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If general relativity is spontaneously induced, that is if the reciprocal Newton constant serves as a

vacuum expectation value, the electrically charged black hole limit is governed by a Davidson-Gurwich

phase transition which occurs precisely at the would-have-been outer horizon. The transition profile which

connects the exterior Reissner-Nordstrom solution with the novel interior is analytically derived. The

inner core is characterized by a vanishing spatial volume and constant surface gravity, and in some

respects, resembles a maximally stretched horizon. The Komar mass residing inside any concentric

interior sphere is proportional to the surface area of that sphere, and consequently, is non-negative definite

and furthermore nonsingular at the origin. The Kruskal structure is recovered, admitting the exact

Hawking imaginary time periodicity, but unconventionally, with the conic defect defused at the origin.

The corresponding holographic entropy packing locally saturates the ’t Hooft-Susskind-Bousso holo-

graphic bound, thus making the core Nature’s ultimate information storage.
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I. INTRODUCTION

Bekenstein-Hawking area entropy [1], which plays a
central role in black hole thermodynamics, has given rise
to the speculative idea that no physical degrees of freedom
reside within the interior of a black hole. Such an idea is
theoretically backed by the fact that neither the Gibbons-
Hawking [2] Euclidean path integral derivation, nor the
more locally oriented Wald’s [3] derivation, make actual
use of the black hole interior. One may thus conclude that,
as far as entropy packing is concerned, the interior of a
black hole is apparently superfluous, so that the black hole
degrees of freedom, whatever they are, live on or just above
the outer horizon, with the deal being 1 bit of information
per a quarter of Planck area of the horizon surface [4]. The
apparent inconsistency between the horizon as a physical
entity, the residence [5] of the black hole degrees of free-
dom, and as the mere point of no return for all in-falling
matter, has ignited a well-advertised debate in the physical
society. The black hole area entropy formula has inspired
the so-called holographic principle. The latter asserts that
all of information contained in some region of space can be
represented as a ‘‘hologram’’ on the boundary of that
region. It furthermore puts a universal purely geometrical
bound, saturated by Bekenstein-Hawking area entropy, on
the amount of entropy stored within that region, namely

S � A

4G
; (1)

where A denotes the area of the closed spacial boundary, G
is Newton’s constant, and ℏ ¼ c ¼ kB ¼ 1. The holo-
graphic principle, primarily introduced by ’t Hooft [6],

attempting to resolve the black hole information paradox,
has been further developed by Susskind [7] to deal with
black hole complementarity, and has eventually acquired a
covariant generalization by Bousso [8]. The holographic
principle is recently gaining a major theoretical support
from the AdS/CFT duality [9].
It is commonly believed that general relativity is not

necessarily the ultimate theory of gravity. If it is not the
fundamental, but rather (say) a spontaneously induced
theory of gravity, with G�1 treated as a vacuum expecta-
tion value (VEV), the black hole limit has been shown [10]
to be governed by a phase transition which occurs precisely
at the would-have-been event horizon. Recall that the idea
of horizon phase transition [11] is not new (and in a similar
category are black stars [12] and stringy fuzzballs [13]).
Whereas the general relativistic exterior black hole solu-
tion is fully recovered, it serendipitously connects now, by
means of a smooth self-similar transition profile, with a
novel holographic core. This core is characterized, among
other things, by a vanishing spatial volume, a crucial
feature for black hole physics. It is in this context of
spontaneously induced general relativity that the first local
realization of maximal entropy packing has been demon-
strated [14]. To be a bit more specific, sticking momen-
tarily to spherical symmetry, it has been shown that
associated with any inner sphere of circumferential radius
r is the total purely geometrical universal entropy

SðrÞ ¼ �r2

G
; (2)

which saturates the holographic bound layer by layer. The
accompanying Komar mass [15], as well as Weinberg’s
material energy [16], are notably nonsingular, namely
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MðrÞ ¼ MðhÞ r
2

h2
; (3)

where MðhÞ denotes the overall mass calculated at r ¼ h,
and A ¼ �h2 is the horizon area. Such a Komar mass
distribution appears to be intimately related to, and thus
as fundamental as, the entropy distribution itself. In addi-
tion, the fact that the corresponding invariant spatial vol-
ume VðrÞ ! 0 for every r � h can explain why the black
hole entropy, unlike in any other macroscopic system, is
not proportional to the volume of the system. Rather than
envision bits of information evenly spread on the horizon
surface, they may actually inhabit, universally and holo-
graphically in an onionlike manner, the entire black hole
interior.

In this paper, by providing a holographic interior for the
Reissner-Nordstrom exterior, we extend the Davidson-
Gurwich analysis [14]. Our paper is organized as follows.
We begin by motivating and then introducing the action
which governs the spontaneously induces general relativ-
ity, and derive the associated gravitational and scalar field
equations (Sec. II). These equations do not seem to admit a
generic analytical solution, so we start by deriving their
asymptotic behavior for the static spherically symmetric
case, focusing on the deviation from the Reissner-
Nordstrom background (Sec. III). The asymptotic expan-
sion is then used as a boundary condition for numerically
plotting the various functions floating around, and to get a
first glimpse into the characteristic phase transition which
is developed at the would-have-been black hole horizon
(Sec. IV). At this stage, one can already appreciate the
vanishing invariant volume of the novel interior core.
Consequently, by systematically getting rid of the negli-
gible terms in the field equations, we derive the approxi-
mate analytic solution of the core metric (Sec. V). The in-
out self-similar transition profile is analytically calculated
(Sec. VI), allowing us to finally fix the leftover parameters
of the inner solution by means of the mass M and the
electric charge Q. Various aspects of the inner metric,
such as vanishing volume, light cones, Kruskal structure,
and singularity issues are discussed in Sec. VII. Finally,
owing to the recovery of the exact Hawking imaginary time
periodicity (by defusing a conic singularity near the origin)
and the emerging of a characteristic nonsingular Komar
mass function (Sec. VIII), we reformulate the holographic
entropy packing, emphasizing its universal geometric
structure (Sec. IX).

II. ACTION AND FIELD EQUATIONS

The simplest theory which accounts for the coupling of
electromagnetism to spontaneously induced general rela-
tivity is given by the action

I ¼ � 1

16�

Z
ð�Rþ Vð�Þ þ F��F��Þ ffiffiffiffiffiffiffi�g

p
d4x: (4)

The role of the scalar potential is to allow the conformally
coupled Brans-Dicke [17] scalar field �ðxÞ to develop the
VEV

h�i ¼ 1

G
: (5)

Several remarks are in order:
(i) The scalar field is kept electrically neutral, and fur-

thermore does not couple directly to electromagne-
tism. This defines the Jordan frame, rather than the
Einstein frame, to be the physical one. Our main
conclusions turn out, however, to be frame-
independent.

(ii) On simplicity grounds, a kinetic scalar term has not
been introduced. This, as we shall see, does not
make the scalar field nondynamical. Adding a ki-
netic term is always a viable option though, with
minor effects on the inner metric.

(iii) The specific choice of the double well scalar po-
tential

Vð�Þ ¼ 3

2a

�
�� 1

G

�
2
; (6)

makes the theory fully equivalent to a simple fðRÞ
gravity [18] theory, namely

I ¼ � 1

16�

Z �
1

G
R� a

6
R2 þ F��F��

� ffiffiffiffiffiffiffi�g
p

d4x:

(7)

In particular, stability á la Sotiriou-Faraoni [19] is guaran-
teed by construction for a > 0. The value of a can be made
as small as necessary to be compatible with Solar System
tests.
Varying the action Eq. (4) with respect to the three

dynamical fields g��, A�, � leads, respectively, to the

following equations of motion

�G�� þ�;�� � g��h� ¼ Vð�Þ
2

g�� � 2F��F��g
��

þ F2

2
g��; (8)

F��
;� ¼ 0; (9)

Rþ dVð�Þ
d�

¼ 0: (10)

By tracing the gravitational field Eqs. (8), and then sub-
stituting the resulting Ricci scalar into Eq. (10), one can
extract the associated Klein-Gordon equation

h� ¼ 1

3

�
�
dVð�Þ
d�

� 2Vð�Þ
�
� dVeffð�Þ

d�
: (11)
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The evolution of the scalar field is thus governed by the
effective potential

Veffð�Þ ¼ 1

2aG

�
�� 1

G

�
2 þ const: (12)

The similarity between the two potentials Vð�Þ and
Veffð�Þ is not generic.

At this stage, our interest lies with the static spherically
symmetric case, with the corresponding line element tak-
ing the conventional form

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2d�2: (13)

The only nonvanishing entries of the electromagnetic ten-
sor are

Ftr ¼ �Frt ¼ EðrÞ: (14)

First, we solve the associated Maxwell equation

E0ðrÞ þ
�
2

r
� �0ðrÞ þ �0ðrÞ

2

�
EðrÞ ¼ 0; (15)

whose straightforward solution is given by

EðrÞ ¼ Q

r2
eð�ðrÞþ�ðrÞÞ=2; (16)

with Q denoting the electric charge. Next, we substitute
Eq. (16) into the three independent gravitational and scalar
field equations, which can then be reorganized in the
master form

�00 � 1

2
ð�0 þ �0Þ

�
�0 þ 2

r
�

�
¼ 0; (17)

�00 þ 1

2
ð�0 � �0Þ

�
�0 � 2

r
�

�
� 2

r2
ð1� e�Þ�

¼ 3e�

2a

�
�� 1

G

��
�þ 1

3G

�
þ 2e�

Q2

r4
; (18)

�00 þ
�
2

r
þ �0 � �0

2

�
�0 ¼ e�

aG

�
�� 1

G

�
: (19)

One can easily verify that associated with the vacuum
solution �ðrÞ ¼ 1

G is the general relativistic Reissner-

Nordstrom (RN) black hole metric

e�ðrÞ ¼ e��ðrÞ ¼ 1� 2GM

r
þGQ2

r2
; (20)

which we now conveniently tag with some � ¼ 0. Unlike
in general relativity, however, we will show that the RN
solution is now accompanied by a general class of static,
spherically symmetric, asymptotically flat solutions, pa-
rametrized by � � 0, which (globally) does not reduce to
the RN solution as � ! þ0. This paper is mainly devoted
to the unfamiliar physics encountered at that limit.

III. ASYMPTOTIC BEHAVIOR

A general analytic solution of our field equations is still
at large. Alternatively, we adopt the strategy to use an
asymptotically flat perturbation around the RN solution
as a boundary condition for the numerical solution of the
field equations. Needless to say, the numeric solution by
itself is not our final goal, but the resulting graphs will give
us the first clue regarding the structure of the phase tran-
sition awaiting ahead. Consider thus a perturbative solution
of the general form

�ðrÞ ¼ 1

G
ð1þ s�1ðrÞÞ; (21)

�ðrÞ ¼ � log

�
1� 2GM

r
þGQ2

r2
þ sL1ðrÞ

�
; (22)

�ðrÞ ¼ log

�
1� 2GM

r
þGQ2

r2
þ sN1ðrÞ

�
; (23)

where the constant s, which can be interpreted as the scalar
charge, serves as our small expansion parameter. Naively,
one may expect general relativity to be fully recovered at
the limit s ! 0, but as we are about to see, this is not
necessarily the case. Of particular interest for us is the
decoupled linear differential equation

�
1� 2GM

r
þGQ2

r2

�
�00

1 ðrÞ þ
2

r

�
1�GM

r

�
�0

1ðrÞ

� 1

aG
�1ðrÞ ¼ 0; (24)

which quantifies the deviation s�1ðrÞ from general relativ-
ity. Unfortunately, even this equation is not that coopera-
tive. At large r, however, which is equivalent to neglecting
M andQ, one gets rid of the diverging term to stay with the

converging Yukawa tail � 1
r e

�ðr= ffiffiffiffiffi
aG

p Þ. Consequently, once
M and Q are reintroduced, we expect the solution to be of
the form

�1ðrÞ ¼ fðrÞ
r

e�ðr= ffiffiffiffiffi
aG

p Þ: (25)

Clearly, the equation for fðrÞ is still quite complicated, but
it becomes manageable upon keeping only the leading
terms at large r, that is

ffiffiffiffiffiffiffi
aG

p
f00ðrÞ � 2f0ðrÞ � 2GMffiffiffiffiffiffiffi

aG
p

r
fðrÞ ’ 0: (26)

The solution of this equation involves the hypergeometric
and the so-called Meijer G-functions. It so happens, how-
ever, that both these functions exhibit identical divergent
behavior. In turn, one can always find a converging linear
combination, namely
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1F1

�
1þ GMffiffiffiffiffiffiffi

aG
p ;2;

2rffiffiffiffiffiffiffi
aG

p
�

rffiffiffiffiffiffiffi
aG

p �
G20

12

�
� 2rffiffiffiffiffi

aG
p j1�ðGM=

ffiffiffiffiffi
aG

p Þ
0;1

�

2cos�GMffiffiffiffiffi
aG

p �ð1þ GMffiffiffiffiffi
aG

p Þ ;

which is proportional to r�ðGM=
ffiffiffiffiffi
aG

p Þ at large distances. To
be more specific,

�1ðrÞ ’ e�ðr= ffiffiffiffiffi
aG

p Þ

r1þðGM=
ffiffiffiffiffi
aG

p Þ : (27)

With this in hand, we proceed to the linear differential
equation for L1ðrÞ, namely

L1ðrÞ þ rL0
1ðrÞ ¼ �G

r
ðQ2 �MrÞ�0

1ðrÞ

þ
�
GQ2

r2
� r2

aG

�
�1ðrÞ: (28)

The solution of this equation is a sum of several gamma
functions which, at the large r limit, is well approximated
by the expression

L1ðrÞ ’ 1ffiffiffiffiffiffiffi
aG

p e�ðr= ffiffiffiffiffi
aG

p Þ

rGM=
ffiffiffiffiffi
aG

p : (29)

By the same token, one can also calculate

N1ðrÞ ’ � e�r=
ffiffiffiffiffi
aG

p

r1þðGM=
ffiffiffiffiffi
aG

p Þ : (30)

IV. PRELIMINARY NUMERICAL INSIGHT

On pedagogical grounds, to have a glimpse at the new
physics offered by spontaneously induced general relativ-
ity, we first plot numerical graphs of the various functions
involved. Starting at some large enough distance

rmax � GM;
ffiffiffiffi
G

p
Q;

ffiffiffiffiffiffiffi
aG

p
; (31)

where the Reissner-Nordstrom metric components and the
inverse Newton constant are supplemented by the pertur-
bations Eqs. (27), (29), and (30) we run a full numerical
calculation (using NDSOLVE of Wolfram’s MATHEMATICA)
which produces Figs. (1–3), respectively. We do it for a
positive scalar charge s > 0, and focus our attention on the
limit s ! þ0. The dashed lines in these graphs depict the
underlying Reissner-Nordstrom solution.

Naively, one would expect perhaps a full recovery of
general relativity at the s ! 0 limit, but can already sus-
pect the appearance of a phase transition near the would-
have-been outer horizon, at

h ¼ GMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M2 �GQ2

q
: (32)

Serendipitously, representing a ‘‘level crossing’ effect
(soon to be clarified), the limit s ! þ0 does not reproduce
the s ¼ 0 solution. While the exterior Reissner-Nordstrom
solution is recovered, which is indeed an important feature

by itself, it now connects with a novel interior core. This
new interior solution differs conceptually from the
Reissner-Nordstrom interior by three characteristic fea-
tures, namely
(1) No t $ r signature flip,

FIG. 1. A generic scalar field configuration. As s ! þ0, gen-
eral relativity is recovered at the exterior region, but is sponta-
neously violated in the inner core.

FIG. 3. A generic e�ðrÞ plot. Whereas the exterior RN is
recovered at the s ! þ0 limit, the overall configuration con-
ceptually differs from the full s ¼ 0 RN solution (dashed line).

FIG. 2. A generic e�ðrÞ plot. Whereas the exterior RN is
recovered at the s ! þ0 limit, the overall configuration con-
ceptually differs from the full s ¼ 0 RN solution (dashed line).
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(2) Drastically suppressed e�ðrÞ;�ðrÞ, and
(3) Locally varying effective Newton constant.

Following the preliminary numerical insight, we now pro-
ceed to uncover the geometry/physics of the inner core, and
reveal the analytic structure of the phase transition profile.

V. A NOVEL CORE

The key feature now is the fact that 0< e�ðrÞ � 1 in the
entire inner core. A closer numerical inspection reveals
that all terms in the field equations Eqs. (17)–(19) which

are proportional to e�ðrÞ are practically negligible relative
to the other terms. In particular, the negligible pieces
include the scalar potential terms and the electromagnetic
energy momentum contributions, thereby indicating a uni-
versal inner structure. The field equations take then the
slimmer form

�00 � �0 þ �0

2

�
�0 þ 2

r
�

�
¼ 0; (33)

�00 þ �0 � �0

2

�
�0 � 2

r
�

�
� 2

r2
ð1� 	e�Þ� ¼ 0; (34)

�00 þ
�
2

r
þ �0 � �0

2

�
�0 ¼ 0: (35)

Strictly for the current approximation 	 ¼ 0, but by in-
troducing 	we reserve the option of searching for the roots
of the transition profile already within the 	 ¼ 1 frame-
work which corresponds to plain (insensitive to the scalar
potential) �R gravity. Switching 	 off and on is demon-
strated in Fig. 4.

The above set of scale-invariant equations admits an
exact analytic solution given by

e�ðrÞ ¼ �

�
r

h

�ð6=�Þ�4
;

e�ðrÞ ¼ �

�
r

h

�ð6=�Þ�6þ2�
;

�ðrÞ ¼ 


�
r

h

��2þ�
:

(36)

This general solution is governed by a constant of integra-
tion � � 0. The self-consistency of the approximation for
all r < h further requires 0< � � 1. The scale h, however,
marking the radius of the core (where r=h ceases to be a
fraction), is fictitious at this stage, and can be absorbed by
redefining the coefficients �, �, 
. This is a consequence
of the fact that Eqs. (36) are scale-invariant. It remains to
be seen what actually fixes the small value of �, removes
the arbitrariness of �, �, 
 (in particular 
 ! 1

G , as sug-

gested by Fig. 1 on matching grounds), and furthermore
turns the scale h into the physical quantity defined by
Eq. (32). At any rate, following our analysis so far, one
may rightly suspect an intriguing correlation between the
� ! þ0 limit which characterizes the short-distance phys-
ics, and the s ! þ0 limit relevant for the large-distance
physics.

VI. PHASE TRANSITION

Focus attention now in the neighborhood of r ¼ h,

where e�ðrÞ acquires its maximum value. We already
know, based on numerical evidence (running Fig. 4 for a

variety of small � values, that e�ðhÞ � ��1, and estimate the
width of the transition area to be �� �. One may even
suspect a universal self-similar transition profile.
We probe the transition at the approximation where

e�ðrÞ
�
�ðrÞ � 1

G

�
’ 0: (37)

Just inside, it is the e�ðrÞ factor which is highly suppressed,
whereas for r � h a similar suppression role is played by
(�ðrÞ � 1

G ). The approximate Eq. (35) stays then valid at

the transition region as well, and upon a first integration,
gives rise to the (negative) conserved quantity

�0ðrÞr2eð�ðrÞ��ðrÞÞ=2 ’ C: (38)

With Eq. (38) incorporated, setting r ’ h and �ðrÞ ’ 1
G

when appropriate, and neglecting relatively small terms,
the two remaining recast field equations read

�0 � �0 ’ 2

h

�
1�GQ2

h2

�
e�; (39)

�0 þ �0 ’ � 2

h

�
1�GQ2

h2

�
e�

1þ 2h
GC e

ð���Þ=2 : (40)

We find it useful to introduce

FIG. 4. The suppression of e�ðrÞ in the inner core is fully
captured by the 	 ¼ 0 approximation. �R gravity, switched on
by 	 ¼ 1, already exhibits the transition profile.
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�ðrÞ ¼ �ðrÞ � �ðrÞ
2

; (41)

transforming the above pair of equations into

�0ðrÞ ¼ � 1

h
e�ðrÞ

�
1�GQ2

h2

�
(42)

�00ðrÞ
�0ðrÞ � �0ðrÞ ¼ �0ðrÞe�ðrÞ

2h
CG þ e�ðrÞ

: (43)

Two successive integrations bring us then to the inverse
solution rð�Þ

r� �r ¼ �CG

2p

�
e��ðrÞ � CG

2h
log

�
� 2h

CG
e��ðrÞ � 1

��
;

(44)

with two constants of integration p and �r floating around.
Substituting back into Eqs. (39) and (40), we finally arrive
at the parametric solution

e�ðrÞ ¼ � pe��ðrÞ

1� GQ2

h2

�
2h

CG
þ e�ðrÞ

�
; (45)

e�ðrÞ ¼ � pe�ðrÞ

1� GQ2

h2

�
2h

CG
þ e�ðrÞ

�
; (46)

which we now attempt to connect with the approximate
solutions for the exterior and the interior regimes. To do so,
it is convenient to introduce a dimensionless variable

x ¼ � 2h

CG
e��ðrÞ; (47)

so that

r� �r ¼ h

p

�
CG

2h

�
2ðxþ logðx� 1ÞÞ;

e�ðrÞ ¼ � p

1� GQ2

h2

ð1� xÞ;

e�ðrÞ ¼ � pð 2hCGÞ2
1� GQ2

h2

�
1� x

x2

�
:

(48)

A. Matching with the exterior

In the exterior, let x ¼ 1
� for 0< � � 1, hence

r� �r ’ C2G2

4ph

1

�
;

e�ðrÞ ’ p

1� GQ2

h2

1

�
’ r� �r

C2G2

4p2h
ð1� GQ2

h2
Þ
;

e�ðrÞ ’ pð 2hCGÞ2
1� GQ2

h2

� ’ h

ð1� GQ2

h2
Þðr� �rÞ

:

(49)

This can be immediately recognized as the leading expan-
sion terms just outside the Reissner-Nordstrom outer hori-
zon. In turn, up to first-order corrections, we identify

�r ¼ h; (50)

p

C2 ¼ G2

4h2p

�
1�GQ2

h2

�
2
: (51)

B. Matching with the interior

In the interior, let x ¼ 1þ � for 0< � � 1, so that r�
h ’ C2G2

4ph log�. Although log� is large, C
2G2

4ph2
log� may still

be small. In which case,

r

h
¼ �ðC2G2=4ph2Þ;

e�ðrÞ ’ p

1� GQ2

h2

� ’ p

1� GQ2

h2

�
r

h

�ð4ph2=C2G2Þ
;

e�ðrÞ ’ p 4h2

C2G2

1� GQ2

h2

� ’ p 4h2

C2G2

1� GQ2

h2

�
r

h

�ð4ph2=C2G2Þ
:

(52)

This set is nothing but the previously derived Eqs. (36)
provided we make the identification

�

6
¼ p

ð1� GQ2

h2
Þ2
: (53)

We can now furthermore fix the otherwise arbitrary coef-
ficients �, �, 
 which enter the core metric

�ð�Þ ¼ 1

�ð�Þ ¼
�
1�GQ2

h2

�
�

6
; 
ð�Þ ¼ 1

G
: (54)

C. Self-similar transition profile

The maximum of e�ðrÞ, serving as the characteristic
cutoff of spontaneously induced general relativity, occurs
for e�� ¼ � CG

h , and takes the value

e�max ¼ 3

2�ð1� GQ2

h2
Þ
: (55)

The typical width �, where e�ðrÞ drops to half its maximal
size, is given by

� ’ �

3
h; (56)

such that e�max� stays �-independent. These features are
demonstrated in Fig. 5 for a variety of � values (the dashed
line represents the � ! þ0 limit).
Owing to the fact that its roots are located in the under-

lying �R gravity, the transition profile turns out to be
insensitive to the terms involving the scalar potential, and
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exhibits a remarkable self similarity feature. This is ex-
pressed by the fact that � ! k� only causes scale changes

e� ! k�1e�; (57)

r� h ! kðr� hÞ: (58)

D. The � $ s interplay

� parametrizes the short-distance geometry, whereas the
scalar charge s parametrizes the long-distance perturbation
around the Reissner-Nordstrom background. The remark-
able correlation between the small-� and the small-s limits
has already been qualitatively established, but it seems
impossible to derive the exact �ðsÞ relation, and at this
stage, has only been obtained numerically. This can be
done, e.g., by plotting 12

r ð�0ðrÞ þ �0ðrÞÞ ’ � at short dis-

tances, or alternatively by extracting ðe�maxÞ�1 � � at the
transition region.

First, one can numerically verify that �ðsÞ is practically
a-independent, at least for large enough a’s. Thus, holding
a fixed, we then plot �ðsÞ for various values of M (and
momentarily keep Q ¼ 0). The results are summarized in
Fig. 6.

From the slope we deduce that, for large a, � is propor-
tional to s, and that the proportionality factor is
M-dependent. Taking into account the structure of the s
term which enters the approximation Eq. (27), and invok-
ing continuity arguments (next order necessarily included)
at r ’ h, we elegantly fit the numerical graphs by the
empirical formula

� ’ 4e�ðh= ffiffiffiffiffi
aG

p Þs

ð1� GQ2

h2
Þh1þðGM=

ffiffiffiffiffi
aG

p Þ : (59)

VII. CORE GEOMETRY

Altogether, the core metric is well approximated by

ds2in ’ ��ð�Þ
�
r

h

�ð6=�Þ�4
dt2 þ 1

�ð�Þ
�
r

h

�ð6=�Þ�6þ2�
dr2

þ r2d�2; (60)

where �ð�Þ is given explicitly by Eq. (54). This metric is
accompanied by the associated scalar field

�ðrÞ ’ 1

G

�
r

h

��2þ�
: (61)

As � ! þ0, the metric connects with the perturbed exte-
rior Reissner-Nordstrom spacetime, and the scalar field
approaches its general relativistic VEV.

A. Vanishing volume

The first geometrical quantity to calculate is the invari-
ant spatial volume VðrÞ associated with a sphere of circum-
ferential radius r. Doing it in the interior core, one
approaches a vanishingly small volume at the � ! þ0
limit, namely

VðrÞ ¼ 4�
Z r

0
eð1=2Þ�ðrÞr2dr ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�

1� GQ2

h2

vuut �
r

h

�
3=� 4�

3
h3:

(62)

This is to be fully contrasted with the corresponding finite
surface area

AðrÞ ¼ 4�r2: (63)

The VðrÞ plot, depicted in Fig. 7, gives us a simple answer
to why the black hole volume is physically irrelevant
(unlike in any other system, the black hole entropy is
proportional to the horizon surface area).

FIG. 5. The in-out transition profile is plotted for a decreasing
series of � values. The phase transition into the exterior Reissner-
Nordstrom solution (dashed line) occurs as � ! þ0.

FIG. 6. The � $ s interplay: The linearity of �ðsÞ is demon-

strated for various values of M (in units of
ffiffiffiffiffiffiffiffiffiffi
G=a

p
).
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B. Light cone structure

Radial null geodesics at r ¼ hþ �r, just outside the
would-have-been horizon, obey

dr

dt
¼ �

�
1�GQ2

h2

�
�r

h
: (64)

Inside the core, the formula transforms into

dr

dt
¼ �

�
1�GQ2

h2

�
�r

6h
; (65)

where the exact role played by �r in Eq. (64) is being taken
by 1

6 �r in Eq. (65). In particular, as far as an observer at

asymptotic distances is concerned, a light ray sent from
some r0 < h inwards will never reach the origin even for a
finite �, as can be seen from

rðtÞ ¼ r0e
�t=~t; ~t ¼ 6h

�ð1� GQ2

h2
Þ
: (66)

In other words, the entire core resembles a ‘‘near horizon’
territory, and as � ! þ0, it looks from the outside as an
apparently ‘‘frozen world’’ [20]. In many respects, the role
played by the outer Reissner-Nordstrom event horizon gets
now shifted to the origin.

C. Constant surface gravity

To get a deeper clue about what is going on, we calculate
the surface gravity function

	ðrÞ ¼ �0ðrÞ
2

eð�ðrÞ��ðrÞÞ=2 (67)

inside the core, and find

	ðrÞ ’
�
1� 2

3
�

� 1� GQ2

h2

2h

�
h

r

�
� ! 	: (68)

Not only do we face a constant surface gravity core, all the
way from r � h to the origin at r ¼ 0, but its value is
immediately identified as 2� the Hawking temperature

	 ¼ 1

2h

�
1�GQ2

h2

�
: (69)

This will certainly have far-reaching consequences (soon
to be revealed) on the Komar mass and the associated
thermodynamics.

D. Singularity issues?

When approaching the origin, it is convenient to invoke
the proper length coordinate

ðrÞ ¼ hðrhÞ�2þð3=�Þþ�

ð3� � 2þ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� GQ2

h2
Þ �6

q ; (70)

and expand the inner metric, up to Oð�Þ pieces, to expose
the Rindler structure of the R2 submetric

ds2in ’ �	22dt2 þ d2 þ
�
3	2

�h

�
3=�

h2d�2: (71)

The recovery of the exact Hawking’s imaginary time peri-
odicity, which first of all reassures the accuracy of the
transition profile Eq. (49), is regarded as the anchor con-
necting us to black hole thermodynamics. Notice, however,
that unlike in the original Reissner-Nordstrom case, the
Euclidean origin corresponds now to the center of spheri-
cal symmetry r ¼ 0 rather than to r ¼ h.
Aword of caution is in order. Inside the core, the various

scalars are well approximated by

R ¼ � 2

rðÞ2 ; (72)

R��R�� ’ 8�2

94

�
1�GQ2

h2

�
2 þ

�
2

r4ðÞ
�
; (73)

R����R���� ’ 16�2

94

�
1�GQ2

h2

�
2 þ

�
4

r4ðÞ
�
; (74)

where the square parentheses [. . .] denote relatively small
terms which survive the � ! 0 limit. Reflecting the �

2

ratio, the singularity analysis bifurcates:
(i) Clearly, for any finite , as small as desired, the limit

� ! 0 is regular. The Rindler submetric gets then
multiplied by a 2-sphere of constant radius h, and
consistently, the Kretschmann curvature approaches
the Reissner-Nordstrom horizon value of 4

h4
.

(ii) However, for any finite �, as small as desired, the
limit  ! 0 is singular. Whereas the pseudohorizon
does provide some protection from the singularity
(e.g., it takes an infinite amount of time for light
from the singularity to reach any external observer),
an observer willing to wait long enough will see

FIG. 7. The invariant volume VðrÞ: Every inner concentric
sphere of finite surface area 4�r2 exhibits a vanishingly small
volume.
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unbounded high curvature. Such a behavior is far
worse than that of the Reissner-Nordstrom solution,
and constitutes a severe problem. It may be that a
more complicated Lagrangian could alleviate this
behavior, or else that quantum effects could even-
tually cure it.

The point is, however, that the parameter � and the
coordinate  cannot really be treated on the same footing.
Any given metric must first of all be specified by its
parameters, and only then can it serve the whole range of
coordinates. In turn, the right order is to first let � ! 0, and
only then approach the  ! 0 origin. In other words, using
momentarily a two-variable language, � must tend to zero
faster than 2 (we return to this point in the Kruskal
analysis). This argument is supposed to solve the above
dilemma by choosing the first option.

E. Kruskal structure at the origin

Another view on the geometry surrounding the origin is
provided by means of the Kruskal-Szekeres coordinate
transformation

u ¼ fðrÞ cosh!t; v ¼ fðrÞ sinh!t; (75)

which by choosing f0ðrÞ
!fðrÞ ¼ eð�ðrÞ��ðrÞÞ=2 gives rise to a

metric of the form

ds2in ¼ K2ðrÞð�dv2 þ du2Þ þ r2d�2: (76)

In our case, we find

logfðrÞ ’ 6!h

ð1� GQ2

h2
Þ
ðrhÞ�
�2

; (77)

and the crucial point has to do with the �-expansion�
r

h

�
� ¼ 1þ � log

r

h
þ 1

2

�
� log

r

h

�
2 þ 	 	 	 : (78)

As was emphasized earlier, a small parameter and a small
coordinate cannot be treated on equal footing. The parame-
ter � which specifies the metric must tend to zero faster
than any function of the coordinates, say ðlogrhÞ�1 in this

case. The corresponding Kruskal scale function KðrÞ is
then given by

KðrÞ ’
�
r

h

�ð3=�Þð1�½ð2!hÞ=ð1�½GQ2=h2
ÞÞ
; (79)

which consistently singles out the Hawking imaginary time
periodicity Eq. (69) on the grounds of defusing the conic
singularity at the origin.

F. Frame independence

Although the Jordan frame is the physical one in the
hereby discussed theory, the Einstein frame is still of
interest. In four dimensions, the transition is established
by substituting

g�� ¼ ��1 �g��: (80)

By an accompanying change of variables, namely, by

� ¼ r

�
r

h

�
1�ð�=2Þ

; (81)

the resulting metric d�s2in takes the form

d�s2in ¼ ��ð�Þ
�
�

h

�ð3=�Þ�ð1=4Þ
dt2 þ 1

4�ð�Þ
�
�
�

h

�
3ð½1=�
�½3=4
Þ

d�2 þ �2d�2; (82)

to be compared with Eq. (60). A closer inspection reveals
that all physical conclusions remain intact, in particular,
the forthcoming formula of the Komar mass.

VIII. NON-SINGULAR KOMAR MASS

General relativity does not offer a unique definition for
the term mass. The Arnowitt-Deser-Misner (ADM) mass,
for example, only makes sense globally, at asymptotically
flat spatial infinity. But in the presence of a timelike Killing
vector, as in the present case, it is the Komar mass which
becomes a tenable choice. Invoking Stoke’s theorem and
performing the angular integration for a static spherically
symmetric metric, the Komar mass [15] becomes propor-
tional to the surface gravity, and is simply given by

mKðrÞ ¼ 	ðrÞ r
2

G
: (83)

In the exterior region, it exhibits the familiar classical
formula

mout
K ðrÞ ’ M�Q2

r
: (84)

The constant mass term (the mass sources are solely in the
interior) is accompanied by the familiar decreasing elec-
tromagnetic contribution. For the Reissner-Nordstrom ge-
ometry, this result holds everywhere, including in the
interior, but this is definitely not the case here. To be
specific, in our interior region, we derive

min
K ’

�
1� 2

3
�

��
h

r

�
� 	r2

G
; (85)

and immediately appreciate its � ! 0 limit

min
KðrÞ !

�
M�Q2

h

�
r2

h2
: (86)

Every concentric inner sphere of invariant surface area

AðrÞ ¼ 4�r2 carries a geometric fraction AðrÞ
AðhÞ of the total

Komar mass enclosed by the would-have-been Reissner-
Nordstrom outer horizon. The Komar mass function is
plotted in Fig. 8. It exhibits two truly exceptional features
which the general relativistic Reissner-Nordstrom metric
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simply falls short of providing. To be specific, mKðrÞ is
now

(i) Nonsingular at the origin.
(ii) Non-negative definite.

The Komar mass is universally distributed all over the
core, and the positive energy condition is automatically
respected.

A note is now in order. The so-called material energy is a
tenable alternative to the Komar mass. Following
Weinberg [16], it is the integration of the energy as mea-
sured in a locally inertial frame. Technically speaking, one
supplements the naive (noncovariant) mass formula by the
missing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr
p

factor, to give

MWðrÞ ¼ 1

G

Z r

0
eð1=2Þð�þ�Þð1þ e��ð�0r� 1ÞÞdr; (87)

for a spherically symmetric metric. With regard to the
present case, it seems that the two mass definitions,
Komar mass and Weinberg’s material energy, are distin-
guished from each other only by their different Oð�Þ
corrections.

IX. HOLOGRAPHIC ENTROPY PACKING

The geometric anchor connecting us to black hole ther-
modynamics is the imaginary time periodicity of the
Euclidean manifold (or alternatively, the Kruskal ! pa-
rameter which characterizes the Lorentzian manifold),
which underlies the Hawking temperature

T ¼ 	

2�
¼ 1

4�h

�
1�GQ2

h2

�
: (88)

T ¼ T1 is the temperature at infinity associated with the
thermal state of the field theory which lives on the black
hole background The striking feature is that, unlike in
conventional black hole physics, the exact Hawking peri-
odicity has been recovered in the present theory by defus-
ing the conic defect at the origin, rather than at the event
horizon. A variety of related features which include

(i) ‘‘Near horizon’’-like light cone structure Eq. (65),
(ii) Equi surface gravity Eq. (68),
(iii) Rindler structure Eq. (71),
(iv) Kruskal structure Eq. (79),
(v) Universal Komar mass Eq. (86),

all point out towards nontrivial physics associated with the
black hole interior.
Starting from the Smarr formula [21]

mKðhÞ ¼ 	

4�
AðhÞ; (89)

or more precisely, from its thermodynamic oriented for-
mulation

M�Q2

h
¼ 2TS; (90)

one first confronts the fM;Qg black hole with its fMþ
�M;Qþ �Qg extension, to find

�M�Q

h
�Q ¼ T�S: (91)

The result, as is well-known, is the first law of charged
black hole thermodynamics. Next we multiply Eq. (90) by
the r2=h2 ratio, to obtain a meaningful formula for an inner
sphere of circumferential radius r � h

min
KðrÞ ¼

	

4�
AðrÞ; (92)

or equivalently

�
M�Q2

h

�
r2

h2
¼ 2T

�
S
r2

h2

�
; (93)

and attempt to understand its significance. Note that an
analogous formula simply does not exist for the interior of
ordinary black holes. In some respects, as could already
have been inferred from the light cone structure, and from
the other features on the list at the beginning of this section,
the inner spherical surface resembles in some respects a
maximally stretched horizon. Consequently, it becomes
meaningful to ask what portion SðrÞ of the total entropy
S � SðhÞ is stored within an arbitrary inner sphere of a
finite surface area AðrÞ ¼ 4�r2 (and most importantly, of a
vanishing invariant volume VðrÞ ! 0) which hosts a
Komar mass MKðrÞ? Already at this stage, one can deduce
that

SðrÞ ¼ S
r2

h2
¼ �r2

G
; (94)

and appreciate the emerging purely geometrical ’t Hooft-
Susskind universal entropy bound Eq. (1), and the fact that
the bound is locally saturated.
It remains, however, to figure out how exactly does the

core configuration change when supplementing the pair
fM;Qg by tiny amounts f�M;�Qg, respectively? The cru-
cial point to notice then is that, at the � ! 0 limit, the

FIG. 8. Unlike in the Reissner-Nordstrom case (dashed line),
the Komar mass mKðrÞ is nonsingular at the origin, and further-
more obeys the positive energy condition.
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resulting configuration appears to be nothing but a linearly
stretched version of the former configuration. Exactly in
the same way that an ordinary black hole changes it size
once M, Q get shifted, meaning h ! hþ �h accordingly,
any infinitely thin concentric layer of radius r is puffed up
to a new radius r ! rþ �r (see illustration in Fig. 9), in
such a way that

�

�
r

h

�
¼ 0 ) �r ¼ r

h
�h: (95)

This is a reflection of the fact that, as � ! 0, the one and
only length scale floating around is h. Altogether, in anal-
ogy with Eq. (91), and subject to the geometric rule
Eq. (95), we have

�

�
M

r2

h2

�
� 1

h

�
Q
r

h

�
�

�
Q
r

h

�
¼ T�SðrÞ: (96)

The emerging entropy-packing profile turns out to be
(i) Locally holographic, i.e., it exhibits proportionality to
AðrÞ for every r � h, and (ii)M,Q-independent, and hence
universal. The overall picture is then of an onionlike
entropy-packing model [14]. The entropy of any inner
sphere is maximally packed, and unaffected by the outer
layers. In particular, any additional piece of entropy is
maximally packed on its own external layer, with M, Q
as well as MKðrÞ being adjusted accordingly.

An interesting point has to do with the entropy to energy
ratio, which is r-independent in our case, but is never
smaller than 2�r

SðrÞ
MKðrÞ

¼ SðhÞ
MKðhÞ ¼

�h2

GðM� Q2

h Þ
� 2�r: (97)

This is in apparent violation of Bekenstein’s universal
entropy bound [22]. The reason seems to be the following.
Whereas the entropy SðrÞ of some inner sphere is universal,
the associated Komar mass MKðrÞ �M�1 is affected by
the total mass M of the whole system. Admittedly,
Bekenstein’s universal bound is relevant [23] only for

weakly self-gravitating isolated physical systems, and for
these it is a much stronger bound than the holographic one.
The various scalings involved may suggest that the holo-

graphic entropy packing is indeed a matter of interpreta-
tion. To be more explicit, let us examine the issue from the
point of view of a physicist who is convinced that general
relativity is the fundamental theory of gravity, and
therefore is totally unaware of its hereby advocated spon-
taneously induced nature. Such a physicist (not to be
confused with an Einstein frame observer whose metric
is��1g�� rather the g��) would recast the underlying field

equations into their basic Einstein formR�� � 1
2g��R ¼

8�GT eff
��, moving all terms and factors, save for the

Einstein tensor itself, to the right-hand side, thereby defin-
ing an effective energy/momentum tensorT eff

��. In particu-

lar, inside the core, the dynamical Newton constant is given
by

GinðrÞ ¼ 1

�ðrÞ ¼ G
r2

h2
; (98)

but our ‘‘general relativistic’’ observer still insists on it
beingG, which requires from his side the effective replace-
ment

G � G
h2

r2
: (99)

The Hawking temperature, on the other hand, is defined at
asymptotic distances, and thus, is fully respected by our
‘‘naı̈ve’’ observer, that is

T � T: (100)

But this cannot be the case, unless of course

GM � GM; GQ2 � GQ2 ) h � h: (101)

In turn, fully consistent with our analysis, the following
counter-replacements are in order

M � M
r2

h2
; Q � Q

r

h
: (102)

All the above nicely converge now back into

S ¼ �h2

G
�

�r2

G
; (103)

which completes the interpretation of an observer ignorant
of the local variations of the Newton constant inside the
core.

X. SUMMARYAND OUTLOOK

It has come as a big surprise that spontaneously induced
general relativity does not always admit a full general
relativistic limit. Such an intriguing possibility is demon-
strated in this paper at the charged black hole level, where
the exterior general relativistic Reissner-Nordstrom solu-
tion connects with a novel holographic interior; the phase

FIG. 9. The fMþ�M;Qþ�Qg configuration (solid circles)
is a linearly stretched version of the fM;Qg configuration
(dashed circles). As h ! hþ�h, each point at a circumferential
radius r gets radially shifted by an amount �r ¼ r

h�h.
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transition takes then place precisely at the would-have-
been outer event horizon. The new physics associated
with the inner core has been discussed in some details,
with our main result being the local realization of the ’t
Hooft-Susskind-Bousso holographic principle (the holo-
graphic bound, as we recall, is not applicable inside ordi-
nary black holes). Notably, this is achieved without
invoking string theory and/or the AdS/CFT correspon-
dence. Our results are not sensitive to the exact shape of
the scalar potential, thus leaving the door open a more
general class of fðRÞ gravity models, and will only suffer
minor modifications upon introducing an optional Brans-
Dicke kinetic term.

The emerging maximal entropy-packing mechanism
sheds new light on how information is stored within a
black hole. The interior core, resembling now a maximally
stretched horizon, is not a ‘‘boring’’ place any more (at
least in the sense discussed in the introduction), but has
started functioning as nature’s ultimate information stor-
age. Rather than envision bits of information evenly spread
solely on the horizon surface or in its vicinity, a bit per
Planck area, they are now universally and holographically
spread in the whole black hole interior. Rather than tiling
the horizon with Planck area patches, the traditional way it
is being done in quantum black hole models, the present
work suggests the alternative of filling up the interior with
(say) light sheet unit intervals. The overall picture is then
of an onionlike entropy-packing shell model. Reflecting

our main formula Eq. (94), the entropy of any inner sphere,
being geometric in nature, is maximally packed and un-
affected by the outer layers. Any additional entropy is
maximally packed on its own external layer, with the
overall mass and charge, as well as the intimately related
Komar mass distribution Eq. (86), being adjusted accord-
ingly. Needless to say, exactly the same structure is ex-
pected to hold once the cosmological constant and/or
angular momentum enter the game.
A final speculation concerning the value of �, the di-

mensionless number which parametrizes the deviation
from general relativity, is irresistible. Classically, with
general relativity so well established, � ! þ0 is indeed
the limit to study. However, having quantum mechanics in
mind, and appreciating the fact that the singularity at the
origin will eventually be disarmed quantum-mechanically,
it is quite appealing to imagine a very small yet a finite �.
For example, the invariant width of the transition region
may be fixed by the Planck length, namely

ffiffiffi
�

p
h ’ ‘Pl: (104)
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