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We examine the conformal equivalence between the fðRÞ gravity and the interacting dark sector model.

We review the well-known result that the conformal transformation physically corresponds to the mass

dilation that marks the strength of interaction between dark sectors. Instead of modeling fðRÞ gravity in

the Jordan frame, we construct the fðRÞ gravity in terms of mass dilation function in the Einstein frame.

We find that the condition to keep fðRÞ gravity consistent with CMB observations ensures the energy flow

from dark energy to dark matter in the corresponding interacting model, which meets the requirement to

alleviate the coincidence problem in the Einstein framework.
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I. INTRODUCTION

There are concordance pictures indicating that our
Universe is experiencing an accelerated expansion. This
acceleration is believed to be driven by a yet unknown dark
energy (DE) in the framework of Einstein gravity. The
leading interpretation of such a DE is the cosmological
constant. However, the cosmological constant falls far
below the value predicted by any sensible quantum field
theory, and it unavoidably leads to the coincidence prob-
lem, namely, why are the vacuum and matter energy den-
sities of precisely the same order today?

Considering that DE and dark matter (DM) contribute
significant fractions of the contents of the Universe, it is
natural, in the framework of field theory, to consider the
interaction between them. The possibility that DE and DM
can interact has been studied extensively recently [1–27]. It
has been shown that the coupling between DE and DM can
provide a mechanism to alleviate the coincidence problem
[2–6,16,17]. Complementary observational signatures of
the interaction between DE and DM have been obtained
from the cosmic expansion history by using WMAP, SNIa,
BAO, and SDSS data [14–19] as well as the growth of
cosmic structure [21–27].

Another possible way to explain the acceleration of the
Universe is to modify Einstein gravity. One of the attempts
is called the fðRÞ gravity, in which the Lagrange density f
is an arbitrary function of R [28–31]. fðRÞ gravity is
considered the simplest modification of Einstein’s general
relativity. However, it is quite nontrivial to construct a
viable fðRÞ model satisfying both cosmological and local
gravity constraints [32–43]. It is possible to transform the
action of fðRÞ gravity from the original Jordan frame to the
Einstein frame by using conformal transformations [41].
The fðRÞ gravity turns out to be conformally equivalent to
an interacting model of DE and DM. In the Einstein frame,
the model does not possess a standard matter-dominated
epoch as in the Jordan frame but contains the coupling

between the canonical scalar field to nonrelativistic
matter.
In this work we will further illustrate the well-known

result of conformal equivalence between fðRÞ gravity
and the model of interacting dark sectors that is addressed
in many papers [41,42]. We will construct the fðRÞ models
in terms of the mass dilation rate that describes the
strength of the interaction between dark sectors. With the
coupling strength, it is easy to construct the viable fðRÞ
model realizing a reasonable cosmic expansion history.
Furthermore, we will show that the condition in which
fðRÞ gravity avoids the short-timescale instability and
maintains the agreement with CMB is exactly equivalent
to the requirement of an energy flow from DE to DM in the
interaction model to ensure the minimization of the coin-
cidence problem in the Einstein frame [16,17].
In the following section we will first present the general

formalism of fðRÞ gravity and its conformal description in
the Einstein frame. We will relate the conformal trans-
formation to the concept of mass dilation function �. In
Sec. III, we apply the conformal discussion to cosmology.
We show again the equivalence between fðRÞ gravity and
the conformal viable cosmological model of interaction
between dark sectors, and we also go back to the Jordan
frame to check the consistency. In the last section we
present our summary and discussion.

II. fðRÞ GRAVITYAND CONFORMAL
TRANSFORMATION

We start with the four-dimensional action in fðRÞ grav-
ity in the Jordan frame

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ
Z

d4xLðmÞ; (1)

where R is the Ricci scalar, �2 ¼ 8�G, and LðmÞ is the
matter Lagrangian. Variation with respect to the metric g��

yields the field equation
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FR�� � 1
2fg�� �r�r�Fþ g��hF ¼ �2TðmÞ

�� ; (2)

where F ¼ @f
@R . When fðRÞ ¼ R, the above equation is just

the Einstein equation. The field equation can be rewritten
in the form

G��¼ 1

2F
ðf�RFÞg��þ 1

F
ðr�r��g��hÞFþ�2T

ðmÞ
��

F
;

(3)

where G�� ¼ R�� � 1
2Rg��. Defining the effective

energy-momentum tensor TðeÞ
�� as

TðeÞ
�� ¼ 1

2�2
ðf� RFÞg�� þ 1

�2
ðr�r� � g��hÞF; (4)

we can recast the field equation into [41]

G�� ¼ �2

F
ðTðeÞ

�� þ TðmÞ
�� Þ: (5)

It is possible to discuss fðRÞ gravity in the Einstein
frame under the conformal transformation [44]

~ds 2¼�2ds2; ~gab¼�2gab; ~gab¼gab=�2; (6)

where�2 is a positive defined conformal factor and a tilde
represents quantities in the Einstein frame.

As explained in the Appendix, the Einstein tensor G��

transforms into

G�� ¼ ~G�� þ 2~r�!
~r�!þ 2~r�

~r�!� 2~g��
~h!

þ ~g��~g
�� ~r�!

~r�!; (7)

where ! ¼ ln�.

The effective energy-momentum tensor TðeÞ
�� transforms

as

TðeÞ
�� ¼ f� RF

2�2�2
~g�� þ 1

�2
ð~r�

~r�F� ~g��
~hFÞ

þ 1

�2
ð2~rð�F~r�Þ!þ ~g��~g

�� ~r�F
~r�!Þ; (8)

and the matter energy-momentum tensor TðmÞ
�� becomes

TðmÞ
�� ¼ �2 ~TðmÞ

�� : (9)

There might be an infinite set of representations of
physics induced by the conformal transformations due to
the ambiguities of�2 [45]. However, these representations
represent the same physics since they have the same root in
the original Jordan frame that can be seen by doing the
inverse transformation. The conformal transformation �2

can be considered an extra freedom in presenting physics.
If we take �2 ¼ F to fix the freedom associated with the
conformal mapping, any modification to the standard grav-
ity in the Jordan frame can have a certain map in the
conformal transformation.

Substituting Eqs. (7)–(9) into Eq. (5), we have

~G�� ¼ 3

2
~r� lnF~r� lnF� 3

4
~g��~g

�� ~r� lnF
~r� lnF

þ f� RF

2F2
~g�� þ �2 ~TðmÞ

�� : (10)

Defining a scalar field ’ as lnF ¼ �
ffiffi
2
3

q
’, the energy-

momentum tensor for the scalar field reads

~T ðeÞ
�� ¼ ~r�’

~r�’� 1
2
~g��~g

�� ~r�’
~r�’� ~g��V; (11)

where the potential V ¼ FR�f
2�2F2 . From the energy-

momentum tensor, we can obtain the Lagrangian density
of the field ’

L ’ ¼ K � V ¼ �1
2
~g�� ~r�’

~r�’� V: (12)

The kinetic term K ¼ � 1
2
~g�� ~r�’

~r�’ should be posi-

tive, which requires

~g�� ~r�’
~r�’ < 0; (13)

meaning that ~r�’ is a timelike vector.
The Einstein equation can be rewritten as

~G�� ¼ �2ð ~TðeÞ
�� þ ~TðmÞ

�� Þ: (14)

This result can also be obtained by conformally transform-
ing the action Eq. (1) and then doing the variation [41].
The equation of motion for matter field in the Einstein

frame is given by

~r� ~TðmÞ
�� ¼ � �ffiffiffi

6
p ~TðmÞ ~r�’ ¼ � ~TðmÞ

2
~r� lnF: (15)

Recall that ~r�’ is timelike and so is ~r� lnF. From the

discussion in the Appendix, we know that ~r� lnF relates to

the dilation function � ¼ 1
~m

d ~m
d~t through

~g �� ~r� lnF
~r� lnF¼�4�2; ~r� lnF¼2�

�
@

@~t

�
�
; (16)

where ð@@~tÞ� is the normalized four velocity that is parallel

to ~r� lnF. If � ¼ 0, F ¼ 1 and fðRÞ ¼ Rþ Constant.

Thus the mass dilation function � reflects the deviation
of fðRÞ gravity from Einstein gravity.
In the following discussion, we will show that fðRÞ

gravity can be specified by using the mass dilation �.
From Eq. (A6), the Ricci scalar curvature R can be ob-
tained as

R ¼ Fð ~Rþ 3 ~h lnF� 3
2
~g�� ~r� lnF~r� lnFÞ: (17)

Employing Eq. (10) and substituting (17), we get

f¼F2

� ~R
2
þ3~g�� ~r�

~r� lnF�3

4
~g�� ~r� lnF

~r� lnF��2

2
~TðmÞ

�
:

(18)
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Taking the derivative of Eq. (18), noting ~r�f ¼ F~r�R,

and considering Eq. (17), we have

1
2
~r�

~Rþ 6�~r��� 3~r� lnFð~g�� ~r�
~r� lnFÞ

¼ ��2ð ~TðmÞ ~r� lnFþ 1
2
~r�

~TðmÞÞ: (19)

Noting Eq. (16), Eq. (19) now can be rewritten as

1

2
~r�

~Rþ 6�~r��� 12�

�
d�

d~t
þ �~�

��
@

@~t

�
�

¼ ��2

�
2 ~TðmÞ�

�
@

@~t

�
�
þ 1

2
~r�

~TðmÞ
�
: (20)

For � ¼ 0, this is just the equation in Einstein gravity. In

Eq. (20), d�
d~t ¼ ð@@~tÞ�~g�� ~r�� and ~� ¼ ~g�� ~r�ð@@~tÞ� is the

expansion function satisfying the Raychaudhuri equation

d~�

d~t
¼ � 1

3
~�2 � ~��� ~�

�� þ ~!�� ~!
�� þ ~D� ~A� þ ~A� ~A�

� ~R��

�
@

@~t

�
�
�
@

@~t

�
�
; (21)

where ~A� is the four acceleration, !�� ¼ ~D½�ð@@~tÞ�� is the
vorticity tensor, ��� ¼ ~Dh�ð @@~tÞ�i is the shear tensor, and ~D

is spatial derivatives defined as

~D e
~Scd���ab��� ¼ ~hse ~h

f
a
~hgb
~hcq � � � ~rs

~Sqr���fg��� (22)

for the arbitrary tensor ~Scd���ab��� field. ~h�� ¼ ~g�� þ ð@@~tÞ�ð@@~tÞ�
is the projection operator.

Taking 3þ 1 decomposition of Eq. (20), the timelike
part reads

1

2

d ~R

d~t
þ18�

d�

d~t
þ12�2 ~�¼�2

�
2 ~TðmÞ��1

2

d ~TðmÞ

d~t

�
; (23)

and the spatial part is

1

2
~D�

~Rþ 6�~D�� ¼ ��2

2
~D�

~TðmÞ: (24)

From the above two equations, it is clear that the dilation
function �marks the deviation of the fðRÞ gravity from the
Einstein gravity. Once the dilation function is specified,
fðRÞ gravity can be completely constructed. In the next
section, we will apply this formalism to describe the late
time acceleration in cosmology.

III. LATE TIME ACCELERATION
IN fðRÞ GRAVITY

A. The Einstein frame

In the Einstein frame, the flat Friedmann-Robertson-
Walker (FRW) line element reads

d~s2 ¼ �d~t2 þ ~a2d~x2: (25)

The expansion observed by the comoving observer is
~� ¼ 3 ~H, where the Hubble parameter ~H is defined by

~H ¼ d~a
d~t =~a. For the perfect fluid and the comoving

observer, we have ~���¼ ~!��¼ ~A�¼0, so that Eq. (21)

reduces to

d ~H

d~x
¼ ~R

6 ~H
� 2 ~H; (26)

where ~x ¼ ln~a, ~R¼�2 ~R00þ6 ~H2, and ~R ¼ 6ð2 ~H2 þ d ~H
d~t Þ.

From Eq. (23), we find

d ~R

d~x
þ 36�

d�

d~x
þ 72�2 ¼ �3�2 ~�m

�
�
~H
þ 1

�
; (27)

where we have neglected the pressure of the matter so that
~TðmÞ ¼ �~�m. After the conformal transformation, the mass
is no longer conserved. It satisfies the continuity equation

d~�m

d~x
þ 3~�m ¼ �

~H
~�m: (28)

From the relation between F and � and expressing F into
’, we have the continuity equation for the scalar field

d’

d~x
¼ �

ffiffiffi
6

p
�

� ~H
: (29)

For a homogeneous universe, Eq. (24) is automatically
satisfied. Once the dilation function is specified, we can
explore the expansion history of the Universe in the
Einstein frame by solving Eqs. (26)–(29) with proper
boundary conditions.
Before proceeding, we discuss the intrinsic consistency

of the formalism described above with the usual interacting
model with a scalar field. From Eq. (18), f can be obtained
in terms of �

f ¼ F2

� ~R
2
þ 3�2 þ 6 ~H

d�

d~x
þ 18� ~H þ 1

2
�2 ~�m

�
; (30)

where lnF ¼ �
ffiffi
2
3

q
’ has been employed. Furthermore,

from Eq. (17), we have

R ¼ F ~Rþ F

�
6�2 þ 6 ~H

d�

d~x
þ 18� ~H

�
: (31)

Noting d lnF
d~t ¼ �2�, d

d~t ¼ ~H d
d~x and combining Eqs. (30)

and (31), we get

~H 2 ¼ �2

3

�
~�m þ 1

2

�
d’

d~t

�
2 þ FR� f

2�2F2

�
; (32)

which is exactly the Friedmann equation if we define
energy density and the pressure of the scalar field as

~�d ¼ 1

2

�
d’

d~t

�
2 þ V ¼ 3�2

�2
þ V

~pd ¼ 1

2

�
d’

d~t

�
2 � V ¼ 3�2

�2
� V;

(33)

where
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V ¼ FR� f

2�2F2
: (34)

If the scalar field plays the role of DE in the Einstein
frame, its continuity equation reads

d~�d

d~x
þ 3ð1þ ~wÞ~�d ¼ � �

~H
~�m; (35)

where ~w ¼ ~pd=~�d is the equation of state of DE. This leads
to the equation of motion of the scalar field

d2’

d~t2
þ 3 ~H

d’

d~t
þ @V

@’
¼ �ffiffiffi

6
p ~�m: (36)

The analysis above shows that, in the Einstein frame, the
fðRÞ cosmology is conformally equivalent to the model of
interaction between dark sectors. There is a freedom in
choosing the coupling strength �. However, it must be
consistent with the viability condition of the fðRÞ gravity.

A viable fðRÞ model must pass the stringent local test,
which requires that in the dense region the model should go
back to the standard Einstein gravity, lim~R!1� ¼ 0. On
the other hand, in the lower dense region fðRÞ gravity
should have enough deviation from the Einstein gravity
to achieve the late time acceleration of the Universe.
However, in the vacuum, the dilation should not go to
infinity, lim~R!0�<1. In Eq. (A16), � is defined as the
dilation rate of the mass of test particles in gravitational
fields. To satisfy the weak equivalent principle, � should be
independent of the species of matter [46]. One natural
choice of the � form is to consider it as a geometris
quantity, a function of ~R. There is quite a wide range of
the choices for � that can satisfy lim~R!1� ¼ 0 and
lim~R!0�<1 to pass the local test and have reasonable
expansion history. In this work, we only present one of the
most simplest choices. We take � as

� ¼ 	
~Rþ 


; (37)

which satisfies lim~R!1� ¼ 0 and lim~R!0� ¼ 	

 where 	

and 
 are constants.
With the specified �, we can obtain the evolution of the

Universe by solving Eqs. (26)–(29) in the Einstein frame.
This is equivalent to solving the model of interaction
between DE and DM. For convenience ~�m, ~R are solved
in the unit ~H2

0 and � in the unit ~H0. 	 and 
 are set in units
~H3
0 and ~H2

0, respectively. We set the starting point at
present, ~x ¼ 0, with the initial conditions ~R0 ¼
12� 3~�0

m � 18�2
0, ~�0

m ¼ 3 ~�0
m, and ~H0 ¼ 1. In order to

let our model fully return the standard Einstein gravity in
the past, we need F ! 1, which is equivalent to setting the
boundary condition lim~x!�1’ ! 0. The numerical results
are shown in Fig. 1.

We see that in the early universe, when the fðRÞ gravity
boils down to Einstein gravity, the dilation � disappears. It
becomes nonzero only when the theory deviates from the

Einstein gravity. The larger the deviation, the bigger shall
be �. In the language of the interacting model, we see that
the strength of the interaction becomes stronger in the late
time universe, while in the early time, DE and DM evolves
independently, which provides a mechanism to recover the
standard radiation and matter-dominated phase in the uni-
verse expansion history.

B. The Jordan frame

In order to further examine the consistency between the
fðRÞ gravity and the model of interaction between dark
sectors, let us go back to the Jordan frame. Noting that

d~t ¼ �dt; d~r ¼ �dr; ~a ¼ �a; (38)

the Hubble expansion in the Jordan frame reads,

H ¼ � ~H � d�

d~t
¼ F1=2

�
~H � 1

2

d lnF

d~t

�
; (39)

and

H2 ¼ F

�
~H2 þ 1

4

�
d lnF

d~t

�
2 � ~H

d lnF

d~t

�
: (40)

Employing Eq. (32), the Friedmann equation in the Jordan
frame becomes

H2 ¼ FR� f

6F
�H

_F

F
þ �2

3F
�m; (41)

where �m ¼ F2 ~�m and the Ricci scalar field R reads

R¼6ð2H2þ _HÞ

¼F6

�
2 ~H2þd ~H

d~t

�
þF

�
3

2

�
dlnF

d~t

�
2�9

dlnF

d~t
~H�3

d2 lnF

d~t2

�
;

(42)

with

dH

dt
¼ F

2

d lnF

d~t
~H þ F

d ~H

d~t
� F

2

d2 lnF

d~t2
� F

4

�
d lnF

d~t

�
2
:

The dot denotes the derivative with respect to t. The
above Friedmann equation can also be derived directly
from Eq. (2).
The Friedmann equation (41) can be recast into the form

y00 �
�
1þ E0

2E
þ 4E00 þ E000

4E0 þ E00

�
y0 þ 4E0 þ E00

2E
y

¼ �0
me

�3x 3ð4E0 þ E00Þ
E

; (43)

where E ¼ H2

H2
0

, y ¼ f
H2

0

. In the derivation, we have used the

relation F ¼ f0
R0 , where prime denotes d

dx and x ¼ lna, and

F0 ¼ f00
R0 � R00f0

ðR0Þ2 withR ¼ 3½4H2 þ ðH2Þ0�. Substituting f by
f� R, Eq. (43) goes back to the result obtained in [47].
The background expansion E can be parameterized

as
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E ¼ ð1��0
dÞe�3x þ�0

de
�3ð1þwÞx: (44)

However, this E cannot fully fix the fðRÞ model. The fðRÞ
model has an external choice of the f form that satisfies the
differential equation of Eq. (43). However, the boundary
conditions for y, y0 are not completely free because a viable
fðRÞ model should pass the local test

lim
R!1fðRÞ=R ¼ lim

R!1

@fðRÞ
@R
@R
@R

¼ lim
R!1F ! 1; (45)

which puts constraints on y0 and y00. There is a freedom in

fðRÞ models, which can be represented by a dimensionless
quantity [47]

B ¼ fRR
F

R0 H
H0 ¼

d lnF

d lnH
: (46)

The quantity B relates to � in the form

B ¼ �2�

ffiffiffiffi
F

p
H0 : (47)

From Eq. (45), B satisfies limR!1B ! 0, which imposes
the constraint

lim
R!1� ! 0:

The evolution of B is not entirely free. Only the boundary
value B0 is a free parameter, which characterizes the fðRÞ
model [47].

3.0 2.5 2.0 1.5 1.0 0.5 0.0
0.00
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0.04

0.05

lna

H0
2
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H0
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d

FIG. 1 (color online). Viable description of the Universe by fðRÞ gravity in the Einstein frame. We set the cosmological parameters
as ~�0

m ¼ 0:3, ~�0
d ¼ 0:7, 	= ~H3

0 ¼ 1:2 at the present moment. The red, green, and blue curves represent the models for

�0= ~H0 ¼ 0:01,�0= ~H0 ¼ 0:03, and �0= ~H0 ¼ 0:05, respectively. The values of the 
-parameter are, respectively, 
= ~H2
0 ¼ 110:702,


= ~H2
0 ¼ 30:7162, 
= ~H2

0 ¼ 14:745.
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In the cosmological scale, it was argued that the fðRÞ
gravity can reduce to the large-scale CMB anisotropy and
avoid the high curvature instability only when B> 0 [47].
Considering the Hubble expansion Eq. (39), we can use the
inverse conformal transformation to get H and in combi-
nation with Eq. (44), we can figure out the effective DE
equation of state w. Similarly, using the inverse map of the
conformal transformation, we can obtain other quantities
in the Jordan frame from the Einstein frame. The numerical
results are shown in Fig. 2. From the results, we find that
w>�1 and this ensures H0 < 0. Thus from Eq. (47) we
learn that the condition B> 0 leads to �> 0. This is an
interesting observation, since it shows that the viability
condition of the fðRÞ gravity in the cosmological scale in
Jordan frame urges the coupling between dark sectors to be
positive in the Einstein frame. From Eq. (28), the positive

coupling indicates that the energy flows from DE to DM,
which is the requirement to diminish the coincidence
problem [16,17]. Thus the viable fðRÞ gravity in the cos-
mological scale has a predisposition to alleviate the coin-
cidence problem in the conformal theory of interaction
between dark sectors.

IV. CONCLUSIONS

In this paper, we have examined the conformal equiva-
lence between fðRÞ gravity and the interacting dark sector
model in the Einstein frame. We construct the fðRÞ model
in terms of the mass dilation. Once the dilation function is
known, the fðRÞ gravity can be constructed. Studying
cosmology in the Einstein frame, the fðRÞ gravity is con-
formally equivalent to the interacting model. The strength
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f R
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FIG. 2 (color online). The fðRÞ cosmology in the Jordan frame obtained from the models in the Einstein frame by using the inverse
conformal transformation.
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of the interaction marks the deviation of the fðRÞ gravity
from the Einstein gravity. In the earlier time of the uni-
verse, there is no interaction in the dark sector in the
Einstein frame and fðRÞ gravity returns to Einstein gravity.
In the later epoch the interaction becomes stronger and the
deviation of fðRÞ gravity from the Einstein theory is larger.
More interestingly we found that the condition that fðRÞ
gravity agrees with the CMB observation requires the
energy to flow from DE to DM in the corresponding
interacting model. This is actually consistent with the
requirement to alleviate the coincidence problem in the
Einstein framework. This further shows the equivalence
between fðRÞ gravity and the interaction model.
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APPENDIX

1. Conformal transformation

We briefly summarize the basic properties of conformal
transformation. The metric transforms as

~ds 2¼�2ds2; ~gab¼�2gab; ~gab¼gab=�2: (A1)

The difference of the covariant derivative between r� and
~r� is characterized by C�

��,

r�A� ¼ ~r�A� þ C�
��A�; (A2)

where A� is an arbitrary vector and C�
�� is given by

C�
�� ¼ 2��

ð�
~r�Þ!� ~g��~g

�� ~r�!; (A3)

where ! ¼ ln�.
For the scalar field ’, the transformation with second

order derivative satisfies

r�r�’¼ ~r�
~r�’þ2~rð�’~r�Þ!� ~g��~g

�� ~r�’
~r�!:

(A4)

The conformal transformation for the Ricci tensor obeys

R�� ¼ ~R�� þ 2~r�!
~r�!þ 2~r�

~r�!þ ~g��
~h!

� 2~g��~g
�� ~r�!

~r�!; (A5)

where ~h ¼ ~g�� ~r�
~r�. The scalar Ricci curvature reads

R ¼ �2ð ~Rþ 6 ~h!� 6~g�� ~r�!
~r�!Þ: (A6)

The differential operator d does not change under such

transformation, d ¼ ~d. If d acts on a scalar field f, we find
that

@�f ¼ ðdfÞ� ¼ ð~dfÞ� ¼ ~@�f: (A7)

2. Physical interpretation of the
conformal transformation

The conformal transformation rescales the basic units
used in the original frame [44].

d~t ¼ �dt; d~r ¼ �dr (A8)

where dr, dt denote the space and time separation.
Although the conformal factor � is arbitrary, the basic
physics does not change under the conformal
transformation.
The equation of motion under such a transformation

becomes

~r �
~T��¼ ~r�

�
1

�6
T��

�
¼� ~T~g��@� ln�¼� ~T

~@��

�
;

(A9)

where ~T�� � ~g��~g�� ~T��, T
�� � g��g��T��, and

~T ��¼ 1

�2
T��; ~T¼ ~g�� ~T��¼g��

�4
T��¼ T

�4
: (A10)

We have used Eq. (D.20) in the appendix of [48] in deriv-
ing (A9).
For a single particle, Eq. (A9) reduces to

~u � ~r� ~p
� ¼ ~m

�
~@��: (A11)

~m~@� ln� is the interaction vector that can be either timelike
or spacelike. However, in this work, we only focus on the
case when ~@� ln� is timelike, because the interaction in-
duced by modified gravity is always in this case Eq. (13).
Equation (A11) is consistent with the well-established

physics, if comparing with the equation of motion of
particles with varying mass in general relativity [17,49]

~u � ~r� ~p
� ¼ d ~m

d~t

�
@

@~t

�
�
; (A12)

where ð @@~tÞ�ð@@~tÞ� ¼ ~g��ð @@~tÞ�ð @@~tÞ� ¼ �1.

We obtain

~m

�
~@�� ¼ d ~m

d~t

�
@

@~t

�
�
: (A13)

Contracting the above equation with ð @@~tÞ�, we arrive at
d ln ~m

d~t
¼ d ln��1

d~t
; (A14)

where ~m ¼ m=� and m is a constant. When � ¼ 1, m is
the mass measured in the original frame.
Suppose a system has the volume V and is composed of

N particles, the number density of particles is defined by
n ¼ N=V. Considering d~t ¼ �dt, d~r ¼ �dr, ~V ¼ �3V,
~m ¼ m=� [44], we have ~n ¼ 1

�3 n. Thus after the
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conformal transformation, the energy density becomes
~� ¼ ~m ~n ¼ 1

�4 mn ¼ 1
�4 �, which is consistent with

Eq. (A10).
We can introduce a scalar field � that satisfies

~�m

~@��

�
¼ �~�m

�
@

@~t

�
�
: (A15)

This � can be rewritten as

� ¼ �d ln�

d~t
¼ 1

~m

d ~m

d~t
¼ 1

m

d ~m

dt
; (A16)

which clearly indicates the mass dilation rate due to the
conformal transformation.

In order to see more clearly on the physical meaning of
�, we take the 3þ 1 decomposition of Eq. (A12) relative to
a timelike observer ~Z� ¼ ð @@~sÞ�

d ~E

d~�
¼ d

d~�
ð~� ~mÞ ¼ ~�t

d ~m

d~t
¼ ~�t�;

~m
d~pi

d~�
¼ d

d~�
ð~� ~m ~viÞ ¼ ~�t

d ~m

d~t
~vi
t ¼ ~�t� ~m~vi

t;

(A17)

where ~E and ~pi are local energy and three momentum
measured by observer ~Z�, respectively, ~u� ¼ ð dd~�Þ� is the

four velocity of test particle, ~� � d~s
d~� , ~�t � d~s

d~t are Lorentz

boot factors, and ~vi ¼ d~xi=d~s is three velocity observed by
~Z�. The mass dilation will introduce some external terms
on the right-hand side of the equation of motion. The
spatial part ~�t� ~m~vi

t is an external three force induced by
the energy (mass) change in the test particle. This effect
is well known as the ‘‘Doppler effect’’ induced by the
‘‘inertia of energy.’’ However, in cosmology, ~�t� ~m~vi

t is
usually called the fifth force. The fifth force ~�t� ~m~vi

t

depends on the choice of the observer. For instance, if we
take the observer ~Z� ¼ ð @@~sÞ� parallel to ~@� ln�, ~�t� ~m~vi

t

completely vanishes. However, the local energy ~E is not
conserved if the interaction is induced by gravity. This is
because the energy is not localized in the gravitational
field. The local measurement of energy ~E depends on the
spacetime. Thus the effect of the timelike part always
exists and the interaction vector ~@� ln� is necessarily
timelike. The mass dilation is a dominated effect due to
the fact that ~vi

t � 1. Comparing with the timelike part
effect, the spacelike fifth force can be neglected.
Moreover, if the dilation rate � is independent of

the species of matter, the equation of motion is only
determined by geometry, which means that the weak
equivalence principle still holds [46].
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