindler space [18].

The nature of the effect is the same as the conventional
Unruh effect[20] when the Minkowski vacuum j0i is re-
stricted to the Rindler wedge with no access to the entire
space-time. An appropriate description in this case, as is
known, should be formulated (for the R observer) in terms
of the density matrix by ‘‘tracing out’’ over the degrees of
freedom associated with the L-region. In this case the
Minkowski vacuum j0i is obviously not a pure state but a
mixed state with a horizon separating two wedges, which is
the source of the entropy. In contrast with Unruh effect[20],
however, one cannot speak about real radiation of real
particles as the ghost 	1 and its partner 	2 are not the
asymptotic states and the corresponding positive frequency
Wightman Green function describing the dynamics of
these fields vanishes [18]. In different words, these auxil-
iary fields contribute to the nondispersive portion of the
correlation function in Eqs. (4), (5), and (7) but not to

conventional dispersive part which is unambiguously
determined by the absorptive function as conventional
dispersion relation dictates.
Few more comments on (25) are in order. The effect is

obviously sensitive to the presence of the horizon, and,
therefore is infrared (IR) in nature. The IR nature of the
effect was anticipated from the very beginning as formu-
lation of the problem in terms of auxiliary fields (16) is
simply a convenient way to deal with different topological
sectors of the gauge theory in covariant gauge (and the
degeneracy of the ground state as their consequence) in-
stead of dealing with the long-range forces in the unitary
Coulomb gauge as discussed in Secs. II B and II C. Also,
the contribution of higher frequency modes are exponen-
tially suppressed � expð�!=aÞ as expected. The interpre-
tation of Eq. (25) in terms of particles is very problematic
(as usual for such kinds of problems) as typical frequencies
when the effect (25) is not exponentially small, are of order
!� a, and the notion of ‘‘particle’’ for such ! is not well
defined.
We do not attempt to reproduce the known results on

entropy from Ref. [5] based on the nonvanishing expecta-
tion value for the number density operator (25). First of all,
it is not obvious what the physical meaning of such a
computation would be based on expectation value (25) for
the operator which satisfies thewrong commutation relation
(20). Furthermore, it is not obvious how to interpret N
particles from Eq. (25) when the entire notion of particles
is not even defined for relevant parameters. Indeed, as we
argued above the effect is large h0jNj0i � 1 only for a very
large wavelength � � a�1 which is the size of the horizon
scale.
Our goal here is in fact quite different. We want to argue

that the source of the ‘‘wrong sign’’ in entropy computa-
tions [5] (featuring the ‘‘weird properties’’ as listed in the
Introduction) and the source of the ‘‘wrong sign’’ for the
contact nondispersive term (discussed in present paper) are
in fact of the same origin. In addition to the arguments
presented above, we note that the technical computations
of the entropy performed in [5] are actually based precisely
on the same representation for the A� field (14) describing

fluctuations of unphysical auxiliary degrees of freedom.
This representation of the A� field in our formalism even-

tually leads to the expression for the contact nondispersive
contribution ��2ðxÞ with the wrong sign (19) and non-
vanishing number density (25), while in Ref. [5] the very
same representation for the A� field (14) leads to the wrong

sign for the entropy. Furthermore, the contact term (5) can
be represented as a surface term,

�E&M �
Z

d2x½�2ðxÞ� ¼
Z

d2x@�

�
x�

2�x2

�
; (26)

analogous to the weird contribution in the entropy compu-
tations [5,9]. It is important to realize that the contact term
(5), (13), and (26) is a result of the sum over all topological
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sectors with the inclusion of all quantum fluctuations
which account for the degeneracy of the ground state as
discussed in Sec. II B. At the same time, quite miracu-
lously, the final result (5), (13), and (26) can be interpreted
as a surface integral of a single classical configuration of a
pure gauge field Acl

� � @�	
cl defined on a distance surface

S1 and characterized by unit winding number

�E&M �
I
S1

Acl
�dl

�

2�
¼

I
S1

rAcl
� d�

2�
¼

Z d�

2�

@	cl

@�
: (27)

These observations strongly suggest that the term with a
wrong sign in the expression for the entropy derived in [5]
has exactly the same origin as the wrong sign for the
contact term (5) as in both cases the relevant physics is
determined by the surface integrals, not related to any
physical propagating dynamical degrees of freedom.
Furthermore, in both cases the sign of the effect is opposite
to what one should expect from physical degrees of free-
dom, and, finally, in both cases the starting point [formal
representation for A� field (14)] is the same.

� Therefore, we conjecture that the surface term with
the ‘‘wrong sign’’ in entropy computations [5,9] and the
‘‘wrong sign’’ in topological susceptibility (2), (5), and
(13) both originated from the same physics, and are both
related to the same (topologically nontrivial) gauge con-
figurations, and must be present (or absent) in both com-
putations simultaneously. In both cases the ‘‘wrong sign’’
emerges due to unphysical degrees of freedom fluctuating
in the far infrared (IR) region. The technical treatments of
these terms in our framework and in Ref. [5] of course is
very different: we use the conventional Hamiltonian ap-
proach supplemented by the condition (17), while in
Ref. [5] the Rindler Hamiltonian is ill-defined on the
cone, and computations are performed using some alter-
native methods. Nevertheless, in our framework, we inter-
pret the fluctuations (25) of ‘‘fictitious particles’’ with
wrong commutation relations (20) as a different manifes-
tation of the same physics which led to the wrong sign in
entropy computations [5,9]. An additional argument sup-
porting our conjecture will be presented in the next section
where we show that these very different quantities never-
theless behave very similarly when the system is general-
ized from two to four dimensions, and therefore, they must
be originated from the same physics.

Our final comment here is this: the IR physics penetrates
into the physical gauge invariant correlation function (2)
not due to the massless degrees of freedom in the physical
spectrum (there are in fact none), but rather, as a result of
the degeneracy of the ground state and the summation over
all topological sectors in gauge theory as discussed in
Secs. II A and II B. The ghost (16) in this framework is
simply a convenient tool to account for this far IR physics
as it effectively accounts for the nondispersive contact term
with the wrong sign (19). It fluctuates in the presence of the
horizon (25), and is responsible for the wrong sign in

entropy computations, according to our conjecture.
However, it remains as an unphysical auxiliary field, as it
does not belong to the physical Hilbert space (and it never
becomes an asymptotic state capable to propagate to in-
finity) [18]. It is interesting to note that there are other
known examples where the degeneracy of the ground state
in the presence of the horizon leads to a mismatch between
black hole entropy and the entropy of entanglement, see
Appendix for references and details.

III. GENERALIZATION TO THE 4D CASE

The goal of this section is twofold. First, in the Sec. III A
we make a few comments on the generalization of the two-
dimensional results to four-dimensional QED as discussed
above. In this case the corresponding calculations of the
entropy are known [5,9]. Analysis of these results further
support our conjecture on the common nature of the sur-
face term with the wrong sign in entropy computations
[5,9] and the wrong sign in topological susceptibility as the
behavior of the system follows precisely the pattern dic-
tated by the conjecture. Second, in Sec. III B we discuss
four-dimensional non-Abelian gauge theories where cor-
responding computations of the entropy are not yet known.
Nevertheless, based on our conjecture on a common origin
of these two different phenomena, we predict a possible
outcome if the corresponding computations are performed.

A. Four-dimensional Abelian QED

We start by reviewing the basic results of Refs. [5,9] on
entropy computations in the four-dimensional case. In the
Ref. [5] the gauge invariance of the ‘‘surface term’’ has not
been tested. This question has been specifically discussed
in the follow-up paper in [9] where it has been demon-
strated that in two dimensions the result is indeed gauge
invariant and coincides with the original expression found
in Ref. [5]. However, a similar analysis in four dimensions
turned out to be much more subtle, see details in [9]. In
particular, it has been found that this term is gauge depen-
dent in the four-dimensional Abelian case, and therefore, it
was discarded [9].
How can one understand such puzzling behavior of the

system when one jumps from two to four dimensions? If
one accepts our conjecture formulated above, then this
puzzle has a very natural explanation. Indeed, the photon
field in two dimensions has nontrivial topological proper-
ties formally expressed by the first homotopy group
�1½Uð1Þ� �Z. It implies the degeneracy of the ground
state when each topological sector jni is classified by an
integer. Precisely, this feature leads to nonvanishing topo-
logical susceptibility with the wrong sign in two dimen-
sions (5). The same degeneracy leads to nontrivial
instanton solutions (8) interpolating between different
topological sectors which saturate the topological suscep-
tibility (13) with the wrong sign.
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In contrast to the two-dimensional case, in four dimen-
sions one should not expect any contact term with a wrong
sign similar to (5) as the third homotopy group is trivial,
�3ðUð1ÞÞ � 1, there is no degeneracy of the ground state as
there is only a single trivial vacuum state. Therefore, one
should not expect any nontrivial surface terms in entropy
computations in four dimensions. This expectation based
on our conjecture is supported by explicit computations [9]
where it was shown that in four-dimensional QED the
surface term is gauge dependent and must be consistently
discarded. In fact, we consider these arguments as further
support for our conjecture formulated above as the behav-
ior of the system follows precisely the pattern dictated by
this conjecture.8

Our final comment is on the interpretation of the surface
term with the wrong sign given in the conclusion of
Ref. [9], where it has been suggested that, quote, ‘‘effective
low-energy string theory which does not coincide with the
ordinary QFT’’ in principle may produce some surface
terms with the wrong sign. We want to comment here,
that in fact, very ordinary QFT may produce such kind of
terms, which however, are nondispersive in nature, and not
related to any physical propagating degrees of freedom as
explained in previous Sec. II B for the two-dimensional
case. As we argue in next section, such behavior is not a
specific feature of two-dimensional physics, but in fact a
very generic property in four dimensions as well. However,
these nontrivial properties emerge in four dimensions only
for non-Abelian gauge fields when the third homotopy
group is nontrivial, �3½SUðNÞ� �Z, the ground state is
degenerate and each topological sector jni is classified by
an integer similar to the two-dimensional case considered
in Sec. II. The contact term with the wrong sign, similar to
Eq. (5), is expected to emerge in this case as a result of the
nontrivial topological features of four-dimensional non-
Abelian gauge theories.

B. Four-dimensional non-Abelian QCD

The goal of this section is to argue that all key elements
from the previous section (Sec. II) are also present in four-
dimensional QCD. In fact, the presence of the contact term
with the ‘‘wrong sign’’ in topological susceptibility in
QCD is a crucial element of resolution of the so-called
Uð1ÞA problem [10,11]. The difference with the two-
dimensional case is that in strongly coupled QCD we
cannot perform exact analytical computations similar to

(5) and (13). However, one can use an effective description
in terms of the auxiliary ghost field [11] to compute the
nondispersive contribution to topological susceptibility
with the ‘‘wrong sign.’’ This computation, which employs
the Veneziano ghost,9 is a direct analog of the derivation of
Eq. (19) where the Kogut-Susskind ghost was used.
Essentially, our goal here is to point out that the relevant
features in 2D QED (discussed in Sec. II where all com-
putations can be explicitly performed) and in 4D QCD
(where the final word is expected to come from the lattice
numerical computations) are almost identical. To further
support these similarities we present some QCD lattice
numerical results explicitly measuring the term with the
wrong sign in topological susceptibility similar to Eqs. (4)
and (19). Based on these observations, our conjecture
essentially implies that the entropy computations in four-
dimensional non-Abelian gauge theories must reveal a
contribution with the wrong sign as the crucial element,
the degeneracy of the ground state, is present in the system.
Moreover, it must be gauge invariant (and therefore, physi-
cal) in contrast with 4D QED computations where it has
been shown to be gauge variant [9], and therefore, was
discarded.
Our starting remark is that the expression for topological

density operator

q ¼ @�K
� ¼ g2

64�2
����G

a��Ga� ¼ h� (28)

being represented in terms of the auxiliary scalar field �
has exactly the same form as in the 2D Schwinger model,
see Sec. II C. The � field in Eq. (28) is defined as K� �
@�� and is the direct analog of representation (14) for the

2D model. Our next remark is that the four-derivative
operator

R
d4xq2 � R

d4xðh�Þ2 is expected to be induced

in the effective low-energy Lagrangian as argued by
Veneziano [11,12] in his resolution of the Uð1ÞA problem.
As a result of generating the q2 operator, the relevant
structure that emerges in the effective Lagrangian, and
describing this system is identical to the 2D QED case,
i.e. it has precisely the same structure ��½hhþ
m2


0h��. The corresponding path integral
R
D� can be

treated exactly in the same way as it was treated in 2D
QED, i.e. it can be represented as the combination of the

ghost 	1 and a massive physical 	̂ field using the same
trick by writing the inverse operator as follows:

1

hhþm2

0h

¼ 1

m2

0

�
1

�h�m2

0
� 1

�h

�
; (29)

in complete analogy with the 2D case, see Eq. (18). In fact,
one can show that the relevant part of the low-energy QCD
Lagrangian in the large Nc limit in the form suggested by
Veneziano [11,12] is identical to that proposed by Kogut

8The argument presented above is based on observation that
4D space-time (where computations [9] have been performed)
has trivial topological properties. One can consider, instead, the
less trivial case where 4D space-time is represented, for ex-
ample, by a torus, in which case the relevant homotopy group
could be nontrivial, �1ðUð1ÞÞ �Z, and the contact term with the
wrong sign in entropy computations may occur. In principle, this
is a testable proposal. Technically, though, it could be quite a
challenging problem. 9Not to be confused with conventional Fadeev Popov ghosts.
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and Susskind for the 2D Schwinger model (15), where one
should replace 2

ffiffiffiffi
�

p ! f�1

0 and � ! m
0 such that the

scalar fields 	1; 	2; 	̂ have an appropriate (for the 4D
case) canonical dimension one, see [21] for details. This
formal similarity leads to almost identical computations (in
terms of the ghost) of the topological susceptibility in 4D
QCD and in 2D QED. Indeed, by repeating all our previous
steps leading to Eq. (19) with known Green’s functions
which follow from (15) and with known expression for

topological density operator qðxÞ � ðh	̂�h	1Þ one ar-
rives at the following expression for topological suscepti-
bility10 in 4D QCD in the chiral limit m ¼ 0,

�QCD �
Z

d4xhTfqðxÞ; qð0Þgi

¼ f2
0m2

0

4
�
Z

d4x½�4ðxÞ �m2

0Dcðm
0xÞ�; (30)

where Dcðm
0xÞ is the Green’s function of a free massive

particle with standard normalization
R
d4xm2


0Dcðm
0xÞ¼1.

In this expression, �4ðxÞ represents the ghost contribution,
while the term proportional to Dcðm
0xÞ represents the

physical 
0 contribution, see [21,22] for details. The ghost’s
contribution can be also thought of as the Witten’s contact
term [10] with the wrong sign, which is not related to any
propagating degrees of freedom. The topological suscepti-
bility �QCDðm ¼ 0Þ ¼ 0 vanishes in the chiral limit as a

result of exact cancellation of two terms entering (30) in
complete accordance with WI. When m � 0, the cancella-
tion is not complete and �QCD ’ mh �qqi as it should.

Similar to Eq. (26) for the two-dimensional system, the
nondispersive term with the wrong sign in the topological
susceptibility (30) in four-dimensional QCD can be also
represented as a surface integral

��
Z

d4x½�4ðxÞ� ¼
Z

d4x@�

�
x�

2�2x4

�
: (31)

In the case of 2D QED we could compare our ghost-
based computations (19) with exact results (4) and (5) and
with an explicit sum over different topological sectors in
pure E&M when no propagating degrees of freedom are
present in the system (13). We do not have such a luxury in
the case of 4D QCD. Nevertheless, we can compare the
ghost-based computations in 4D QCD given by Eq. (30)
with the lattice results, see e.g. [23]. We reproduce Fig. 1
from Ref. [23] to illustrate few elements that are crucial for

this work and that are explicitly present on the plot. First of
all, there is a narrow peak around r ’ 0 with the wrong
sign. Second, one can observe a smooth behavior in the
extended region of r� fm with the opposite sign. Both
these elements are present in the lattice computations as
one can see from Fig. 1. The same important elements are
also present in our ghost-based computations given by
Eq. (30). In other words, the QCD ghost does model the
crucial property of the topological susceptibility related to
the sum over topological classes in gauge theories. This
feature cannot be accommodated by any physical asymp-
totic states as it is related to the nondispersive contribution
in the topological susceptibility as explained above in
Sec. II B, and elaborated further in Appendix where this
feature is explained as a result of differences in the defini-
tions of the Dyson’s T-product and Wick’s T- product.
Our next step is to describe the behavior of the same

system (more precisely, the behavior of the nondispersive
term in Eqs. (30) and (31) proportional to the �4ðxÞ func-
tion) in Rindler space in the presence of the horizon. We
consider a simple case when the acceleration is sufficiently
large�4

QCD 	 a4 	 mjh �qqij such that the interaction term
in (15) can be neglected and the Bogolubov’s coefficients
are exactly known. In this limit one can repeat all previous
steps to arrive to the same Planck spectrum (25) for number
density fluctuations of ‘‘fictitious particles’’ with the wrong
commutation relations [18,24]. This formula (up to some
irrelevant numerical coefficient) has been reproduced in
Ref. [25] using a different technique. We interpret these
fluctuations precisely in the same way as we did in Sec. IID
in the 2D case where we interpreted these fluctuations of
‘‘fictitious particles’’ with wrong commutation relations as
a different manifestation of the same physics which led to

FIG. 1 (color online). The density of the topological suscepti-
bility �ðrÞ � hqðrÞ; qð0Þi as a function of separation r such that
� � R

dr�ðrÞ, adapted from [23]. The plot explicitly shows the

presence of the contact term with the wrong sign (narrow peak
around r ’ 0) represented by the Veneziano ghost in our frame-
work.

10Of course � ¼ 0 to any order in perturbation theory because
qðxÞ is a total divergence q ¼ @�K

�. However, as we learned
from [10,11], � � 0 due to the nonperturbative infrared physics.
One can interpret field K� as a unique collective mode of the
original gluon fields. It describes the dynamics of the degenerate
states jni representing the topologically nontrivial sectors of the
ground state, it leads to a pole in unphysical subspace in the
infrared, and finally, it saturates the contact term with the wrong
sign in topological susceptibility (30).
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the wrong sign in the entropy computations [5,9]. As we
emphasized before, the corresponding contribution is not
related to any physical propagating degrees of freedom but
rather, is due to topological sectors in gauge theories, which
eventually lead to a nondispersive contribution in topologi-
cal susceptibility.

Analysis of 2D case led us to the conjecture formulated
at the end of Sec. II that both phenomena (the wrong sign
in entropy computations and the wrong sign in topological
susceptibility) are originated from the same physics de-
termined by the surface dynamics of the ‘‘fictitious parti-
cles.’’ In this section we demonstrated that all relevant
features are also present in 4D non-Abelian QCD.
Therefore, based on the series of arguments presented
above, it is natural to assume that there will be a mismatch
between black hole entropy and the entropy of entangle-
ment in 4D QCD with the same weird features as those
listed in the Introduction. However, in contrast with 4D
QED we expect that the surface term with the wrong sign
in entropy will be a gauge invariant quantity similar to the
2D QED case discussed in Sec. II. This is essentially a
prediction that follows from the conjecture. As we already
mentioned there are other known examples where the
degeneracy of the ground state in the presence of the
horizon leads to a mismatch between black hole entropy
and the entropy of entanglement, see Appendix for the
details and references. One could argue that the dynamics
of ‘‘fictitious particles’’ on a surface should be governed
by the corresponding Chern-Simons action. We leave this
subject for a future study[26].

IV. CONTACT INTERACTION AND
PROFOUND CONSEQUENCES FOR AN

EXPANDING UNIVERSE

This portion of the paper is much more speculative in
nature than the previous sections. However, these specula-
tions may have some profound consequences on our under-
standing of the expanding Universe we live in where the
horizon is an inherent part of the system. Therefore, we opt
to present these speculation in the present work.

Nondispersive contribution with the wrong sign in topo-
logical susceptibility (30) obviously implies, as Eq. (1)
states, that there is also some energy related to this contact
term determined by the surface dynamics of ‘‘fictitious
particles.’’ This �� dependent portion of the energy, un-
related to any physical propagating degrees of freedom, is
well-established phenomenon and tested on the lattice; it is
not part of the debate. What is the part of the debate and
speculation is the question as to how this energy changes
when background varies. In other words, the question we
address in this section can be formulated as follows. How
does the nondispersive contribution to the �� dependent
portion of the energy vary when the conventional
Minkowski background is replaced by an expanding

universe with the horizon size L�H�1 determined by
the Hubble constant H 11?
The motivation for this question is as follows. We adopt

the paradigm that the relevant definition of the energy
which enters the Einstein equations is the difference �E �
ðE� EMinkÞ, similar to the well-known Casimir effect
where the observed energy is in fact the difference between
the energy computed for a system with conducting bounda-
ries (positioned at finite distance d) and infinite Minkowski
space. In this framework it is quite natural to define the
‘‘renormalized vacuum energy’’ to be zero in Minkowski
vacuum, wherein the Einstein equations are automatically
satisfied as the Ricci tensor identically vanishes. From this
definition it is quite obvious that the ‘‘renormalized energy
density’’ must be proportional to the deviation from
Minkowski space-time geometry. This is in fact the stan-
dard subtraction procedure which is normally used for
description the horizon’s thermodynamics [27,28] as well
as in the course of computations of different Green’s
function in a curved background by subtracting infinities
originated from the flat space [29]. In the present context
such a definition�E � ðE� EMinkÞ for the vacuum energy
for the first time was advocated in 1967 by Zeldovich [30]
who argued that �vac �Gm6

p with mp being the proton’s

mass. Later on such a definition for the relevant energy
�E � ðE� EMinkÞ which enters the Einstein equations has
been advocated from different perspectives in a number of
papers, see e.g. relatively recent works [31–38] and refer-
ences therein.
This is exactly the motivation for the question formu-

lated in the previous paragraph: how does �E scale with
H? The difference�Emust obviously vanish whenH ! 0
as it corresponds to the transition to flat Minkowski space.
How does it vanish? A naive expectation based on common
sense suggests that �E� expð��QCD=HÞ � expð�1041Þ
as QCD has a mass gap ��QCD, and therefore, �E must

not be sensitive to the size of our Universe L�H�1. Such
a naive expectation formally follows from the dispersion
relations similar to (6) which dictate that a sensitivity to
very large distances must be exponentially suppressed
when the mass gap is present in the system.
However, as we discussed at length in this paper, along

with the conventional dispersive contribution we also have
the nondispersive contribution (30) and (31) which
emerges as a result of topologically nontrivial sectors in

11Here and in what follows we use the parameter H� L�1 as a
typical dimensional factor characterizing the visible size of our
Universe. We do not assume at this point that it is described
byFriedmann-Robertson-Walker metric with a single parameter
H. In fact, it could be a much more generic construction where
the spatial hypersurfaces are embedded in a compact three-
dimensional manifold such as, for example, the Bianchi I ge-
ometry with a few additional parameters. We refer to
Appendix B of Ref. [21] for a short review on this subject in a
given context.
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four-dimensional QCD. This contact term may lead to a
power-like scaling �E�H þOðH2Þ þ . . . rather than ex-
ponential like �E� expð��QCD=HÞ because this term (in

our framework) is described by a massless ghost field (29)
as discussed in Sec. III B. The position of this unphysical
massless pole is topologically protected as Eq. (28) states,
which eventually may result in power-like scaling �E�
H þOðH2Þ þ . . . rather than exponential like.12

In fact it was precisely the assumption postulated in
[21,22] that the observable dark energy (DE) being iden-
tified with �E could be small but not exponentially small.
A similar assumption based on very different arguments
was also advocated in [31–34]. This postulate on Casimir-
like scaling �E�HþOðHÞ2 has recently received solid
theoretical support as reviewed below. It is important to
emphasize that this term with power-like behavior emerges
as a result of the nondispersive nature of topological sus-
ceptibility (30), such that no violation of unitarity, gauge
invariance, or causality occur when the theory is formu-
lated in terms of the unphysical ghosts [18]. If true, the
difference between two metrics (expanding universe and
Minkowski space-time) would lead to an estimate

�E�H�3
QCD � ð10�3eVÞ4; (32)

which is amazingly close to the observed DE value today.
It is interesting to note that expression (32) reduces to
Zeldovich’s formula �vac �Gm6

p if one replaces �QCD !
mp and H ! G�3

QCD. The last step follows from the

solution of the Friedmann equation

H2 ¼ 8�G

3
ð�DE þ �MÞ; �DE �H�3

QCD (33)

where the DE component dominates the matter compo-
nent, �DE 	 �M. In this case the evolution of the universe
approaches a de Sitter state with constant expansion rate
H �G�3

QCD as follows from (33).

There are a number of arguments supporting the power-
like behavior �E�H þOðHÞ2 in gauge theories. First of
all, it is an explicit computation in exactly solvable two-
dimensional QED discussed in Sec. II and defined in a box
size L. The model has all of the elements crucial for the
present work: a nondispersive contact term (5) which
emerges due to the topological sectors of the theory (13),
and which can be described using auxiliary fictitious ghost
fields (19). This model is known to be a theory of a single
physical massive field. Still, one can explicitly compute
�E� L�1 which is in drastic contrast with naively
expected exponential suppression, �E� e�L [19]. It is

important to emphasize that this correction �E� L�1

while computed in terms of the ghost’s (unphysical) de-
grees of freedom in our framework, nevertheless represents
a gauge invariant physical result. In other words, the final
result �E� L�1 is not related to any violation of gauge
invariance though it is computed using auxiliary fictitious
ghost fields similar to computation of the contact term (19).
One more support in power-like behavior is an explicit

computation in the simple case of Rindler space-time in
four-dimensional QCD in the limit where a Rindler ob-
server is moving with acceleration�4

QCD 	 a4 	 mjh �qqij
where the interaction term in Eq. (15) can be neglected
[18,24,25]. These computations explicitly show that the
power like behavior emerges in four-dimensional gauge
systems in spite of the fact that the physical spectrum is
gapped. In other words, a power like behavior is not a
specific feature of two-dimensional physics as some people
(wrongly) interpret the results of Ref. [19].
Another argument supporting the power-like corrections

is the computation of the contact term in four-dimensional
QCD defined in a box size L. The computations are per-
formed using the so-called instanton liquid model [39].
While the motivation for analysis [39] was quite different
from our motivation, these model-based computations
nevertheless explicitly show the emergence of power-like
corrections to the nondispersive portion of the topological
susceptibility.
Power-like behavior �E� L�1 is also supported by

recent lattice results [40], see also the earlier paper in
[41] with some hints on power-like scaling in drastic con-
trast with naive expectations �E� exp�ð�QCDLÞ. The
approach advocated in Ref. [40] is based on the physical
Coulomb gauge where the nontrivial topological structure
of the gauge fields is represented by the so-called Gribov
copies. It is very different from our approach where we
advocate that the auxiliary ghost’s description accounts for
this physics. Eventually, the physical results must not
depend on the different technical tools which are used in
different frameworks. However, it is not a simple task to
demonstrate an independence of the results from an em-
ployed technique in a strongly coupled gauge theory!
Finally, Casimir-like scaling �E� L�1 can be tested in

the so-called ‘‘deformed QCD’’ in a weakly coupled re-
gime where all computations are under complete theoreti-
cal control [42]. One can explicitly demonstrate that for the
system defined on a manifold size L the �-dependent
portion of the energy shows the Casimir-like scaling E ¼
�A � ½1þ B

L þOð 1
L2Þ� despite the presence of a mass gap in

the system, in contrast with naive expectation E ¼ �A �
½1þ B expð�LÞ� which would normally originate from
any physical massive propagating degrees of freedom con-
sequent to conventional dispersion relations.
Another remark worth mentioning is that the sign of

�E � ðE� EMinkÞ is always expected to be negative in
conventional quantum field theory computations. This is

12If a system is characterized by a single parameter, the
curvature, then one should expect, on a dimensional ground,
that the first nonvanishing term in this expansion should be
quadratic �E�H2 rather than linear. However, in a generic
case one expects a linear nonvanishing term �E�H þ
OðH2Þ þ . . . , see Appendix B of Ref. [21] for the details.
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due to the fact that some modes cannot be accommodated
in a system with nontrivial geometry/boundaries, and
therefore the absolute value of EMink >E which corre-
sponds to �E< 0. The Casimir effect is the well-known
example where the sign ð�Þ emerges as a result of this
subtraction procedure. The nondispersive contribution into
the energy, on the other hand, being represented by the
ghost in our framework will lead to an opposite sign
�E> 0. The positive sign for �E> 0 is supported by
explicit computations in a simplified setting [18,25,42],
and is consistent with observations corresponding to the
accelerating universe with �E> 0.

To conclude this section, the contact term with the
wrong sign in topological susceptibility which is present
in gauge theories as a result of a nontrivial topological
structure of the theory and which is ultimately related to
the wrong sign contribution in the entropy computations
[5,9], as argued in this paper, has another profound con-
sequence. Namely, the very same physics, and the very
same gauge configurations may lead to a power-like sensi-
tivity from the distant regions�E� L�1 in drastic contrast
with naive expectations �E� exp�ð�QCDLÞ which

should occur from any conventional physical massive
propagating degrees of freedom. If true, one can interpret
the extra contribution to the energy (32), which we identify
with DE, as a result of contact interaction with the horizon.
This interpretation is consistent with interpretation of the
term with the wrong sign in the entropy computation in
two dimensions [5,9], and it is also consistent with our
interpretation presented in Sec. II D, see comments after
Eq. (25). This interpretation is also consistent with argu-
ments [5] suggesting that this term corresponds to a contact
interaction with horizon in the description of black hole
entropy within a string theory formulation [43].

V. CONCLUSION. FUTURE DIRECTIONS

The main result of this paper is presented in the form of a
conjecture formulated at the end of Sec. II and elaborated
in Sec. III. Essentially, the basic idea is that the surface
term with the wrong sign in the entropy computations [5,9]
and the contact term with the wrong sign in topological
susceptibility both originated from the same physics, and
are both related to the same gauge configurations related to
the nontrivial topological structure of the theory. If this
conjecture turns out to be correct, it would unambiguously
identify the nature of the well-known mismatch between
computations of black hole entropy and the entropy of
entanglement for vector gauge fields. A similar mismatch
(but in a quite different context) was also discussed in
[44–46]. In both cases, the mismatch is a result of the
degeneracy of the ground state in the presence of the
horizon, see Appendix for the details.

Another, much more profound consequence is that the
same physics which is responsible for the wrong sign
contact term in topological susceptibility, and the wrong

sign contribution in the entropy computations [5,9], may in
fact lead to extra vacuum energy (32) [which is identified
with observed DE] in an expanding universe in comparison
with Minkowski space. This extra energy emerges in gauge
theories with multiple topological sectors as a result of the
mere existence of a causal horizon at distance L�H�1. A
similar phenomenon as we already mentioned occurs in
different systems [45,46] where extra energy emerges as a
result of dynamics of the ‘‘soft modes’’ at the horizon. The
degeneracy of the vacuum state in the system discussed in
[45,46] is achieved by nonminimal coupling with a scalar
field, see Appendix for the details, while in our case the
presence of topologically distinct sectors in the system is
an inherent feature of the QCD dynamics.
Here are some features of these unique gauge configu-

rations which are responsible for the wrong sign in the
entropy computations and the wrong sign in topological
susceptibility and which are characterized by very exotic
properties which are drastically different from everything
previously known:
(a) A typical wavelength of fluctuations of the auxiliary

‘‘fictitious particles’’ is determined by the horizon
scale, �k � 1=H � 10 Gyr, while smaller �k 

1=H are exponentially suppressed (25). Therefore,
these modes do not gravitationally clump on dis-
tances smaller than the Hubble length, in contrast
with all other types of matter, and can be identified
with the observed properties of DE. Such very large
wavelengths prevent us from adopting a meaningful
scattering-based description, as the notion of parti-
cle is not even defined;

(b) The corresponding fluctuations are observer depen-
dent, similar to the Unruh radiation, in contrast with
any other types of radiation, see Sec. II D and also
[18] for detailed discussions on the problem of
measurements in these circumstances;

(c) The coexistence of the two drastically different
scales (�QCD � 100 MeV and H � 10�33 eV) is a

direct consequence of the auxiliary conditions (17)
and (23) on the physical Hilbert space rather than an
ad hoc built-in feature such as small coupling or/and
extra symmetries in a Lagrangian.

So, essentially our proposal for the DE can be formu-
lated as follows. The source for both DE and the mismatch
between black hole entropy and the entropy of entangle-
ment is the same and related to the dynamics of topological
sectors of a gauge theory in the presence of the horizon. In
other words, the relevant gauge configurations responsible
for DE are exactly the same as those responsible for the
wrong sign contribution in the computations of Refs [5,9].
Precisely this contribution represents the mismatch be-
tween black hole entropy and the entropy of entanglement.
In both cases the source of the extra term is the degeneracy
of the vacuum state which is represented by different
topological sectors, and in our framework is described by
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the Veneziano ghost. One should also add that a phenome-
nological analysis of the DE model based on this idea and
represented by Eqs. (32) and (33) has been recently per-
formed in [47] with the conclusion that this model is
consistent with all presently available observational data.

Another important result of this work can be formulated
as follows. When a system is promoted from Minkowski
space to a an expanding universe, we expect power-like
corrections �E�HþOðHÞ2 rather than exponentially
suppressed corrections, �E� exp�ð�QCD=HÞ. This hap-
pens in spite of the fact that the physical Hilbert subspace
contains only massive propagating degree of freedom, and
naively the sensitivity to very distant regions should be
exponentially suppressed. However, the presence of the
nondispersive contributions (originated from degenerate
topological sectors of the theory), which cannot be associ-
ated with any physical asymptotic states falsifies this naive
argument. Explicit computations in 2D QED [19], in 4D
weakly coupled ‘‘deformed QCD’’ [42] and numerical
studies in real four-dimensional QCD [40] where power-
like behavior�L�1 is indeed observed, supports our claim.

What is more remarkable is the fact that some of fun-
damental properties of gauge theories discussed in this
paper can be, in principle, experimentally tested in the
Relativistic Heavy Ion Colliderat Brookhaven and Heavy
Ion program at LHC. In the ‘‘little bang’’ at the Relativistic
Heavy Ion Collider the horizon appears as a result of
induced acceleration a��QCD which itself emerges as a

consequence of high energy collision. The acceleration
a��QCD is a universal number which is determined by

strong QCD dynamics, does not depend on energy or other
properties of the colliding particles, and plays the role of
Hubble constant H � 10�33 eV of an expanding universe,
see [24] for the details.
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SUBTLETIES IN THE DEFINITION OF ENERGY

It is quite natural to expect that there should be some
energy associated with fluctuations of fictitious particles
(25). As we argued above these fluctuations, which reflect
the nontrivial topological structure of the gauge theory, are
the source of the mismatch between black hole entropy and
the entropy of entanglement in the presence of the horizon. It
is clear that there is some ambiguity in the definition of this
type of energy due to a number of reasons. First of all, as we
discussed in the text the relevant physics is determined by

the dynamics on the surface rather than in the bulk of the
space-time. Therefore, it is not obvious if a simple insertion
!k into definition (22) would properly reflect this feature.
Another comment is that the physics of fluctuations (25) is
the observer dependent property similar to the Unruh effect
as discussed in Sec. IID. Therefore, all subtleties related to
the Unruh effect are also present here. Also, very large
wavelengths of these fluctuations prevent us from adopting
a conventional description in terms of particles, as the notion
of particle is not even defined.
Finally, and most importantly, the contact interaction

which is the main subject of this paper, cannot be expressed
in terms of any physical states, but rather is formulated in
terms of fluctuations of fictitious particles with wrong
commutation relations. These unphysical states contribute
to the nondispersive portion of the correlation function, not
to the dispersive part which is unambiguously determined
by the physical spectral function through conventional
dispersion relations. Our description in terms of the ghost
is simply a convenient way to study this IR physics in a
covariant gauge. The same physics in the Coulomb (physi-
cal) gauge where the ghost degrees of freedom are not
present in the system leads to the long-range forces as
discussed in the simple two-dimensional model long ago
[16]. These long-range forces prevent distant regions from
acting independently. The vacuum in this system is degen-
erate, and one should consider an infinite superposition of
the winding states jni as originally discussed in [16]. We
think that precisely this feature prevented the author of
Ref. [5] from using the physical Coulomb gauge in two
dimensions in the computations of entropy, where a
covariant gauge has been used instead. The same physics
in the Coulomb gauge in 4D QCD is reflected by existence
of the so-called Gribov copies, and one should use
some numerical lattice methods to study the relevant
physics [40].
The reason why we pay so much attention to the topo-

logical susceptibility � and the corresponding contact term
��ðxÞ which enters the expressions for topological sus-
ceptibility (4) and (30) is due to its relation to the �
dependent portion of the vacuum energy as Eq. (1) states.
Therefore, the presence of nondispersive contributions in �
automatically implies the presence of the corresponding
nondispersive contribution in the vacuum energy Evac.
At the same time, as we discussed in the text, the non-
dispersive contribution in � (and in the vacuum energy)
can be interpreted as a result of nontrivial topological
structure of the gauge theories. These discussions
explicitly demonstrate some subtleties on the possible
definition of the vacuum energy which should accommo-
date the physics related to the contact term discussed in this
paper.
It is quite fortunate that in the specific case with com-

putations of � we can easily separate nondispersive and
physical contributions. This is due to the fact that these two
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very different terms contribute to � with opposite signs as
discussed in the text. Indeed, the topological susceptibility
in pure Yang-Mills gauge theory (no quarks, and no 
0
contribution) according to [10,11] is given by13

�YM� ilim
k!0

Z
d4xeikxhTfqðxÞ;qð0ÞgiW ¼��2

YM<0;

�2
YM¼f2
0m2


0

4
;

(A1)

where h. . .iW stands for the Wick T- product, see below.
The expression on right-hand side of Eq. (A1) corresponds
to the subtraction constant ��4ðxÞ in Eq. (30). This term
has the wrong sign (in comparison with contribution from
any real physical states), the property which motivated the
term ‘‘Veneziano ghost.’’ Indeed, a physical state of mass
mG, momentum k ! 0 and coupling h0jqjGi ¼ cG, con-
tributes to the topological susceptibility with the sign
which is opposite to (A1),

ilim
k!0

Z
d4xeikxhTfqðxÞ;qð0ÞgiD

� ilim
k!0

h0jqjGi i

k2�m2
G

hGjqj0i’ jcGj2
m2

G

�0; (A2)

where h. . .iD stands for Dyson T-product, see below.
However, the negative sign for the topological susceptibil-
ity (A1) is what is required to extract the physical mass for
the 
0 meson, see Ref. [12] for a thorough discussion. The
difference between the behavior (A1) and (A2) is related to
inequivalent definitions of these correlation functions. The
behavior (A2) corresponds to the usual Dyson T-product
where only physical states contribute, while Eq. (A1)
corresponds to the Wick T-product obtained by variation
of the partition function over the � parameter. The differ-
ence in the definitions constitutes precisely the subtraction
constant ��4ðxÞ in Eq. (30). The WI expressed as
�QCDðmq ¼ 0Þ ¼ 0 is satisfied for the Wick T-product,

but not for the Dyson T-product.
It is interesting to note that an analogous phenomenon

(but in quite different context) was discussed in
Refs. [45,46], where it was observed that there are two
definitions of energy when the difference is saturated by
the so-called ‘‘soft modes’’ fluctuating in far infrared at the

horizon. The first definition is the canonical energy deter-
mined by the Hamiltonian which is generator of trans-
lations of the system along the timelike Killing vector
field ��. Since the Killing vector �� vanishes at the
bifurcation surface of the Killing horizons, the correspond-
ing Hamiltonian is degenerate. Therefore, one can add to
the system an arbitrary number of ‘‘soft modes’’ without
changing the canonical energy. These ‘‘soft modes’’ con-
tribute to the surface integral which was interpreted as a
Noether charge of some nonminimally coupled scalar field
	s. Precisely this contribution of the ‘‘soft modes’’ distin-
guishes two different definitions of the energy. As argued
in Refs. [45,46] precisely the dynamics of ‘‘soft modes’’
constitutes the difference between Bekenstein-Hawking
entropy and the entropy of entanglement.
It is very similar to our case where we argued that the

wrong sign in the entropy computations of Refs. [5,9] is a
result of degeneracy in the gauge theory represented in our
framework by the fluctuations of the fictitious particles
with a typical wavelength of order of the horizon scale,
�k �H�1. In other words, the ‘‘soft modes’’ from [45,46]
play the same role as pure gauge fields which describe
different topological sectors of the theory in our case. In
both cases the effect emerges as a result of the degeneracy
of the ground state in the presence of the horizon, and in
both cases the difference is determined by some surface
integrals. Further to this analogy, two different types of
energies which can be reconstructed from two different
definitions of topological susceptibility (A1) and (A2)
precisely correspond to two different types of energies
discussed in Refs. [45,46].
A final comment on the similarities between the two

very different systems is as follows. The relevant gauge
configurations which are responsible for mismatch be-
tween black hole entropy and the entropy of entanglement
from computations [5,9] are exactly the same which are
responsible for the contact term in topological suscepti-
bility (30). This mismatch is very similar to the extra term
discussed in [45,46] which resulted from the dynamics
of the ‘‘soft modes’’ at the horizon. In both cases the
mismatch is a result of the degeneracy present in both
systems. In Refs. [45,46] this degeneracy is a result of
nonminimally coupling with scalar field 	s. In our cases
this degeneracy is a reflection of the topological structure
of gauge theories, and an inherent feature of QCD.
However, the outcome of the degeneracy is very similar
in both cases as we argued above, and can be interpreted as
a contact interaction with horizon, see the discussion at the
end of Sec. IV.

13All formulae in this Appendix are written in Minkowski
space in contrast with our discussions in the text, where a
comparison with path integral computations and lattice numeri-
cal computations (which are always performed in Euclidean
space) was made. In particular, there is factor ‘‘i’’ in the
definition of the correlation function (A1).
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